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Focus of this work
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• Security problems: when different apps interact 
with each other, secrecy/integrity of data is often 
compromised 

• Cause: insufficient support from the platform



Mobile platform: app-centric 
security
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one user one platform many apps



Mobile platform: app-centric 
security

Principals: apps from different 
developers 
• User may not trust them 
• They may not trust each 

other
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Platform: 
• Minimize apps’ privilege 
• Protect apps from each 

other many apps



Public and private state of 
mobile apps
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Public state 
e.g., photo, contacts

Private 
state 

of App 1

Private 
state 

of App 2

Private 
state 

of App 4

Private 
state 

of App 3

Principals are the apps, not users



Android apps’ private data
• Each app has its own UNIX UID (app sandbox) 

• Private files owned by the app 
• Higher-level APIs: database, key-value store, etc. 

implemented as libraries
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email 
headers, 
bodies, 

attachments

account info, 
bank 

statements

account info, 
user data, 

…

account info, 
settings, 

recent files
account info



system content providersexternal file storage

Android apps’ public data
• Public data shared by apps 

• Files in external storage (e.g., SD card) 
• Structured data in system content providers 

• Contacts, Media, Downloads, User Dictionary, etc.
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Problem
Sometimes an app needs to share its private data 
with another app

“initiator”: holding private data “delegate”: processing 
initiator’s private data
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private 
attachment



Disclose data to delegate
Sometimes an app needs to share its private data 
with another app
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private 
attachment

Initiator

Delegate

not aware that 
this is private, or what 
the right thing to do is



Initiators fail to protect data
Email 

• No confinement on document viewers 

Dropbox 
• Stores all files in public SD card to 

allow other apps to open 
• No confinement on document viewers 

Browser’s incognito mode 
• Even in incognito mode, downloaded 

files are public 
• No confinement on document viewers
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Our contributions — Maxoid

• Security: confining delegates 

• Coarse-grained information flow control (IFC) 

• Usability: support legacy apps 

• Multiple versions of data organized in custom 

views of state for apps
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Legacy delegates leak data
Popular document viewers, scanners, cameras, media 
players, etc. leak data in the public state about the input
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public state 
• copies of files 

• thumbnails of photos 

• metadata in various 
formats, e.g., content 
providers

input from 
initiator

network

delegates



public state 
• copies of files 

• thumbnails of photos 

• metadata in various 
formats, e.g., content 
providers

Naive IFC #1
Delegates are disallowed to leak data to public 
state or network
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input from 
initiator

network

delegates



public state 
• copies of files 

• thumbnails of photos 

• metadata in various 
formats, e.g., content 
providers

Naive IFC #1
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input from 
initiator

network

delegates

Naively blocking data flows 
would break legacy apps! 

• Unexpected permission 
errors

Mobile apps typically 
tolerate temporary network 

disruptions
Too restrictive for legacy apps



public state 
input 
from 

initiator

delegates
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• Taint tracking on input data 
• Delegates can write tainted data to public state 
• Control disclosure of tainted data to network

Naive IFC #2



public state 
input 
from 

initiator

delegates
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• Taint tracking on input data 
• Delegates can write tainted data to public state 
• Control disclosure of tainted data to network

Naive IFC #2



public state 
input 
from 

initiator

delegates
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• Taint tracking on input data 
• Delegates can write tainted data to public state 
• Control disclosure of tainted data to network

Too permissive about public state: 

Uncontrolled taint propagation cripples 
unrelated apps on the device

Naive IFC #2



Dilemma in naive IFC

• Allow or disallow delegates to write tainted data out? 

• Allow: uncontrolled taint propagation 

• Disallow: breaking legacy apps
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Maxoid
• Addressing the dilemma: 

• Allow delegate apps to write “out” tainted data 
• Controls taint propagation transparently 

• Key technique: maintain multiple versions of data 
when necessary 
• Isolate tainted versions from untainted versions 
• Present different views of state for different app 

instances
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An app can run in one of two modes: 

• Running on behalf of itself (normal mode): 

— as an initiator 

• Running on behalf of another app: 

    — as a delegate  
     e.g. Adobe Reader on behalf of Email

Two execution modes
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Coarse-grained taint tracking  
made usable

• Coarse-grained taint tracking  
All output of the delegate is considered tainted by 
the private input from the initiator 
• Conservative, strong security 
• False positives — safe data flows recognized as 

unsafe ones 
• Maxoid makes it usable
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copy-on-write view

Delegate confinement 
overview
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private state

public state

copy-on-write view
2. No network 

connection3. IPC only with 
other delegates 

on behalf of 
the same initiator

1. COW views of files 
& data in system 
content providers 

• Secrecy: confine 
leaks 

• Integrity: prevent 
overwriting



Use cases
Initiator app Current Changes Maxoid Improvement

Email • No confinement 
on doc viewers Config.

• Invoke unmodified 
delegates to open 
attachments

Dropbox
• Store public files 
• No confinement 

on doc viewers
Config.

• Store private files 
• Invoke unmodified 

delegates to open files

Browser’s 
incognito 
mode

• Dowloaded files 
are public 

• No confinement 
on doc viewers

1 line of 
source 
code

• Private downloads for 
incognito mode are only 
accessible to delegates 

✦ Extend incognito mode to 
the whole device
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Views for initiators are identical 
to Android’s data model
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private 
attachment

recent file list

public state

a.pdf



recent file list

COW

Copy-on-write (COW) views 
for delegates
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private 
attachment

public state

private 
attachment

a.pdf

COW
a.pdf a



recent file list
a.pdf

a.pdf a

COW

Delegate’s view of public state 
contains initiator’s private data
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private 
attachment

public state

private attachment

COW



recent file list
a.pdf

a.pdf a

COW

Delegate writes to its private 
state are confined by COW
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private 
attachment

public state

private attachment

COW

attachment.pdf



recent file list
a.pdf

a.pdf a

COW
private attachment

Delegate writes to its view of 
public state are confined by COW
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private 
attachment

public state

COW

• Invisible to unrelated 
apps 

• Visible to Email, but 
does not overwrite 
original version

attachment.pdf



recent file list
a.pdf

a.pdf a

COW
private attachment

Save desired change, erase 
side effects
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private 
attachment

public state

COW

Unwanted side effects

Desired change: 
notes on PDF

attachment.pdf



recent file list
a.pdf

a.pdf a

COW
private attachment

Save desired change, erase 
side effects
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private 
attachment

public state

COWattachment.pdf



recent file list
a.pdf

a.pdf a
attachment.pdf COW

Delegate’s changes to private 
state will be discarded
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recent file list

a.pdf

Adobe restarts as an initiator
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Adobe restarts on behalf of 
Email again
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a.pdf a

recent file list

a.pdf

COW



a.pdf a

recent file list

a.pdf

list of recent 
files from Email

attachment.pdf

Keep persistent changes to 
delegate’s private state
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persistent private state 
(new optional API)

COW



list of recent 
files from Email

recent file list

a.pdf

Adobe restarts as an initiator
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persistent private state 
(new optional API)attachment.pdf



list of recent 
files from Emaila.pdf a

recent file list

a.pdf

Adobe restarts on behalf of 
Email again
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persistent private state 
(new optional API)attachment.pdf



Usability properties

• Transparent confinement for delegates  

• Tainted data will not affect unrelated apps 

• Initiator can get result back from delegate



Private mount 
namespace

Private mount 
namespace

branch branch

Aufs

Implementing Maxoid views
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Media 
Provider

User 
Dictionary 
Provider

SQLite 
library

SQLite 
library

COW-proxy COW-proxy

modifications modifications

File system 
per-file copy-on-write 

• private mount namespace 
• Aufs — a union file system

System content providers 
per-row copy-on-write 

• Copy-on-write proxy for SQLite 
• Provider-specific modifications



• Invoke another app 

• As a delegate 

• In the initiator mode 

• Specify invocation type 

• Statically: with config. file, no code change 

• Dynamically: with new API, requires code change

Confined & unconfined 
invocations from initiators
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Performance
• CPU-bound workload: no overhead 
• File system/system content providers: 

• Initiators: negligible 
• Delegates: 

• Microbenchmarks 
• Worst-case: the first modification to a large file. Overhead 

depends on the file size. (Copy the entire file to private 
branch.) 

• 0%~31% in other cases 
• Macrobenchmarks: 

• Negligible user-perceived latencies in real-world apps 
(e.g., Adobe Reader, CameraMX, CamScanner)
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Conclusion

• Information flow control can prevent data leakage 
in mobile platforms 

• Maxoid provides coarse-grained, conservative 
information flow control 

• Maxoid uses per-app-instance custom views of 
state to make the confinement transparent
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