Maxoid: Transparently Confining Mobile Applications with
Custom Views of State

Yuanzhong Xu

Emmett Witchel

The University of Texas at Austin

Abstract

We present Maxoid, a system that allows an Android app
to process its sensitive data by securely invoking other, un-
trusted apps. Maxoid provides secrecy and integrity for both
the invoking app and the invoked app. For each app, Max-
oid presents custom views of private and public state (files
and data in content providers) to transparently redirect un-
safe data flows and minimize disruption. Maxoid supports
unmodified apps with full security guarantees, and also in-
troduces new APIs to improve usability. We show that Max-
oid can improve security for popular Android apps with min-
imal performance overheads.

1. Introduction

For mobile apps, the tension between the diversity of provi-
ders and the goals of a seamless mobile experience creates a
security problem. Apps from different developers must work
together, but they have no reason to trust each other. Mobile
platforms like Android provide security models to protect
each app’s private data, and control each app’s access to
shared data by specifying a variety of permissions. However,
Android’s model is not sufficient to protect confidentiality
or integrity for common scenarios where the user would like
two or more apps to cooperate on sensitive data.

For example, email apps must invoke external programs
to view attachments, cloud storage apps must invoke external
editors, and a comparison shopping app may need a camera
app to read a product bar code. In these examples, we call
the app that needs to invoke a helper app the initiator and
the invoked app the delegate, and we say that the delegate
runs on behalf of the initiator. In Android, once the initiator
shares sensitive data with the delegate, it has no control on
how the delegate uses the data. For instance, the delegate
may copy the initiator’s sensitive data to public storage (see
§2.2). Instead of invoking an app, an initiator might use
a third-party library, but the security issue remains if the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

EuroSys’15, April 21-24, 2015, Bordeaux, France.

Copyright © 2015 ACM 978-1-4503-3238-5/15/04. .. $15.00.
http://dx.doi.org/10.1145/2741948.2741966

library (built for general use) fails to protect the initiator’s
private data.

Mobile systems like Android offer new opportunities to
secure mutually distrustful code. The app-based security
model allows a new balance of usability and security for
initiator and delegate apps that is not available to desk-
top or server systems. Android clearly distinguishes apps’
private and public (shared) data. Based on that distinction
and on Android’s principled data abstractions (e.g., content
providers), it is possible to reason about security require-
ments for inter-app cooperation with fairly simple, coarse-
grained information flow mechanisms that require little or no
change to existing applications and without requiring new,
complex policies.

We propose Maxoi(ﬂ a new security model that pro-
vides secrecy and integrity for mobile applications that in-
voke other applications. Maxoid allows delegates to access
initiator private state, but prevents delegates from leaking
these secrets to other applications or transferring them over
the network; delegates may update initiator private state or
public state to return results, but Maxoid allows the initiator
to selectively commit or discard those updates to prevent un-
wanted modifications by delegates. Conversely, Maxoid also
protects delegates by disallowing the initiator from reading
or writing its delegates’ private state.

Maxoid achieves its security goals while minimizing dis-
ruption to delegates by presenting different views of private
and public state to initiators and delegates. A delegate’s view
transparently confines its access to persistent state like files
and data in system content providers (e.g., Media). Dele-
gates can still access resources to which they have permis-
sion (except the loss of network connection when the con-
finement begins), without violating Maxoid’s security prop-
erties. Controlling views of state, e.g., by using a union file
system and a copy-on-write SQL proxy, transparently pro-
vides a coarse-grained mechanism to control information
flow.

Maxoid prioritizes backward compatibility and ease of
adoption. It is fully compatible with legacy Android apps
when the new Maxoid features are not used for them. Even
when being used to confine delegates, Maxoid can be com-
pletely transparent, i.e., it can support unmodified delegate
apps with full security guarantees. It also provides simple

' The name is a contraction of The Matrix and Android, because Maxoid
composes a custom reality for delegates on Android.

(often optional) APIs for developers to improve usability.
For example, some of a delegate’s data may be cleared by
Maxoid for transparency by default, but it may alternatively
use Maxoid APIs to keep persistent state, like a list of re-
cently accessed files. However, this state is only accessible
when the delegate is run by that same initiator. Thus, a PDF
viewer that runs on behalf of an email client can have previ-
ous email attachments in its recently opened list, but these at-
tachments will not be visible when the PDF viewer does not
run on behalf of the email client. Finally, Maxoid has neg-
ligible overhead for initiators compared to unmodified An-
droid; for delegates, it adds a small overhead for most oper-
ations though it slows down certain worst-case microbench-
marks.

We summarize the major contributions of Maxoid below.

1. We introduce (§2) a model based on the private and
public state of initiators and delegates, and analyze their
security and usability requirements (§3)).

2. Maxoid provides delegates with custom views of files
(%) and system content providers (§5)) to achieve its security
and usability goals. We describe our implementation of this
approach in Android (§6).

3. We conduct case studies on popular Android apps
(§2.2), using Maxoid to improve their security and measur-
ing their performance (§7).

2. Background and Overview

Mobile platforms are usually app-centric. Because they run
apps developed by mutually distrustful third parties, differ-
ent apps are treated as separate principals carrying different
access rights to resources on the device. A critical responsi-
bility for the platform is to protect the private state of apps
and to control their access to shared resources.

We describe the private and public state in Android,
which is the most popular mobile platform, and is open
source. Then we demonstrate the problem of processing sen-
sitive data using untrusted apps via case studies, and how a
naive taint-tracking solution suffers from poor usability. Fi-
nally, we give an overview of Maxoid.

2.1 Private and public state in Android

In Android, each app is assigned a dedicated Unix UID,
which isolates apps from each other. An app’s private state
includes shared preferencesﬂ internal file storage, and pri-
vate SQLite databases. All of them are stored as private files
of the owning app, with the interface to the key-value store
and database provided by user-level libraries.

Public state includes external file storage (e.g., SD card)
and system content providers (Downloads, Media, User Dic-
tionary, Contacts, etc.).

2 Though called shared preferences, it is actually a private key-value store,
see http://developer.android.com/guide/topics/data/
data-storage.html.

In earlier versions of Android, an app can either have
no access to external storage, or have access to all files
on it. Starting from Android 4.4, an app may have partial
access to external storage; each app is granted access to a
dedicated directory on external storage without explicitly
asking for permission. However, apps with permission for
external storage can still access all files on it. Therefore, we
still consider the entire external storage as public state.

2.2 Case studies

We analyze the behavior of some popular Android apps
that collaboratively execute while sharing sensitive data. We
categorize these apps into two types: 1) data processing
apps, and 2) apps that need help from data processing apps.
One theme that emerges is that Android’s access control
model, while impressively fine-grained (e.g., per-URI per-
missions), provides no information flow control on sensi-
tive data, which limits how effectively it can enforce security
protections.

Data processing apps. We manually study 77 popular An-
droid apps for processing different types of data, such as
documents, media files, and QR codes. These apps are se-
lected based on popularity and relevance from Google Play.
We find that, after processing data, these apps leave traces of
that data that can be accessed by other apps. Table |1| sum-
marizes how different classes of apps leak state. Currently,
there is no careful control of state at the application level, so
Maxoid aims to provide it at the system level.

Apps that need help of others. We analyze four Android
apps that need the help of other apps.

1. Dropbox. Dropbox hosts the user’s files, but has very
limited support for processing files. When the Dropbox app
fetches a file from its server, it saves the file to a directory
in public external storage to allow other apps to open it.
Therefore, the Dropbox client does not provide privacy on
its files. Whenever another app changes a file, Dropbox
automatically syncs this change to its server, even if this
change is unintended. This behavior provides no integrity
for Dropbox’s files.

II. Google Drive. Google Drive is similar to Dropbox, but
1) it caches downloaded files in its private internal storage;
2) it can save encrypted files to external storage for offline
access, which will be decrypted and cached in internal stor-
age when the user opens them. Google Drive makes internal
cached files world-readable to allow other apps to open, but
the path names include random strings and other apps can-
not list entries in the parent directory. Thus invoked apps
only know how to access specific files that Google Drive
discloses to them via invocations. However, they can leak
information about the files that have been disclosed to them.
(see Table[T).

III. Email. Emails often contain attachments. By default,
Android’s built-in Email app saves an attachment file in its
private internal storage for security. The user can explicitly

http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/guide/topics/data/data-storage.html

Category # of |Representative Operation State left after the operation
Apps | App Private state Public state
Document Adobe Reader |open a file XML.: recent files. A copy of the file on SD card when opening a content URL.
viewer, 17 A copy of the file on SD card when opening a content URIL
editor, Kingsoft Office |open a file ADF : recent files. A thumbnail for this file on SD card.
converter Entries in a database stored in SD card.
Barcode Scanner|scan a QR code | DB: recent scans.
An image file saved to SD card.
Scanner 20 . .
CamScanner scan a file DB: recent scans. A thumbnail for this file on SD card.
A log file on the SD card.
take a photo The photo file saved to SD card.
Photo 30 |CameraMX A new entry in Media Provider.
edit a photo A new entry in Media Provider.
Media 10 |VPlayer play a video DB: playback history. | A thumbnail for this video on SD card.

Table 1: State left after apps process their target data. In the private state column, XML indicates state saved in the shared preference key-value store; DB
indicates state saved in a SQLite database; ADF indicates state saved in files with app-defined formats.

save an attachment to external storage and its metadata to
the Downloads provider. To allow another app to open the
private internal file, Email uses Android’s per-URI permis-
sions: it defines a content provider that maps a content URI
to an attachment file, then invokes the other app with the
corresponding URI, and sets the flag FLAG_GRANT_READ_—
URI_PERMISSTION. Now the invoked app can open this URI
to get a ParcelFileDescriptor. The actual file is still
opened by Email’s process, but the file descriptor is passed
to the invoked app. This mechanism only grants the invoked
app one-time permission on the single file. However, the in-
voked app can still copy this file to its private state or public
state (Table[I).

IV. Browsers. Chrome and Android’s built-in Browser
app support incognito mode to avoid leaving traces about
the user’s browsing history on the device. However, neither
browser supports incognito download. In an incognito tab, a
user-downloaded file will be saved to external storage and
added to the Downloads provider, which maintains index
and metadata for downloaded files. Even if the browsers
were modified to store the files in private internal storage,
and adopt a per-URI permission approach to allow other
apps to open them, the same problems would still exist as
with Email, since the browsers cannot erase data left by other
apps. Even a browser with perfect incognito mode would
not address the safety of input data. For example, if the user
reads a URL from a QR code scanner app and opens it in
a browser, the browser’s incognito mode cannot erase the
data’s history in the scanning app.

In summary, the fundamental problem with app collab-
oration in Android is a lack of an information flow security
mechanism that would allow another app to receive sensitive
data, but then limit the receiving app’s ability to communi-
cate once it has read that data.

2.3 Taint tracking and challenges

Additional information flow control mechanisms are needed
to secure the use cases in A potential solution is to

perform taint tracking on apps’ private data. The system
allows one app to send its private data to another app, but
the data is labeled as tainted. Then the receiver is confined
such that any of its data depending on the received data will
also be tainted, and disallowed from being written to public
storage or the network. This approach is in line with previous
decentralized information flow control (DIFC) systems.

Difficulty in programmability. Typical DIFC systems are
not designed to be backward compatible with legacy applica-
tions. Applications need to be re-written to comply with the
security rules in those systems. Understanding subtle data
flows makes it difficult to adapt complex applications to fine-
grained information flow tracking [8]].

However, our goal is to support legacy applications.
Naively applying previous approaches would cause serious
usability issues.

Uncontrolled taint propagation. Legacy apps often do not
distinguish public input and private input from other apps.
For example, when Adobe Reader opens a PDF file, it does
not take extra care of controlling data propagation if the file
is a private attachment from Email; in reality, it creates an
entry in the list of recent files, and makes a copy of the
attachment and stores it on the public SD card (Table|[T).

To secure this use case, a taint tracking system would
need to label the attachment as tainted, and control the prop-
agation of data depending on it. It may disallow Adobe
Reader from writing tainted data (such as a copy of the
file) to the SD card or the network. However, such restric-
tions would probably break the normal operation of Adobe
Reader, because it would get unexpected permission errors.

An alternative approach is to still allow Adobe Reader to
write tainted data to the SD card, but to keep the taint on
the written data. Writing tainted data to the network is still
disallowed, because the platform cannot track taint propaga-
tion outside the device. This approach may not directly break
Adobe Reader, but it suffers from the problem of uncon-
trolled taint propagation. The SD card is a public resource,

which means if other apps read tainted data on it, they would
be tainted as well. Different apps would collectively propa-
gate taint throughout the device, making many apps unable
to write to network.

Granularity of taint tracking. In general, a more fine-
grained taint-tracking mechanism tends to suffer less from
usability problems caused by false positives. However, fine-
grained mechanisms also tend to have more complexity and
performance overhead. TaintDroid [10] is a fine-grained
taint tracking system with moderate overhead on Android,
but it does not track implicit data leakage via control flows.

2.4 Overview of Maxoid

To solve the above usability problems, Maxoid controls the
propagation of tainted data by maintaining extra copies of
data when necessary, and presenting transparent views of
these data for confined apps to keep backward compatibility.

This technique allows Maxoid to adopt a fairly coarse-
grained, conservative taint tracking mechanism while re-
maining usable. In Maxoid, once an app receives private data
from another app, all of its outputs are considered tainted and
thus protected by creating extra copies. The coarse-grained
approach avoids much of the potential complexity and per-
formance penalty in taint-tracking systems.

Definitions. Maxoid differentiates the execution context of
an app instance running on behalf of another. In Maxoid,
an app can run on behalf of itself, in which case it executes
identically to how it would in Android. But if an app exe-
cutes on behalf of another app, there are system facilities to
manage information propagation.

App B’s instance running on behalf of app A is denoted
as B4, where A is called the initiator app of B“, and B4
is called a delegate of A.

Like in Android, an app can declassify its private data by
writing it to public state, or sending it via IPC to other apps.
Maxoid does not prevent A from mistakenly declassifying its
own private state; it prevents B from leaking A’s sensitive
data via public writes or IPC.

Maxoid confines B4 so it can safely access A’s private
data. To make the confinement transparent to B4, Maxoid
creates custom views of private and public state for B4.
In these views, B4 can still access a resource as long as B
normally has the permission (see §3.1).

Maxoid confinement is invocation-transitive. When B4
invokes another app, the invoked instance is forced to be a

delegate of A, e.g., O (see §3.4).

Augmented delegate access right. Input to B* is even
more permissive than B’s normal execution — B4 can also
read A’s private state. B4 can still observe other apps’
updates to public resources after B starts. Moreover, B4
can still write to all allowed resources, and it will read its
own writes, but these writes are transparently confined by
Maxoid. B4 does not need to know it is executing on behalf
of A, which allows Maxoid to support unmodified apps.

Network. In keeping with Maxoid’s coarse-grained design
philosophy, delegates are prevented from accessing the net-
work, because Maxoid cannot control data flow in the net-
work. Since network disruption is common in the mobile en-
vironment, cutting off network access is typically tolerated
by apps. The delegate still has access to any data fetched
from the network prior to its starting to run on behalf of an
initiator. When the delegate is next run on behalf of itself
(as an initiator), its access to the network is restored. Lack
of network access for delegates means that Maxoid does not
support scenarios where B4 needs to send A’s private data to
a server for processing (although A still has the option to in-
voke B to do that insecurely as in Android). We could avoid
cutting off network access by extending Maxoid into apps’
backend services, if they were all hosted on a trusted cloud,
and preventing apps from accessing network resources other
than the trusted cloud, like in 7Box [18]].

IPC. Maxoid tracks and controls inter-app communication
to enforce its security properties. It also allows initiators to
specify their security requirements using Android intents —
an IPC mechanism for an app component to invoke another.

2.5 Threat model

Maxoid protects initiators from arbitrary malicious dele-
gates. The delegate apps can be written in Java and run in
the Dalvik VM, or written in C and compiled as native bina-
ries. This is because Maxoid’s security enforcement is im-
plemented in trusted system services and the kernel. Dele-
gates can directly access private data of their initiators, but
Maxoid controls their output to avoid data leakage and un-
expected modifications.

Maxoid also protects delegates from malicious initiators.
Being an initiator does not mean the app is privileged; like in
Android, it is still prevented from reading or writing private
data of other apps, including its delegates.

Maxoid does not prevent an app from mishandling its
own private data. It does not stop an initiator from mistak-
enly leaking its own private data, or mistakenly handling the
interactions with their delegates which might compromise
data integrity.

Maxoid assumes the operating system kernel and trusted
system services are not compromised. Side channel attacks
are out of our scope.

3. State Model and Maxoid Architecture

Maxoid presents different transparent views of private and
public states to initiators and delegates. Some data in these
views may have different versions; maintaining multiple ver-
sions of data is a key technique in Maxoid that resolves the
problem of taint propagation. We introduce several notations
for views of state.

e Priv(x): the view of private state for app instance x.

e Pub(z): the view of public state that Maxoid presents to
z. Note that this includes resources that = may not have
permission

e Pub(all): the data shared by all apps. If z is an initiator,
Pub(z) = Pub(all).

Whether an app runs as a delegate or an initiator, it can
access everything in its view of private state, and everything
in its view of public state for which it has the corresponding
Android permissions (decided at install time).

The goal of Maxoid is to improve security for A by
confining B4 in such a way as to minimize disruption and
code changes to Android, A, and B. Maxoid achieves the
following security goals and usability goals.

S1. Secrecy of the initiator. Only A and delegates of A can
access A’s private state. When B no longer runs on behalf
of A, it cannot observe data depending on A’s private state,
unless A declassifies it, e.g., by writing it to public state, or
sending it via IPC to other apps.

S2. Integrity of the initiator. 'When B* updates A’s pri-
vate or public state, A has the ability to revert to the previ-
ous version. In fact, Maxoid requires A or the user to commit
BA’s update to make it the default version for A and other
apps not executing on behalf of A; otherwise, the update is
only visible to A and A’s delegates.

S3. Secrecy of the delegate. A cannot learn the private
state of B4 unless B# declassifies it.

S4. Integrity of the delegate. First, A cannot write to B4’s
private state; second, when B no longer runs on behalf of
any other app, Maxoid restores the private state as it was
right before it was last started as a delegate. Having run on
behalf of other apps does not modify B’s private state.

In addition to the security guarantees, the design of Max-
oid is guided by the principle of minimum isolation: when-
ever a data flow is safe, it should be allowed. In addition to
minimum isolation, Maxoid strives to be backward compat-
ible. Minimum isolation guides Uland U2, while backward
compatability guides U3.

UL Initial state availability. When B4 is started, Pub(B*)
and Priv(B*) contain all data available in Pub(all) and
Priv(B) up to that point. Maxoid does not create a blank
initial environment for delegates, where a delegate would
lose the user’s normal preference settings and useful data
collected previously.

U2. Update visibility. First, an initiator’s update to public
state can be observed by all app instances, including dele-
gates of any initiator. Second, a delegate’s update to pub-
lic state (e.g., Pub(B*)) should be observed by its initiator
(e.g., A) and all delegates (including itself) of the same ini-
tiator (e.g., C).

3 can actually access Pub(z) N Perms(z), where Perms(x) is the set

of Android permissions that x has for public resources. For simplicity, we
do not explicitly mention Perms(x) in this section.

delegate
views
initiator
views
Priv(4)
Notations .
O app instance /[state
O —» /7 app write to state O <«—/"7 app read from state

Figure 1: Overview of Maxoid confinement. Hatching in a state box in-
dicates taints: Priv(A) and Priv(B) are the sources of taints, Vol(A)
is tainted by Priv(A), and Priv(B#) is tainted by both Priv(A) and
Priv(B).

U3. Transparency to delegates. Maxoid should support
unmodified delegates by maintaining the same API to ac-
cess state as Android. B4 is always allowed to read/write
Priv(BA4); B4 is allowed to read/write a resource in
Pub(B#) as long as B has the permission to read/write
this resource in Pub(all).

3.1 Confining delegates by custom views

Figure 1] illustrates how Maxoid confines a delegate. Solid
arrows represent possible read/write by an app instance to a
state. We describe the confinement and show how it achieves
the security and usability goals.

Views. For initiators, the views of private and public state
are identical to those in Android.

For a delegate B4, Priv(B#) is initialized as a snapshot
of Priv(B) (UI), and any update by B# is made copy-
on-write. As a result, B4’s private writes are confined in
Priv(B*) and can not affect Priv(B) (S4).

Initially Pub(B4) consists of Pub(all) (UI) and Priv(A).
By including Priv(A) in B4’s view of public state, Max-
oid naturally grants B the permission to access Priv(A).
However, all writes by B4 to Pub(B#) are redirected to the
volatile state of A, or Vol(A), such that B“ cannot directly
overwrite Pub(all) or Priv(A) (S2).

All delegates of A share the same Vol(A), and the same
view of public state. We use Pub(z*) to denote the view
for all delegates of A, where z is not a specific app. Vol(A)
is defined as the set of data written by all of A’s delegates
to Pub(x?). Pub(x?) is a transparent, merged view of

Pub(all) U Priv(A) and Vol(A) (see §3.3).

Information flows. A directed path of solid arrows in Fig-
ure [I] represents an information flow. Maxoid doesn’t use
fine-grained taint tracking [10], but enforces conservative
rules to guarantee security.

1. Priv(A) — B4 — Vol(A). This indicates that
Vol(A) may depend on Priv(A), i.e., Vol(A) is tainted by
Priv(A). Thus Vol(A) is only visible to A and delegates of
A (SI).

2. Priv(A) — B4 — Priv(B4). Priv(B4) is thus
tainted by both Priv(A) and Priv(B) (Priv(B*) is ini-
tially forked from Priv(B)). Therefore, B# is the only app
instance that can access Priv(B4) (S1, $3).

3. Priv(B4) — B4 — Vol(A), but Vol(A) is not
tainted by Priv(B), because Vol(A) is part of Pub(B*4)
and B4 already declassifies the writes to Vol(A), i.e., re-
moves the Priv(B) taint; however, it has no power to re-
move the Priv(A) taint on Vol(A). Maxoid, like Android,
considers every write by x to Pub(x) a declassification.

4. Vol(A) + A, A can observe and control its delegates’
updates to Pub(z?) (U2).

5. A cannot read or write Priv(B4) ($3, S4).

Transparency (U3). The security properties (SI- S4) are
automatically enforced by Maxoid presenting B4 custom
views of state. B can still read/write data in Priv(B“) and
Pub(B*), without extra app logic to obey security rules.

3.2 Evolving views of private state

History of a delegate’s private state. When B* starts,
Priv(B4) is forked from Priv(B), as required by initial
state availability (UI). When B no longer runs on behalf
of A, its private state is resumed to the version that was
forked. If B makes updates to Priv(B), then Priv(B#4)
and Priv(B) will diverge. The next time B runs, Maxoid
cannot merge them.

In that case, if B is not aware of Maxoid, to maintain
transparency, we could either 1) discard the old Priv(B4),
and fork from Priv(B) if it diverges from the old Priv(B*);
or 2) keep using the old Priv(B4). Either way, some up-
dates are invisible to B4, although it is safe to let BA see
them. We choose the first option, for several reasons. First,
the user can update his/her preferences while normally using
B, and those updates will be in effect when he/she uses B
as a delegate of any other app; second, B does not have
network access but B could fetch data from the Internet,
thus Priv(B) may contain resources that B* cannot ob-
tain. Note that Priv(B4) will not be discarded when B is
consecutively invoked as a delegate for any initiator.

Persistent private state. Nevertheless, if the delegate app is
aware of Maxoid, it can use a Maxoid API to improve its us-
ability. Maxoid splits a delegate’s private state into two parts:
1) the normal private state as in Android, an'v(BA), and
2) the persistent private state, pPriv(B4).

nPriv(B*) will be discarded if it diverges from Priv(B),
and will be reforked from it. pPriv(B4) will not be dis-
carded (unless A explicitly requests so), and B can use
it to store data that is persistent across invocations even if
B updates Priv(B) between invocations of B4. For dif-
ferent initiators, delegates have different isolated views of
persistent private state, e.g., pPriv(B“) and pPriv(B°)
are isolated. Figure |2| demonstrates how pPriv and nPriv
evolve over time.

Priv(B)

nPriv(B")

pPriv(B")

Figure 2: Normal and persistent private states evolving over time. A solid
box is an app instance running for a period. An ellipse shows the value
(version number) of a state before or after an invocation.

pPrivis anew API to delegates which is not transparent.
However, this API is optional, and exists only for improving
usability. For instance, if a document viewer runs normally,
it can store entries of recent files in a database that belongs
to its normal private state. If it runs on behalf of another
app, it can store the entries in a database that belongs to its
persistent private state; other unimportant updates like cache
files can still be stored in the normal private state. When it
is started as a delegate, it can generate a list of recent files
merged from both databases.

3.3 Public state and volatile state

In Android, a public resource can be located via a file name
or a URI (for content providers), which we refer to as a
name. The entire public state can be viewed as a set of name-
value pairs.

Maxoid needs to create extra volatile copies of data when
delegates write to their views of public state, to prevent
Pub(all) from being tainted. Maxoid does not take a full
snapshot of the entire Pub(all) when a delegate starts. In-
stead, it adopts a unilateral per-name copy-on-write mech-
anism.

If none of A’s delegates has updated a public resource, the
same copy of this resource is shared in both Pub(x*) and
Pub(all); B4 can see updates to this resource by initiators.
Once a delegate of A updates a public resource, Maxoid
creates a volatile copy of this resource for all delegates
of A. From this point on, B only sees the volatile copy
and cannot observe the updates from non-delegates, until
A removes this volatile copy; however, this does not affect
other resources.

This copy-on-write mechanism is unilateral, because it
only happens for writes from delegates. With this mecha-
nism, delegates of A may observe some resources updated
themselves, but some other resources updated by initiators.
If the two sets of resources have dependencies, consistency
issues might occur. However, inconsistencies in public re-
sources are common in Android because they are rarely pro-
tected by system-wide locks. At minimum, Maxoid guaran-
tees that all of A’s delegates can read their writes.

We do not use full snapshots of Pub(all), for two rea-
sons. First, creating a full snapshot for a delegate would
make it unable to observe later updates from initiators to any
resource in Pub(all), which is a violation of update visibil-
ity (U2). Second, full snapshots are expensive, because they

require making copies whenever any initiator writes to the
public state. Instead, Maxoid minimizes performance over-
head for the normal initiator mode.

Naming of resources in different views. When a delegate
B4 updates a resource in public state, Maxoid forks the
resource, keeping both the original and the updated versions
of the resource.

e All delegates of A see only the updated version with
the original name, as part of Pub(z*). This guarantees
delegates that they will read their writes.

e A sees both versions. The original version keeps the
original name, as part of Pub(all). The updated version
is given a different name, as part of Vol(A).

Commit and clean-up. Data in the volatile state can be
retrieved by the initiator with names in a special pattern, i.e.,
a “tmp” in the path name or the URI. Often, the initiator
A (e.g., Dropbox) only wants B“ (an editor) to change one
or a few files, but B may also generate side effects like
cached copies and metadata saved to databases. The desired
and undesired changes to public state by B4 all belong to
Vol(A). A can selectively commit the desired change by
copying it from Vol(A) to a non-volatile place. After that,
A can discard the entire Vol(A) conveniently because of
the fixed naming pattern, to clean up undesired changes.
The commit operation can be done by the user manually,
or by adding functionality to the initiator for a better user
experience.

3.4 IPC and initiator policy specification

Android’s inter-process communication is based on the na-
tive Binder IPC. However, the direct use of it is typically for
intra-app, and app-to-system-service communications.

In Maxoid, direct Binder IPC for a delegate is restricted to
its initiator, other delegates of the same initiator, and trusted
system processes.

Intent. Inter-app IPC is usually done with a higher-level
API, intent. An app uses an intent to invoke another app:
the intent describes an invocation and is passed to Activity
Manager Service (via Binder IPC), which finds the suitable
target app component and routes the intent to it. The intent
itself may contain the sender’s sensitive data, or a URI/path
name to some sensitive data.

Invocation-transitivity. When B* invokes app C, the in-
voked instance is forced to be A’s delegate, i.e., C4A. There-
fore, B4 cannot leak data in Priv(A) via IPC; it can only
invoke A or delegates of A (SI). Also, since Maxoid does
not stop the invocation, B4 is not disrupted (U3). Similarly,
broadcast intents from B are only delivered to A and dele-
gates of A.

If initiator C' invokes app B, the invoked instance can
only be either B on behalf of itself or B®; C' cannot invoke
B* to steal Priv(A) from the result of the invocation (S1).

H Private Private
System services ‘Z’Zﬁiﬁl T e
Activity Manager provider namespace;.namespace
Service i
ificati i
App context/Intent App 1 App 2
tracking
| Dalvik VM | [Daivik vm |11 [Daivik vM] [Dalvik vv]
| Zygote ‘ Aufs branch manager | |

| Kernel ‘ Process context tracking | ‘ Aufs | |

Figure 3: Maxoid system architecture. Gray boxes are new components or
modifications to Android.

Specifying invocation type. When initiator A invokes an-
other app, it can specify whether the invoked app will be
started normally (on behalf of itself) or as a delegate of A.
If an invocation contains or points to A’s data that A thinks
needs protection, it should invoke the target app as a dele-
gate. Maxoid has two ways for an initiator to specify this
intention, and the details will be discussed in

Maxoid also allows the user to start a delegate B* with-
out A’s explicit invocation if this is the user’s intention. The
user can specify this intention with the user interface of the
system’s Launcher (§6.3).

Maxoid does not support nested delegation. If B4 spec-
ifies to invoke C' as B’s delegate, that invocation will fail,
because B can only invoke delegates of A.

3.5 Maxoid system architecture

The system architecture of Maxoid is shown in Figure [3] It
has new components in Android’s Activity Manager Service
and kernel to track the context of apps (e.g., what initiators
they run on behalf of) and intent IPC between them, and
choose the correct context for a new invocation (§3.4] §6.2).
Other components implement Maxoid view switching for
file system (§4) and system content providers (§5). Zygote
is the parent process in Android that forks all app processes,
which preloads common Java classes and resources, to speed
up application launching.

4. File System

This section explains how Maxoid manages different views
of the file system.

4.1 Files in Maxoid views

An app can access private and public files in the same way
as it does in Android. It uses regular path names, and Max-
oid achieves security transparently by presenting it the cor-
rect view of files. In addition, an initiator A’s volatile state
Vol(A) is a new concept in Maxoid, and files in it can be
located by A in a tmp directory under the mount point.
Figure E] illustrates a scenario involving A, B4 and an-
other app X, which all read/write some files. Each of them
has its own view of these files. Files in Pub(all) are visible
to all three app instances, and they have the same view of
these files, until B“’s write causes unilateral copy-on-write.

initial states

L
La] i
A's view “
¢ Side effect
removed
La]
B"s view B terminates
Public view

X writes

|:| A's private file - file changed by B' l:l public file

Figure 4: Views of files for A, B4 and X. The figure shows a scenario
where A wants B4 to edit a file b, but B4 also has side changes on file c.

BA can access files in Priv(A), but any write operation also
causes copy-on-write. After B writes, Maxoid presents it
the updated version with the original path name to let it read
its write, while A sees the updated version in the tmp di-
rectory which is part of Vol(A). X cannot learn any update
made by B“, or any private file of A.

4.2 Implementing Maxoid views with Aufs

Aufﬂ is a union file system that can provide a merged
view of multiple branches (directories) in a single mount
point. If multiple branches contain the same path name, Aufs
presents the file in the branch with highest priority. If only
that branch is writable, the process’ writes are sandboxed
in it; modifying a file which does not exist in the writable
branch will result in copying that file to the writable branch.
Therefore, we can use Aufs to implement per-file copy-on-
write.

Maxoid uses the Linux mount namespace to present dif-
ferent views to different apps. When the app process is cre-
ated, Maxoid first calls unshare () in Zygote to create the
process’ private mount namespace. Maxoid adds an Aufs
branch manager (Figure [3) in Zygote, which selects and
mounts the relevant branches for a new app process.

Internal private directory. Maxoid uses a file system-
based solution for various types of private state, since shared
preferences and private databases are represented as private
files. Android assigns each app a private data directory in
internal storage, under /data/data/. We retain this inter-
face as the private state of an initiator (e.g., Priv(A)) or the
normal private state of a delegate (e.g., nPriv(B4)).

When B starts, the branch manager mounts Aufs at
the location of B’s private directory as nPriv(B4), with
two branches. One branch is read-only, which is the normal
private data directory that the app uses when not running as
a delegate; the other branch is writable, which is a directory
only accessible to this delegate. The writable private branch
has higher priority and is initially empty, thus all writes
are redirected to it. The directory of the writable branch
is located in a path that only root can directly access; the
delegate can only use it via the Aufs mount point.

“http://aufs.sourceforge.net/

Mount point Branches for A | Branches for B4
EXTDIR pub (tw) iéimp (rw)
EXTDIR/data/A | A/data/A (rw) ij;:f;‘j;ta“ (rw)
EXTDIR/data/B | N/A E;i;fz?;/B (rw)
EXTDIR/tmp A/tmp (rw) N/A

Table 2: Aufs mount points for A and B4. A and B each specify
EXTDIR/A and EXTDIR/B as a private directory on external storage stor-
age. “rw” means a read-write branch, and other branches are read-only.

Aufs is not used for initiators’ private directories. B can
directly write Priv(B). However, Priv(B) is a branch of
Priv(B4), and updates to Priv(B) are visible to B4; if
B and B4 run simultaneously, B would likely observe in-
consistencies in Priv(B#). To avoid inconsistency without
creating full snapshot of Priv(B) or adding overhead to B,
a running instance of B will be killed when B4 is invoked.

As discussed in a delegate may also have persistent
private state (pPriv). It is represented as another directory
in internal storage under /data/data/ppriv. B4 and BY
use the same path name for persistent private state, but Max-
oid presents them different views of this directory by mount-
ing independent Aufs branches at this location. For each del-
egate, a single writable branch is used.

External storage. Files in external storage, such as an SD
card, are world-accessible in Android. External storage is
mounted at a public directory, such as /storage/sdcard.
The mount point varies in different devices, and we use
EXTDIR to denote it.

Naming volatile files. Volatile files caused by delegates’
writes to external storage are located in the tmp subdirectory
under EXTDIR. Specifically, if a delegate writes to a file
EXTDIR/(path), the corresponding volatile copy can be
located by the initiator via path name EXTDIR/tmp/(path).
Different initiators have different views of EXTDIR/tmp.

Allow private files on external storage for backward com-
patibility. Currently, Android apps, e.g., Dropbox, often
store their files on public external storage to allow other apps
to open them, giving up protection. With Maxoid, Dropbox
could store those files in private state and still allow del-
egates to open them safely. To support such apps without
changing their source code, and to avoid using too much
space on internal storage (which has limited capacity in
many devices), we allow an app A to specify a list of private
directories on external storage as part of Priv(A).

However, we cannot make a directory private to A by
simply disallowing other apps access to it, because apps with
access to external storage expect to have access to all files
on it. Instead, A and other apps have different views of this
directory. Other apps can still use it as a public directory, but
only A and its delegates can see A’s private files in it.

The Aufs branch manager divides the external storage
into different branches (subdirectories): a public branch for

http://aufs.sourceforge.net/

all apps, and a private branch for each initiator or delegate.
Then it mounts Aufs to EXTDIR, using relevant branches.
Table [2| shows the mount points for A and B4. Suppose A
and B each specify EXTDIR/data/A and EXTDIR/data/B
as a private directory, then

e Files in Pub(all) are located in pub branch.

® EXTDIR/data/A for A is backed by its private branch
A/data/A.

e Except EXTDIR/data/A and EXTDIR/tmp, A accesses
files in other places on pub branch.

e BA can read A’s private files in EXTDIR/data/A, be-
cause A/data/A is a read-only branch for it.

e B4’s writes to EXTDIR/data/B are redirected to branch
B-A/data/B, which is not visible to A or B.

e BA’s writes to other places are redirected to branch
A/tmp, which are only visible to A (as Vol(A)) and
delegates of A (as Pub(z*)). This allows A to get the re-
sults of B4’s edits, without letting B4 directly overwrite
the original version.

Internal private files exposed to delegates. Maxoid allows
a delegate to access its initiator’s private data directory in
internal storage. We adopt a similar approach as for external
storage. To the delegate, the internal directory is part of its
view of public state; if it makes modifications, its initiator
will see both the original and modified versions, where the
modified versions are part of the initiator’s volatile state.

Maxoid mounts Aufs for the delegate, with the initiator’s
private directory as a read-only branch, and a tmp directory
as a writable branch. We modify Aufs to always allow read
access, to allow the delegate to read the read-only branch
(the delegate and its initiator have different UIDs); this is
safe because Maxoid only mounts Aufs when read is al-
lowed, and an app’s process can no longer mount Aufs after
Zygote drops root privilege. Similarly, the tmp directory is
made accessible to the initiator as an Aufs mount.

5. System Content Providers

We describe the views of data in system content providers
that Maxoid presents to apps.

5.1 System content providers in Maxoid

System content providers, like Downloads, Media, Contacts
and Calender, are another type of public resource, and po-
tentially sources of serious data leaks [43]]. They map URIs
to data, and support 4 operations — insert, update, query and
delete — on each URI. They typically use SQLite databases
as backends. We built a copy-on-write proxy layer (§5.2)) on
top of SQLite, and modify these providers to use the proxy
so that they can switch views for different app instances.
User Dictionary is a simple system content provider that
maps URIs to records in the user dictionary database, the
columns of which include ID, Word, Frequency, etc. A
record with ID=n can be retrieved via URI content://-

user_dictionary/words/n. URI content://user_-
dictionary/words represents all records in the database.

The ID column is the primary key in the database. This
type of URI-to-ID mapping is generic for many system con-
tent providers, including Downloads and Media. Essentially,
a URI is mapped to a database row (or a group of rows).
Our proxy layer implements per-row, per-initiator unilateral
copy-on-write, and thus can naturally support these system
content providers with minimal code change.

In Maxoid, the results of write operations (insert or up-
date) by a delegate B are stored as volatile records, as
part of Vol(A). B4 cannot overwrite any public records.
Similarly, when B4 deletes a URI, the public record is not
affected; instead, Maxoid emulates a deletion for B4 by cre-
ating a “whiteout” volatile record (§5.2). For each ID, there
is at most one volatile record in Vol (A). If the volatile record
for ID=n doesn’t exist, B4 sees the public record (if it ex-
ists) in the result of a query. After the volatile record is cre-
ated by a delegate’s insert or update, any operation from B*
on ID=n will happen on the volatile record.

BA’s view of the content provider is transparent. B
always uses normal URIs. It only sees a single version for
each ID and can read its own writes. On the other hand, if A
uses a normal URI, the content provider will operate on the
public records; to access volatile copies, it can use volatile
URISs, which has a tmp component, e.g.,

® content://user_dictionary/tmp/words/(n)
® content://user_dictionary/tmp/words/
for a specific ID and all volatile records respectively.

5.2 SQLite copy-on-write proxy layer

We built a copy-on-write (COW) proxy layer on top of
SQLite API, to minimize modifications to content providers.

Figure [5] shows how the proxy layer interacts with the
content provider and SQLite. It provides the same APIs as
SQLite to content providers for normal database operations,
and some additional APIs for administrative operations. It
achieves unilateral per-name copy-on-write (§3.3), where a
name corresponds to a database row.

We call each table defined by the content provider a
primary table. Primary tables only store data that belongs
to Pub(all). For each primary table, the proxy maintains
per-initiator delta tables, to store volatile state of different
initiators. We say a COW view for A’s delegates is the view
of a specific primary table in Pub(z?). A COW view is
implemented as a SQL view — a virtual table based on a
query result in SQL — defined on the primary table and the
delta table.

Per-initiator delta tables and COW views. A delta table
has all columns in the primary table, plus an additional
boolean column called _whiteout (Figure [6). When the
content provider queries for B4, the result will be generated
from both the primary table and A’s delta table. If a row
R4 in the delta table has the same primary key as a row

System content provider SQL operations result
h
COW proxy

invoker info
view manager/selector| SQL table info SQL view info
“ <[satubero | [Sotverm |
SQLite @A) |- ViA) e [2(A

v Y8

EA Wi
?V v Ao]
SQLite engine ‘—>) .

t1,t2: tables At1(A),At2(A): delta tables for A
t1(A),t2(A),v1(A): COW views of t1,t2,v1 for A's delegates

v1: user-defined view

Figure 5: COW proxy interacts with the content provider and SQLite. Note
that v1 is a SQL view defined by the content provider.

Primary table tabl — pub(all) A's delta table tabl delta A — Jol(4)

_id (PK) |data _id (PK) |data _whiteout
1 a 2 b 1
2 b 3 d 0
3 c 10000001 |e 0
View for 4's delegates tabl_view_A — /)14/7(,\"1)
_id (PK) data CREATE VIEW tabl_view_A AS
SELECT _id,data FROM tabl WHERE
1 a _id not in (SELECT _id FROM tabl_delta_A)
3 d UNION ALL
SELECT _id,data FROM tabl_delta A WHERE
10000001 |e _whiteout=0

CREATE TRIGGER tabl_A_delete

. INSTEAD OF DELETE ON tabl_view_A
INSTEAD OF UPDATE ON tabl_view_A BEGIN

BEGIN INSERT OR REPLACE INTO tabi_delta_A
INSERT OR REPLACE INTO tabl_delta A (_1d, data, whiteout)

(_id,data) VALUES(NEW. id, NEW.data); VALUES(OLD.. id, OLD.data, 1);
i END;

CREATE TRIGGER tabl_A_update

END

Figure 6: Delta table and the view for delegates maintained by the SQLite
proxy layer.

R, in the primary table, 12, will not appear in the result.
If R4 has _whiteout=0 and satisfies the WHERE conditions
in the query, it will be included in the result. .whiteout is
thus an indicator of whether the record has been deleted for
delegates; if Ry has _whiteout=1, the result will include
neither R; nor R,,.

The proxy implements the table’s COW view for an ini-
tiator’s delegates, based on a SQL view. The COW view is
transparent, which means it can be used in the same way as
aregular table, and can be contained in the definition of other
SQL views. It is defined as the compound SELECT statement
using UNION ALL in Figure[6] Its definition satisfies the con-
straints for SQLite’s subquery flattening optimization [34],
which makes queries on it efficient because the query plan-
ner moves the WHERE clause (if any) on this view into the
two inner subqueries[]

However, SQLite views are read-only. To support insert,
the proxy places B“’s inserts into the delta table. Typically,
the primary key is generated by incrementing the current
maximum primary key in the table. The primary table’s
primary key starts from 1. To avoid naming collision, the
delta table’s primary key starts at a large number N for
newly inserted rows.

5 SQLite version 3.7.11 (as used in Android 4.3.2) does not do subquery
flattening on the UNION ALL view if the query has an ORDER BY clause,
unless the query uses “*” as the columns. Version 3.8.6 partially fixed
this issue, but still requires the ORDER BY columns to be a subset of the
columns being queried. SQLite maintainers confirmed this issue but have
not started to fix it. Therefore, we ported SQLite 3.8.6 to Android 4.3.2, and
our proxy adds ORDER BY columns to query columns when necessary.

To support update and delete, we define INSTEAD OF
triggers on the per-initiator COW views (Figure [6). These
triggers implement per-row copy-on-write, which confines
modifications in the delta table.

Delta tables and COW views are created on demand. A’s
delta table and COW view are created when the first volatile
record is created, by either A itself or its delegates.

User-defined SQL views. The user of SQLite, i.e., content
providers in thie case, may define their own SQL views over
base tables. The proxy maintains delta tables only for base
tables, not for SQLite views which are stateless. But to
support user-defined SQL views, the proxy maintains per-
initiator COW views for each of them, which are created on
demand, and defined identically to the original user-defined
SQL views, except that the base tables in the definition are
replaced with their corresponding COW views. Moreover,
one user-defined SQL view may use another user-defined
SQL view as one of its “base tables”’; accordingly, the proxy
maintains a hierarchy of COW views (Figure E]), and the
user-defined view’s COW view can only be created after the
COW views of its base tables are created.

Maxoid view selection. The COW proxy uses a Maxoid
API to get the information about the calling process, which
tells whether the caller is a delegate and what its initiator is.
It then selects the correct Maxoid view. If the caller is not
a delegate, the operation will only involve primary tables as
normal; otherwise, the proxy selects the correct delta tables
or COW views, and creates them if they do not exist.

Additionally, the proxy allows the content provider to
select what Maxoid view it would like to use. This enables
the content provider to do administrative operations and
implement new URISs for volatile state. The proxy defines an
administrative view, which contains data in the primary table
and all delta tables, with an additional column that indicates
what state a row belongs to.

5.3 Modifications to content providers

So far, we have ported three system content providers using
the COW proxy: User Dictionary, Downloads, and Media.

User Dictionary. User Dictionary is purely a passive stor-
age service, which means it only queries/updates data when
a client explicitly requests so. In this case, porting is trivial,
though we add new URISs for volatile state.

Downloads. Although a delegate is not supposed to access
the network, we modify Downloads to allow an initiator to
create volatile downloads, e.g., for incognito mode. Down-
loads has not only storage, but also background threads for
downloading files and mechanisms to generate notifications.
They actively query and update data. Thus it needs to use the
administrative view to get all public and volatile records, and
track what state a record belongs to. Downloads has two ta-
bles, downloads and request_headers. For a delegate’s
operation, the proxy selects the corresponding views for both

tables. For operations by Downloads itself, Downloads se-
lects the correct view based on the information it tracks.
Downloads stores the path names of downloaded files in its
database, and needs to access those files. Maxoid makes all
volatile tmp directories visible to Downloads, but the path
names of the files are different from those stored in the
database (which are transparent to clients). We wrote a wrap-
per of Java’s File class to automate locating files.

Media. Media defines multiple SQL tables and views. For
example, it stores data for different types of media files in
a single base table called files; images, audiometa
and video are views defined as selections over files.
audio is a view defined on three tables/views, including
audiometa. We use the COW proxy to manage the hi-
erarchy of COW views. Like Downloads, Media also has
extra services beyond data storage, e.g., creating thumb-
nails. Similarly, modified Media keeps track of what state a
record/request belongs to.

6. API and Implementation
We implement Maxoid by modifying Android 4.3.2.

6.1 API summary

Maxoid introduces a few new (sometimes optional) changes
for initiators. For delegates, although Maxoid is mostly
transparent, it defines new optional APIs for better usability.

APIs for initiators.

1. An app can specify a list of private directories in
external storage (§4.2)) via an XML file called the Maxoid
manifest.

2. When the initiator invokes another app, it can specify
whether the invoked app will be a delegate of it in two ways:

1) A new flag in Intent. When this flag is set, the
invoked app will be a delegate. App developers can modify
their code to use this flag when Maxoid is available.

2) Intent filters for invokers. Maxoid allows an app to
specify a whitelist or blacklist of intent filters in its Maxoid
manifest. When the initiator sends an intent, Maxoid checks
it against the filters to decide whether the invoked app should
be a delegate. Code change is not needed for initiators.

Additionally, we also modify the system’s launcher, to
allow B4 to start without A’s explicit invocation if this is
the user’s intention (§6.3)).

3. An initiator can manage its volatile state (4] and).

4. When an initiator creates a new record in a sys-
tem content provider, Maxoid allows it to specify whether
this record is volatile or not. By default, the new record
will be public; if it asserts the isvolatile flag in the
ContentValues parameter for this insert call, the new
record will be created in its volatile state. This API can help
a browser to implement incognito download (§7.1)).

APIs for delegates. First, Maxoid introduces persistent
private state, which is a directory in internal storage (/data/—

data/ppriv/{package_name)) (. Second, an
app can query whether it runs as a delegate, and what initia-
tor app it runs on behalf of.

Note that Maxoid does not support nested delegation. An
app can only make private invocations or create its own
volatile records when it is an initiator.

6.2 Tracking app execution context

§4] and 5] already cover implementation of Maxoid views
for file system and system content providers. This section
discusses how Maxoid tracks whether an app is running
normally or on behalf of others, which requires modification
to the following system components.

1. Activity Manager Service. A delegate can only make
normal invocations which make the invoked apps also del-
egates of the same initiator (invocation-transitivity in §3.4).
If an initiator invokes another app, Maxoid checks the flag
in the intent and the intent filters to decide whether it in-
vokes a delegate. (Currently, if the invoked app already has
an instance running, but not on behalf of the current initia-
tor, that instance will be killed.) An intent’s direct destina-
tion may be a system component, like ResolverActivity
which shows a list of candidate apps when the user opens a
file. In this case, ResolverActivity is considered as an
intent channel rather than an app instance. When Activity
Manager Service starts a new activity, Maxoid passes infor-
mation about the app and its initiator to Zygote.

2. Zygote. When forking a new process, Zygote checks
the parameters and passes them to the kernel sysfs interface.
It manages Aufs branches and mounts Aufs in the process’
mount namespace to switch views of the file system (see).

3. Kernel. 1) We add a sysfs interface for Zygote to
communicate app and initiator information to the process’
task_struct. 2) Maxoid emulates loss of network connec-
tion for delegates by returning error code ENETUNREACH in
the connect system call (similar to AppFence [13]). 3) Di-
rect Binder IPC for a delegate is restricted to trusted system
services and system content providers, its initiator and dele-
gates of the same intiator.

4. System content providers. We modified 3 system con-
tent providers (User Dictionary, Downloads and Media) to
support Maxoid (see §5). In addition, to fully disable a del-
egate’s network access, returning an error code in connect
is not sufficient, because a delegate may request Download
Provider to fetch files from the web for it, potentially leak-
ing sensitive data via the requested URL. Therefore, Max-
oid also emulates a network error in Download Provider for
download requests from delegates. Nonetheless, a delegate
may still add or update entries in the database for existing
files, because that does not access network.

5. Other system services. Bluetooth Manager Service
and Telephony Provider are modified to prevent delegates
from sending data via Bluetooth or SMS services. Clipboard
Service is modified to create separate clipboard instances for
delegates.

6.3 User interface

We modify the system’s Launcher to improve usability.
1) The user may start a delegate on behalf of an initiator,
without the initiator invoking it. For instance, Maxoid allows
the user to start Camera as Email’s delegate by dragging
Email’s icon into an “Initiator” drop target before clicking
Camera’s icon. 2) By dragging the icon of A into a “Clear-
Vol” drop target, the user can clear the volatile state of A.
3) By dragging the icon of A into a “ClearPriv”’ drop target,
the user can clear Priv(z*) for all z.

7. Evaluation

We first show how to use Maxoid to improve security for
apps discussed in §2] then measure performance of Maxoid.

7.1 Maxoid use cases

Out of the 77 data processing apps we analyzed in §2| only
three (DocuSign, EasySign and ThinkTI Document Con-
verter) cannot work when they run as delegates, due to loss
of network connection. We describe five use cases of Max-
oid, where the first four secure initiators to use those unmod-
ified data processing apps, and the last improves the dele-
gate’s usability with minimum code change.

Securing Dropbox. Dropbox stores files on a directory in
external storage. We use the Maxoid manifest to specify this
directory to be private, and a filter saying that any intent from
Dropbox with VIEW action (indicating the user clicking a
file) is private, i.e., to invoke a delegate. Thus, other apps
cannot see the files unless invoked by the user clicking a file
from Dropbox. Dropbox sees the delegates’ modifications
under EXTDIR/tmp. Without modifying Dropbox’s source
code, we require the user to manually upload the modified
file if it is desired, from EXTDIR/tmp. After that, the user
can clear Vol (Dropbox) to remove any undesired changes.
Even though Dropbox does not invoke camera apps, the
user can start a camera app as Dropbox’s delegate using the
Launcher (§6.3)), and take a private photo for Dropbox.

Securing Email attachments. We use a filter to specify
that VIEW intents are private. As a result, when the user
clicks the “VIEW” button on the attachment, the invoked
app will be Email’s delegate. (The user can still intentionally
save the file to external storage and Downloads Provider, by
clicking the “SAVE” button.)

The user can also start an app via Launcher as Email’s
delegate without Email invoking it.

Enhancing Browser’s incognito mode. The Browser app
uses Android’s DownloadManager API (a wrapper of Down-
loads Provider’s API) to download files. We extend this API
to allow an initiator to specify whether a requested download
from it should be stored in the public state or its volatile
state. Then, we add 1 line of code for Browser, such that
downloads from an incognito tab are stored in the volatile

state, while downloads from a normal tab are stored in pub-
lic state. When the user clicks a download complete notifi-
cation, a proper app will be started as a delegate of Browser
if this download is from an incognito tab. This function-
ality is supported by our Downloads Provider. The down-
loaded file, the corresponding entry in Downloads Provider,
and any updates by the delegate depending on this down-
load will be discarded when the user clears V ol(Browser)
and Priv(xBrovser), To extend incognito mode to a QR code
reader app, the user can start it as Browser’s delegate using
the system’s Launcher.

Wrapper app. We write an app which does nothing but
holding sensitive documents. It can be used as an initiator
to force “real apps” into a system-wide incognito mode by
clearing the volatile state after use.

Using delegates’ persistent private state. Maxoid supports
unmodified delegate apps. As discussed in §3.2] delegate
apps that are aware of Maxoid can also be modified for better
usability. EBookDroicﬂ is an open-source app for viewing
and managing documents. It stores recent documents and
bookmarks in its private database. We modify 45 lines of
code to make use of the persistent private state. When it runs
normally, it stores new entries for recent files or bookmarks
to a database in nPriv; when it runs as a delegate, it stores
new entries in pPriv, and shows a list of recent files merged
from both n Priv and pPriv.

7.2 Performance

We measure performance overhead added by Maxoid, on
a Nexus 7 tablet, which has 2GB of DDR3L RAM and
1.5GHz quad-core Qualcomm Snapdragon S4 Pro CPU, and
runs Android 4.3.2. Maxoid barely adds any overhead to
initiators. For delegates, Maxoid does not add overhead for
CPU-intensive computations, only for I/O operations, i.e.,
file and content provider operations.

7.2.1 Microbenchmarks

CPU-bound operations. We measure the time for per-
forming matrix multiplications. Maxoid adds no overhead to
initiators and delegates, compared to unmodified Android.

File system. Maxoid uses a single branch at any internal or
external mount point for initiators, thus incurs no overhead
for initiators. However, it uses two branches at each internal
or external mount point for delegates, except the persistent
private state. We measure the performance of Aufs for del-
egates, on a microbenchmark app that uses its internal file
storage. The results are shown in Table 3] We test operations
including read, write and append. Before append operations
for delegates, the original files are are on a read-only branch,
and the append operations copy them to the writable branch,
resulting in large overhead. However, the overhead could be

6 https://code.google.com/p/ebookdroid/

https://code.google.com/p/ebookdroid/

CPU-bound Internal File System User Dictionary Provider
Setup operations 4KB files IMB files insert | update | query 1 word | query 1k words | delete
read [write | append | read | write [append
initiator 0 0 1.3% 0.4% 0.5% 0.2% 1.0%
delegate 0 7.5% [317% | 587% | 48% | 181% | 52.8% | 8.1% | 16.1% 5.6% 13.7% 17.3%

Table 3: Microbenchmark overheads compared to Android. Results are averaged over 1000 trials. CPU-bound operations: No overhead. Internal file system:
No overhead for initiators. Read — read files; Write — create and write to files; Append — append to the original files to double their sizes. User Dictionary
Provider: Size of table: 1000 rows. Query 1 word is done by specifying the word ID in the URI; query 1k words is selecting all words in the database.

. Maxoid
Setup Android to public state | to volatile state
Time | download | 7.2940.39 | 7.1340.28 7.23+0.21
(s) |image 1.54£0.02 | 1.5440.02 1.5540.02

Table 4: Times for 1) downloading 100 1KB files, and 2) scanning 100
780KB image files and storing the metadata to Media Provider. Results are
averaged over 5 trials.

reduced if a block-level copy-on-write file system (as op-
posed to file-level) were used; we choose Aufs for features
that ease our prototype development.

User Dictionary Provider. We measure the slowdown
for content provider operations, using the User Dictionary
Provider as an example. The slowdowns for both initiators
and delegates are shown in Table [3] The baseline is an un-
modified Android OS. Slowdowns for the initiator are neg-
ligible. For delegates, updates are executed before there are
entries in the delta table, so that copy-on-write will happen;
queries are executed after updates, so that both primary and
delta tables will be involved. Maxoid adds less than 18%
overhead for delegates.

Download and Media Providers. We measure the time for
1) downloading 100 1KB files, using bownloadManager,
and 2) scanning 100 image files and storing the metadata to
Media Provider. Tabled]shows the result, where the baseline
is an unmodified Android. For Download Provider, our tester
app can request the downloaded files to be saved in either
public or volatile state; in both cases, the tester app runs
as an initiator to access the network. For Media Provider,
the tester app first runs as an initiator to store metadata into
public state, then runs as a delegate to store metadata into
volatile state. The overhead is negligible for all cases.

7.2.2 Application benchmarks

We measure the latency of performing several application-
specific tasks, as listed in TableE} Our experiments show that
Maxoid’s impact on user-perceivable latency of these tasks is
very small. This is because the typical usage of many mobile
apps does not involve data-intensive operations, and Max-
oid does not add overhead to Ul-related and CPU-intensive
workload. For example, the time for reading a 1.6 MB PDF
file is negligible compared to the time for rendering it.

8. Discussion

We discuss the applicability of Maxoid’s model to other
mobile platforms, and the limitations of Maxoid.

Latency (ms)

. Maxoid

Android Initiator | Delegate

opena 1.6 MB file | 1213427 | 1207420 | 1221414
in-file search 3206£57 | 3218480 | 3197450

CamScanner |process a scanned page|7338+323|74201-298|7446+249

take a photo 1214441 | 1251444 | 1255490
save an edited photo | 1829489 | 1855459 | 1897+73

App Task

Adobe Reader

CameraMX

Table 5: User-perceivable latency of performing various tasks using differ-
ent apps. Results are averaged over 5 trials.

8.1 Applicability to other platforms

The state model of Maxoid applies to app-centric platforms,
which treat apps as different principals. Such platforms pro-
vide storage abstractions for both private and public stor-
age, where private data can only be accessed by the owning
app, and public data are shared by apps. For example, like
Android, Windows Phone 8 assigns each app an isolated
private directory, and exposes external storage as a shared
resource subject to coarse-grained access control. Similarly,
iOS provides each app a private directory for file storage;
it does not have a shared file system, but instead provides
high-level, device-wide shared resources such as photos and
contacts. FireFox OS is a platform that runs mobile apps
written in Web code; apps have private storage options such
as IndexedDB, and share public resources like the SD card
and contacts.

In principal, Maxoid’s model is generic and can be used
in all those platforms. However, implementing the model
would be platform-specific. Maxoid leverages Android’s
unified data abstractions — files and content providers — to
minimize modifications. Since iOS does not provide a shared
file system, the Maxoid-style multi-branch external storage
solution is unnecessary; on the other hand, different tech-
niques would be needed to support volatile entries in the
photo gallery.

8.2 Scope and limitations

Use cases. Maxoid is targeted at cases where delegates are
short-lived foreground tasks, so network disruption and state
divergence are not likely to cause usability issues. Maxoid
does not support scenarios where delegates need to send ini-
tiators’ private data to remote servers for processing. Max-
oid is an incremental improvement over Android; it provides
better security for its target use cases, while maintaining An-
droid’s legacy behavior for unsupported use cases, instead of
breaking them.

Code changes. Maxoid needs code changes to system con-
tent providers, though with the help of the SQLite proxy.
Content providers often involve specific tasks that are not
generic enough to be supported in a unified way. Maxoid is
not totally transparent to initiators, because the concept of
volatile state is new. However, the API is simple enough to
allow small or no modifications to initiators in many cases,
enabling security enhancements that cannot be achieved in
Android.

App-defined content providers. As opposed to system
content providers, app-defined content providers are not
considered shared resources. They are often backed by pri-
vate files or databases, which Maxoid treats as the private
state of their owning apps. Communicating among apps
with content providers can be considered declassification,
so Maxoid does not support per-URI volatile copies for
app-defined content providers. In Android, IPC with con-
tent providers is implemented using the low-level Binder
interface, and Maxoid’s restrictions on Binder IPC prevents
delegates from leaking data (§3.4). Modifications to data
in delegate-defined content providers would be discarded
by Maxoid eventually. However, initiators are responsible
for auditing write requests to their content providers if they
want to avoid unauthorized modifications. For example, the
built-in Email app has a content provider for attachments,
but it only grants temporary, read-only access for an entry to
a document viewer on an explicit invocation; the document
viewer would need to create a copy of the attachment if the
user saves changes, which is the behavior of Adobe Reader.

9. Related Work

Invoking untrusted code on sensitive data is a classic se-
curity problem that has been addressed by several desk-
top/server systems. Many approaches exist, but one family
uses information flow such as language-level decentralized
information flow control (DIFC) [I1, 519, 23} 135]], OS-level
DIFC [9}[15}[17,142]), PL-OS DIFC [28]] and architectural-OS
information flow [38]]. Another approach uses access control
such as mandatory access control (MAC) [21}[29] or capabil-
ities [40]. Compared to these approaches, Maxoid solves us-
ability issues for legacy applications while providing strong
security guarantees.

Taint tracking. TaintDroid [10] is a taint tracking system
for Android, which detects data leakage in a much more fine-
grained way than Maxoid. There are also systems that lever-
age TaintDroid [[13}136] to prevent data leakage, but they do
not aim at providing safe invocation of untrusted delegates.
TaintDroid cannot detect implicit data leaks through control
flows, and does not support fine-grained taint tracking for
native code. In contrast, Maxoid is more conservative, i.e., a
delegate’s (even in native code) output is always controlled.

Flexible permission granting and MAC. Recent sys-
tems [2, 3 16, 24, 25| |41] have been proposed to support

flexible runtime permission granting or revoking, in addi-
tion to Android’s install-time permission assignment. SE
Android [32] and FlaskDroid [4] provide mandatory access
control. Systems like ServiceOS [22], Bubbles [37], IPC In-
spection [11] and QUIRE [7] provide applications different
privileges when they execute in different contexts. While
these systems improve security by enforcing stronger con-
trol, they cannot ensure confidentiality when the user wants
to use untrusted apps to process sensitive data.

Using libraries instead of apps. Instead of invoking del-
egate apps, an app can incorporate third-party libraries to
extend its functionality. Unfortunately, these third-party li-
braries are still untrusted [20]]. A library is less secure than a
separate app because, as part of the same app, it has access
to the app’s entire private state. Moreover, adding function-
ality to a single app can add to permission requirements for
that app, which is undesirable for security.

Networked systems. Sandboxing and information flow
control for the server side of untrusted apps have been pro-
posed for a mobile platform [18]], and social networking plat-
forms [12} 31} 139]. Similar approaches might help address
the limitation that Maxoid must block network for delegates.
However, they require a trusted cloud to host all third-party
apps, which does not yet exist for Android or iOS.

AdSplit [30] and AdDroid [26] split an app and its ad-
vertising into separate processes for security. Similar ap-
proaches can enable Maxoid delegates to use advertising.

Using different views of data for security. Solitude [14]],
Apiary [27]] and Mbox [16] use union file systems for appli-
cation fault containment or sandboxing in Linux. The design
of file system support in Maxoid is inspired by these sys-
tems, but our goals and approaches are different from them
and suited for mobile apps’ collaboration on sensitive data.
Pebbles [33] and its application PebbleDIFC can present dif-
ferent views of data to apps, e.g., the user can prevent an un-
trusted app from accessing a sensitive photo. They require
the user to mark sensitive data, instead of having the state
model for initiators and delegates in Maxoid.

10. Conclusion

We have presented Maxoid, a system to improve the secu-
rity of Android applications that collaboratively operate on
sensitive data. Maxoid achieves security and usability by
maintaining a custom view of state for each app. It differs
from previous sandboxing mechanisms by tolerating a wider
range of app behavior while maintaining security.

11. Acknowledgements

We thank the anonymous reviewers, Alan M. Dunn, Michael
Z. Lee, and our shepherd, Andreas Haeberlen, for valuable
feedback and suggestions. This research is supported by
CCF-1333594, CNS-1228843, and RO1 LM011028-01.

References

[1] Owen Arden, Michael D George, Jed Liu, K Vikram, Aslan
Askarov, and Andrew C Myers. Sharing mobile code securely
with information flow control. In IEEE Symposium on Secu-
rity and Privacy, 2012.

[2] Michael Backes, Sebastian Gerling, Christian Hammer, Mat-
teo Maffei, and Philipp von Styp-Rekowsky. AppGuard
— real-time policy enforcement for third-party applications.
Technical Report A/02/2012, MPI-SWS, 2012.

[3] Alastair R Beresford, Andrew Rice, Nicholas Skehin, and
Ripduman Sohan. MockDroid: trading privacy for application
functionality on smartphones. In International Workshop on
Mobile Computing Systems and Applications (HotMobile).
ACM, 2011.

[4] Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi.
Flexible and fine-grained mandatory access control on An-
droid for diverse security and privacy policies. In USENIX
Security Symposium, 2013.

[5] Deepak Chandra and Michael Franz. Fine-grained informa-
tion flow analysis and enforcement in a Java virtual machine.
In Annual Computer Security Applications Conference (AC-
SAC), 2007.

[6] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo.
CRePE: Context-related policy enforcement for Android. In
Information Security Conference (ISC), 2010.

[7] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu,
and Dan S Wallach. QUIRE: Lightweight Provenance for
Smart Phone Operating Systems. In USENIX Security Sym-
posium, 2011.

[8] Petros Efstathopoulos and Eddie Kohler. Manageable fine-
grained information flow. In ACM European Conference in
Computer Systems (EuroSys), 2008.

[9] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart,
Cliff Frey, David Ziegler, Eddie Kohler, David Mazieres,
Frans Kaashoek, and Robert Morris. Labels and event pro-
cesses in the asbestos operating system. In ACM Symposium
on Operating System Principles (SOSP), 2005.

[10] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P
Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol Sheth.
TaintDroid: An Information-Flow Tracking System for Real-
time Privacy Monitoring on Smartphones. In USENIX Sym-
posium on Operating Systems Design and Implementation
(0SDI), 2010.

[11] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk,
Steve Hanna, and Erika Chin. Permission re-delegation: At-
tacks and defenses. In USENIX Security Symposium, 2011.

[12] Daniel B Giffin, Amit Levy, Deian Stefan, David Terei, David
Mazieres, John Mitchell, and Alejandro Russo. Hails: Pro-
tecting data privacy in untrusted web applications. In USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), 2012.

[13] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart
Schechter, and David Wetherall. These aren’t the droids
you’re looking for: retrofitting android to protect data from
imperious applications. In ACM Conference on Computer and
Communications Security (CCS), 2011.

[14] Shvetank Jain, Fareha Shafique, Vladan Djeric, and Ashvin
Goel. Application-level isolation and recovery with Soli-
tude. In ACM European Conference in Computer Systems
(EuroSys), 2008.

[15] Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer,
Michael Stroucken, Kazuhide Fukushima, Shinsaku Kiy-
omoto, and Yutaka Miyake. Run-time enforcement of
information-flow properties on android. In ESORICS 2013.

[16] Taesoo Kim and Nickolai Zeldovich. Practical and Effective
Sandboxing for Non-root Users. In USENIX Annual Technical
Conference (ATC), 2013.

[17] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for stan-
dard OS abstractions. In ACM Symposium on Operating Sys-
tem Principles (SOSP), 2007.

[18] Sangmin Lee, Edmund L Wong, Deepak Goel, Mike Dahlin,
and Vitaly Shmatikov. wbox: a platform for privacy-
preserving apps. In USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2013.

[19] Jed Liu, Michael D George, Krishnaprasad Vikram, Xin Qi,
Lucas Waye, and Andrew C Myers. Fabric: A platform for se-
cure distributed computation and storage. In ACM Symposium
on Operating System Principles (SOSP), 2009.

[20] Benjamin Livshits and Jaeyeon Jung. Automatic mediation of
privacy-sensitive resource access in smartphone applications.
In USENIX Security Symposium, 2013.

[21] Peter Loscocco and Stephen Smalley. Integrating flexible
support for security policies into the linux operating system.
In USENIX Annual Technical Conference (ATC), 2001.

[22] Alexander Moshchuk, Helen J Wang, and Yunxin Liu.
Content-based isolation: rethinking isolation policy design on
client systems. In ACM Conference on Computer and Com-
munications Security (CCS), 2013.

[23] A. C. Myers and B. Liskov. A decentralized model for infor-
mation flow control. In ACM Symposium on Operating System
Principles (SOSP), pages 129-142, October 1997.

[24] Mohammad Nauman, Sohail Khan, and Xinwen Zhang.
Apex: extending Android permission model and enforcement
with user-defined runtime constraints. In ACM Symposium on
Information, Computer and Communications Security (Asi-
aCCS). ACM, 2010.

[25] Machigar Ongtang, Stephen McLaughlin, William Enck, and
Patrick McDaniel. Semantically rich application-centric se-
curity in Android. Security and Communication Networks,
5(6):658-673, 2012.

[26] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David
Wagner. Addroid: Privilege separation for applications and
advertisers in android. In ACM Symposium on Information,
Computer and Communications Security (AsiaCCS), 2012.

[27] Shaya Potter and Jason Nieh. Apiary: Easy-to-use desktop ap-
plication fault containment on commodity operating systems.
In USENIX Annual Technical Conference (ATC), 2010.

[28] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S.
McKinley, and Emmett Witchel. Laminar: Practical fine-
grained decentralized information flow control. In ACM SIG-

PLAN Conference on Programming Language Design and Im-
plementation (PLDI), June 2009.

[29] Indrajit Roy, Srinath Setty, Ann Kilzer, Vitaly Shmatikov, and
Emmett Witchel. Airavat: Security and privacy for MapRe-
duce. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), April 2010.

[30] Shashi Shekhar, Michael Dietz, and Dan S Wallach. Ad-
split: Separating smartphone advertising from applications. In
USENIX Security Symposium, 2012.

[31] Kapil Singh, Sumeer Bhola, and Wenke Lee. xBook: Re-
designing privacy control in social networking platforms. In
USENIX Security Symposium, 2009.

[32] Stephen Smalley and Robert Craig. Security enhanced (SE)
android: Bringing flexible mac to android. In Network and
Distributed System Security Symposium (NDSS), 2013.

[33] Riley Spahn, Jonathan Bell, Michael Z. Lee, Sravan Bhamidi-
pati, Roxana Geambasu, and Gail Kaiser. Pebbles: Fine-
Grained Data Management Abstractions for Modern Operat-
ing Systems. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2014.

[34] The SQLite Query Planner. http://www.sglite.org/
optoverview.html.

[35] Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejan-
dro Russo, Dave Herman, Brad Karp, and David Mazieres.
Protecting Users by Confining JavaScript with COWL. In
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), 2014.

[36] Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish Bijlani,
Roxana Geambasu, and Nikhil Sarda. CleanOS: Limiting mo-

bile data exposure with idle eviction. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI),
2012.

[37] Mohit Tiwari, Prashanth Mohan, Andrew Osheroff, Hilfi
Alkaff, Elaine Shi, Eric Love, Dawn Song, and Krste
Asanovi¢. Context-centric security. In USENIX Workshop
on Hot Topics in Security (HotSec), 2012.

[38] Mohit Tiwari, Jason Oberg, Xun Li, Jonathan K Valamehr,
Timothy Levin, Ben Hardekopf, Ryan Kastner, Frederic T
Chong, and Timothy Sherwood. Crafting a usable microker-
nel, processor, and i/o system with strict and provable infor-
mation flow security. In International Symposium on Com-
puter Architecture (ISCA), 2011.

[39] Bimal Viswanath, Emre Kiciman, and Stefan Saroiu. Keeping
information safe from social networking apps. In Proceedings
of the 2012 ACM workshop on Workshop on online social
networks, 2012.

[40] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and
Kris Kennaway. Capsicum: Practical capabilities for unix. In
USENIX Security Symposium, 2010.

[41] Rubin Xu, Hassen Saidi, and Ross Anderson. Aurasium:
Practical policy enforcement for android applications. In
USENIX Security Symposium, 2012.

[42] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and
David Mazieres. Making information flow explicit in HiStar.
In USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2006.

[43] Yajin Zhou and Xuxian Jiang. Detecting passive content
leaks and pollution in android applications. In Network and
Distributed System Security Symposium (NDSS), 2013.

http://www.sqlite.org/optoverview.html
http://www.sqlite.org/optoverview.html

	Introduction
	Background and Overview
	Private and public state in Android
	Case studies
	Taint tracking and challenges
	Overview of Maxoid
	Threat model

	State Model and Maxoid Architecture
	Confining delegates by custom views
	Evolving views of private state
	Public state and volatile state
	IPC and initiator policy specification
	Maxoid system architecture

	File System
	Files in Maxoid views
	Implementing Maxoid views with Aufs

	System Content Providers
	System content providers in Maxoid
	SQLite copy-on-write proxy layer
	Modifications to content providers

	API and Implementation
	API summary
	Tracking app execution context
	User interface

	Evaluation
	Maxoid use cases
	Performance
	Microbenchmarks
	Application benchmarks

	Discussion
	Applicability to other platforms
	Scope and limitations

	Related Work
	Conclusion
	Acknowledgements

