
Earp: Principled Storage, Sharing, and
Protection for Mobile Apps

Yuanzhong Xu, Tyler Hunt, Youngjin Kwon, Martin Georgiev, 
Vitaly Shmatikov†, Emmett Witchel
 

UT	 Austin,	 †Cornell	 Tech  
Santa	 Clara,	 CA,	 3/18/2016

Desktop era

 OS
Files

• Applications mostly
work individually

• They rely on the OS to
store and exchange
data, in the form of files

2

Data protection in desktop era

 OS
Files

OS protects data:

• File ownership and
permissions

• App processes hold file
handles (file descriptors)

access control checks

file handle

3

Mobile era

OS (Platform)

• Apps interact with each
other as much as with
the platform — an app
“ecosystem”

• “Hub” apps provide
services to other apps

storage

user login

contacts, calendar, media
collections

4

Data protection in mobile platforms

OS (Platform)

storage

user login

contacts, calendar, media
collections

• Apps check
interactions

access control checks

Check what apps have
access to what data

access control checks • Platform checks file
access

5

No principled solution for app-level checks

Different high-level semantics:
not just files!

• Different data models —
how data structures
represent semantics

• Different protection
requirements

• Developers have to write
ad hoc checks

contact info

photo album

calendar
events

6

access control checks

DB rows
Example: implement a
photo manager

Photo files

Thumbnails

• Organize photos with albums

• Maintain metadata in database

• Keep indexes to files

1. Design a data model

How would a developer write ad hoc checks?

…

7

DB rows

Photo files

Thumbnails

public2. Define protection requirements
• Each app can have its own

private photos and albums

• Apps share some public
photos and albums

How would a developer write ad hoc checks?
Example: implement a
photo manager

8

DB rows

Photo files

3. Implement the protection
• Implement fine-grained permissions  

— ACL columns in DB, append
WHERE clauses in queries

• Protect files 
— permission bits not enough
for many apps

Transfer via IPC, no direct file access…

• How to change permissions?
What is the API?

• What if we want a group of
apps to access photos?

• How to hide location info
about a photo?

Thumbnails

How would a developer write ad hoc checks?
Problem: ad hoc checks are hard,
error-prone

Example: implement a
photo manager

9

Specifications

Reality: all-or-nothing “protection”

• Developers give up fine-grained
protection…

• Let apps have access to either all
or none of the photos!

• Violates the principle of least
privilege

DB rows

Photo files

Thumbnails

10

• iOS: Snapchat automatically saves photos to shared gallery

• Android: Dropbox stores files in public external storage

• Firefox OS: email attachments copied to public SD card when
opened

• Mistakes in network-based authentication protocols (OAuth):

• Sun et al. CCS ’12, Viennot et al. SIGMETRICS ’14

Reality: apps have insufficient protection

Specifications

Ideally: separate specification from enforcement

DB rows

Photo files

Thumbnails

public• App specifies data model with
protection requirement

OS (Platform)

Enforcement
access control checks• Platform enforces protection,  

no ad hoc checks in apps

12

Specifications

Problem: semantic gap in existing platforms

OS (Platform)
? ? ?

Enforcement

DB rows

Photo files

Thumbnails

public

access control checks

13

Highly structured 
app-level data

Unstructured byte
streams

13

No visibility to structures

Specifications

Platform needs to understand structured data
DB rows

Photo files

Thumbnails

public

OS (Platform)

Enforcement
access control checks

Highly structured 
app-level data

Platform-level structured
abstraction & protection

14

3. Platform enforces protection for the app

desc

4. Uniform API: subset descriptor  
— capability handle, representing an access
control view (but more than just a DB view)

Relational

Earp
1. Make relational model
a platform-level abstraction

App

2. Integrate protection
requirements with the
data model — annotated
relational schema

specify

Platform

15

Unify storage and inter-app services

Platform

App

No need for OAuth

desc

Relational

16

or
Virtual
table

Virtual
table

Virtual
tables

Service callbacks
function add () {…};
function list() {…};
…

Proxy

Database

16

database/service

open

Subset descriptors are flexible

desc

downgrade:
add more restrictions
e.g., exclude some
sensitive rows/columns

desc
transfer:
(temporarily) delegate
access to another app

desc

17

Operations:
• View photos directly
• View photos in an album
• Search photos with a certain tag

Photo manager example revisited

textual tagsphotosalbums

objects in different tables

FILE-type column

18

Photo manager example revisited

textual tagsphotosalbums

objects in different tables

public

Protection requirements:
• Each app has its own private

photos and albums
• Apps share public photos and

albums

19

Specify protection in data model #1

textual tagsphotosalbums
Per-object permissions (per-row ACLs)

20

Fine-grained permissions are insufficient

Problem with permissions only:
sharing collections of data.

textual tagsphotosalbums

Share this
album?

Need to transitively updating ACLs of
many objects!

• Complicated permission management
• Consistency challenge

21

textual tagsphotosalbums

Specify protection in data model #2

confers access
confers access Capability relationships:

Cross-table relationships can confer access
rights, in one direction (red arrows).

22

• Avoid transitively updating ACLs

• Achieve flexible access control
with simple ACLs

Data model is specified.

Let the platform enforce protection!

Done!

23

But there is an efficiency challenge

textual tagsphotosalbums

confers access
confers access

Capability relationships make 
access rights on one object may
depend on other objects

Cross-table checks for every
access?

24

• E.g., derive fine-grained
descriptors based on query
results

Solution: “buffer” computed
access rights in descriptors

Minimize cross-table checks with descriptors

d0

25

successful query proves access

d1

d2 Directly allow access to the photo

d3

database

• Simple high-level APIs that hide
details about descriptors

• Automates descriptor creation and
management

Making it simpler to use

desc

object graph
APIs

26

Implementation: browser-based platform
A modified Firefox OS:

• Apps written purely in Web
code (HTML5, JavaScript)

• Structured APIs implemented
in the platform (browser)

Paper discusses ways to apply
Earp innovations to Android

Browser runtime (platform)

App sandbox

APP in JavaScript

API for structured data

Earp reference monitor

JavaScript Engine

DOM

SQLite databases services

object graph library

27

List of Earp apps
Local apps

• Photo manager
• Contacts

• Access control based on
categories and data fields

• Email
• Temporary, restricted access

to attachments

Proxies for remote services

• Egg-based social service

• Google Drive

• Per-app private folders

28

Expressive access control can be efficient

Microbenchmarks: mostly
outperforms baseline (Firefox OS)

• Earp apps directly use SQLite, and
access control is efficient

• Firefox OS apps use IndexedDB
(built on top of SQLite)

29

Expressive access control can be efficient

Macrobenchmarks for remote
services

• Local proxies add 2% - 8%
latency

Elgg read
Elgg write

Google Drive write
Google Drive read

local latency:
app<->proxy

remote latecy:
proxy<->remote

30

Conclusion

• Inconsistent data abstractions in existing platforms
• App: inter-related, structured data objects
• Platform: unstructured byte streams

• Earp provides structured data as a platform-level abstraction
• Principled storage, sharing, and protection

31

