Earp: Principled Storage, Sharing, and Protection for Mobile Apps

Yuanzhong Xu, Tyler Hunt, Youngjin Kwon, Martin Georgiev, Vitaly Shmatikov[†], Emmett Witchel

UT Austin, † Cornell Tech

Santa Clara, CA, 3/18/2016

Desktop era

- Applications mostly work individually
- They rely on the OS to store and exchange data, in the form of files

Data protection in desktop era

OS protects data:

- File ownership and permissions
- App processes hold file handles (file descriptors)

Mobile era

- Apps interact with each other as much as with the platform — an app "ecosystem"
- "Hub" apps provide services to other apps

Data protection in mobile platforms

Check what apps have access to what data

Apps check interactions

 Platform checks file access

No principled solution for app-level checks

- Different data models how data structures represent semantics
- Different protection requirements
- Developers have to write
 ad hoc checks

How would a developer write ad hoc checks?

Example: implement a photo manager

- 1. Design a data model
 - Organize photos with albums
 - Maintain metadata in database
 - Keep indexes to files

How would a developer write ad hoc checks?

Example: implement a photo manager

- 2. Define protection requirements
 - Each app can have its own
 private photos and albums
 - Apps share some public photos and albums

How would a developer write ad hoc checks?

Example: implement a photo manager

Problem: ad hoc checks are hard, error-prone DB rows

- 3. Implement the protection
 - Implement fine-grained permissions

 ACL columns in DB, append
 WHERE clauses in queries
 - Protect files
 permission bits not enough for many apps
 - How to change permissions?
 What is the API?

- What if we want a group of apps to access photos?
- How to hide location info about a photo?

Reality: all-or-nothing "protection"

- Developers give up fine-grained protection...
- Let apps have access to either all or none of the photos!
- Violates the principle of least privilege

Reality: apps have insufficient protection

- iOS: Snapchat automatically saves photos to shared gallery
- Android: Dropbox stores files in public external storage
- Firefox OS: email attachments copied to public SD card when opened
- Mistakes in network-based authentication protocols (OAuth):
 - Sun et al. CCS '12, Viennot et al. SIGMETRICS '14

Ideally: separate specification from enforcement

• App **specifies** data model with protection requirement

 Platform enforces protection, no ad hoc checks in apps

Problem: semantic gap in existing platforms

Platform needs to understand structured data

Earp

1. Make **relational model** a platform-level abstraction

- 4. Uniform API: subset descriptor
- capability handle, representing an access control view (but more than just a DB view)

2. Integrate protection requirements with the data model — annotated relational schema

3. Platform enforces protection for the app

Unify storage and inter-app services

Subset descriptors are flexible

Photo manager example revisited

objects in different tables

Operations:

- View photos directly
- View photos in an album
- Search photos with a certain tag

Photo manager example revisited

objects in different tables

albums

public

- Each app has its own **private** photos and albums
- Apps share **public** photos and albums

photos textual tags

Specify protection in data model #1

Per-object permissions (per-row ACLs)

Fine-grained permissions are insufficient

Problem with permissions only: sharing collections of data.

Need to **transitively** updating ACLs of many objects!

- Complicated permission management
- Consistency challenge

Specify protection in data model #2

Capability relationships:

Cross-table relationships can confer access rights, in **one direction** (red arrows).

- Avoid transitively updating ACLs
- Achieve flexible access control with simple ACLs

Done!

Data model is specified.

Let the platform enforce protection!

But there is an efficiency challenge

Capability relationships make access rights on one object may **depend** on other objects

Cross-table checks for every access?

Minimize cross-table checks with descriptors

successful query proves access

Solution: "buffer" computed access rights in descriptors

• E.g., **derive** fine-grained descriptors based on query results

Directly allow access to the photo

Making it simpler to use

- Simple high-level APIs that hide details about descriptors
- Automates descriptor creation and management

Implementation: browser-based platform

A modified Firefox OS:

- Apps written purely in Web code (HTML5, JavaScript)
- Structured APIs implemented in the platform (browser)

Paper discusses ways to apply Earp innovations to Android

List of Earp apps

Local apps

- Photo manager
- Contacts
 - Access control based on categories and data fields
- Email
 - Temporary, restricted access to attachments

Proxies for remote services

- Egg-based social service
- Google Drive
 - Per-app private folders

Expressive access control can be efficient

Microbenchmarks: mostly outperforms baseline (Firefox OS)

- Earp apps directly use SQLite, and access control is efficient
- Firefox OS apps use IndexedDB (built on top of SQLite)

Expressive access control can be efficient

Macrobenchmarks for remote services

Local proxies add 2% - 8% latency

Conclusion

- Inconsistent data abstractions in existing platforms
 - App: inter-related, structured data objects
 - Platform: unstructured byte streams
- Earp provides structured data as a platform-level abstraction
 - Principled storage, sharing, and protection