
Maxoid: Transparently
Confining Mobile Applications

with Custom Views of State

Yuanzhong Xu and Emmett Witchel
University of Texas at Austin

4/24/2015
Bordeaux, France

Focus of this work

2

• Security problems: when different apps interact
with each other, secrecy/integrity of data is often
compromised

• Cause: insufficient support from the platform

Mobile platform: app-centric
security

3

one user one platform many apps

Mobile platform: app-centric
security

Principals: apps from different
developers
• User may not trust them
• They may not trust each

other

4

Platform:
• Minimize apps’ privilege
• Protect apps from each

other many apps

Public and private state of
mobile apps

5

Public state
e.g., photo, contacts

Private
state

of App 1

Private
state

of App 2

Private
state

of App 4

Private
state

of App 3

Principals are the apps, not users

Android apps’ private data
• Each app has its own UNIX UID (app sandbox)

• Private files owned by the app
• Higher-level APIs: database, key-value store, etc. 

implemented as libraries

6

email
headers,
bodies,

attachments

account info,
bank

statements

account info,
user data,

…

account info,
settings,

recent files
account info

system content providersexternal file storage

Android apps’ public data
• Public data shared by apps

• Files in external storage (e.g., SD card)
• Structured data in system content providers

• Contacts, Media, Downloads, User Dictionary, etc.

7

Problem
Sometimes an app needs to share its private data
with another app

“initiator”: holding private data “delegate”: processing
initiator’s private data

8

private
attachment

Disclose data to delegate
Sometimes an app needs to share its private data
with another app

9

private
attachment

Initiator

Delegate

not aware that
this is private, or what
the right thing to do is

Initiators fail to protect data
Email

• No confinement on document viewers

Dropbox
• Stores all files in public SD card to

allow other apps to open
• No confinement on document viewers

Browser’s incognito mode
• Even in incognito mode, downloaded

files are public
• No confinement on document viewers

10

Our contributions — Maxoid

• Security: confining delegates

• Coarse-grained information flow control (IFC)

• Usability: support legacy apps

• Multiple versions of data organized in custom

views of state for apps

11

Legacy delegates leak data
Popular document viewers, scanners, cameras, media
players, etc. leak data in the public state about the input

12

public state
• copies of files

• thumbnails of photos

• metadata in various
formats, e.g., content
providers

input from
initiator

network

delegates

public state
• copies of files

• thumbnails of photos

• metadata in various
formats, e.g., content
providers

Naive IFC #1
Delegates are disallowed to leak data to public
state or network

13

input from
initiator

network

delegates

public state
• copies of files

• thumbnails of photos

• metadata in various
formats, e.g., content
providers

Naive IFC #1

14

input from
initiator

network

delegates

Naively blocking data flows
would break legacy apps!

• Unexpected permission
errors

Mobile apps typically
tolerate temporary network

disruptions
Too restrictive for legacy apps

public state
input
from

initiator

delegates
15

• Taint tracking on input data
• Delegates can write tainted data to public state
• Control disclosure of tainted data to network

Naive IFC #2

public state
input
from

initiator

delegates
16

• Taint tracking on input data
• Delegates can write tainted data to public state
• Control disclosure of tainted data to network

Naive IFC #2

public state
input
from

initiator

delegates
17

• Taint tracking on input data
• Delegates can write tainted data to public state
• Control disclosure of tainted data to network

Too permissive about public state:

Uncontrolled taint propagation cripples
unrelated apps on the device

Naive IFC #2

Dilemma in naive IFC

• Allow or disallow delegates to write tainted data out?

• Allow: uncontrolled taint propagation

• Disallow: breaking legacy apps

18

Maxoid
• Addressing the dilemma:

• Allow delegate apps to write “out” tainted data
• Controls taint propagation transparently

• Key technique: maintain multiple versions of data
when necessary
• Isolate tainted versions from untainted versions
• Present different views of state for different app

instances

19

An app can run in one of two modes:

• Running on behalf of itself (normal mode):

— as an initiator

• Running on behalf of another app:

 — as a delegate  
 e.g. Adobe Reader on behalf of Email

Two execution modes

20

Coarse-grained taint tracking  
made usable

• Coarse-grained taint tracking  
All output of the delegate is considered tainted by
the private input from the initiator
• Conservative, strong security
• False positives — safe data flows recognized as

unsafe ones
• Maxoid makes it usable

21

copy-on-write view

Delegate confinement
overview

22

private state

public state

copy-on-write view
2. No network

connection3. IPC only with
other delegates

on behalf of
the same initiator

1. COW views of files
& data in system
content providers

• Secrecy: confine
leaks

• Integrity: prevent
overwriting

Use cases
Initiator app Current Changes Maxoid Improvement

Email • No confinement
on doc viewers Config.

• Invoke unmodified
delegates to open
attachments

Dropbox
• Store public files
• No confinement

on doc viewers
Config.

• Store private files
• Invoke unmodified

delegates to open files

Browser’s
incognito
mode

• Dowloaded files
are public

• No confinement
on doc viewers

1 line of
source
code

• Private downloads for
incognito mode are only
accessible to delegates

✦ Extend incognito mode to
the whole device

23

Views for initiators are identical
to Android’s data model

24

private
attachment

recent file list

public state

a.pdf

recent file list

COW

Copy-on-write (COW) views
for delegates

25

private
attachment

public state

private
attachment

a.pdf

COW
a.pdf a

recent file list
a.pdf

a.pdf a

COW

Delegate’s view of public state
contains initiator’s private data

26

private
attachment

public state

private attachment

COW

recent file list
a.pdf

a.pdf a

COW

Delegate writes to its private
state are confined by COW

27

private
attachment

public state

private attachment

COW

attachment.pdf

recent file list
a.pdf

a.pdf a

COW
private attachment

Delegate writes to its view of
public state are confined by COW

28

private
attachment

public state

COW

• Invisible to unrelated
apps

• Visible to Email, but
does not overwrite
original version

attachment.pdf

recent file list
a.pdf

a.pdf a

COW
private attachment

Save desired change, erase
side effects

29

private
attachment

public state

COW

Unwanted side effects

Desired change:
notes on PDF

attachment.pdf

recent file list
a.pdf

a.pdf a

COW
private attachment

Save desired change, erase
side effects

30

private
attachment

public state

COWattachment.pdf

recent file list
a.pdf

a.pdf a
attachment.pdf COW

Delegate’s changes to private
state will be discarded

31

recent file list

a.pdf

Adobe restarts as an initiator

32

Adobe restarts on behalf of
Email again

33

a.pdf a

recent file list

a.pdf

COW

a.pdf a

recent file list

a.pdf

list of recent
files from Email

attachment.pdf

Keep persistent changes to
delegate’s private state

34

persistent private state
(new optional API)

COW

list of recent
files from Email

recent file list

a.pdf

Adobe restarts as an initiator

35

persistent private state
(new optional API)attachment.pdf

list of recent
files from Emaila.pdf a

recent file list

a.pdf

Adobe restarts on behalf of
Email again

36

persistent private state
(new optional API)attachment.pdf

Usability properties

• Transparent confinement for delegates

• Tainted data will not affect unrelated apps

• Initiator can get result back from delegate

Private mount
namespace

Private mount
namespace

branch branch

Aufs

Implementing Maxoid views

38

Media
Provider

User
Dictionary
Provider

SQLite
library

SQLite
library

COW-proxy COW-proxy

modifications modifications

File system
per-file copy-on-write

• private mount namespace
• Aufs — a union file system

System content providers
per-row copy-on-write

• Copy-on-write proxy for SQLite
• Provider-specific modifications

• Invoke another app

• As a delegate

• In the initiator mode

• Specify invocation type

• Statically: with config. file, no code change

• Dynamically: with new API, requires code change

Confined & unconfined
invocations from initiators

39

Performance
• CPU-bound workload: no overhead
• File system/system content providers:

• Initiators: negligible
• Delegates:

• Microbenchmarks
• Worst-case: the first modification to a large file. Overhead

depends on the file size. (Copy the entire file to private
branch.)

• 0%~31% in other cases
• Macrobenchmarks:

• Negligible user-perceived latencies in real-world apps
(e.g., Adobe Reader, CameraMX, CamScanner)

40

Conclusion

• Information flow control can prevent data leakage
in mobile platforms

• Maxoid provides coarse-grained, conservative
information flow control

• Maxoid uses per-app-instance custom views of
state to make the confinement transparent

41

