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Outline

● Can GPUs improve the security of a computing system?
○ PixelVault
○ Attacking PixelVault

● Can GPUs subvert the security of a computing system?
○ GPU driver attack
○ GPU microcode attack
○ IOMMU mitigation
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Threat model
● System boots from a trusted configuration and sets up 

PixelVault execution environment on GPU.
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Threat model
● System boots from a trusted configuration and sets up 

PixelVault execution environment on GPU.
● After setup, attacker can have full control over the platform.

○ Execute code at any privilege.
○ Has access to all platform hardware.

● Attack goal: Steal keys from GPU.
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Threat model
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Security guarantees depend on several NVIDIA GPU characteristics.

● Some of these characteristics are well known and confirmed.
● Some are experimentally validated.
● Others are only assumed to correct.

○ Experimentally verify.



Assumption about NVIDIA GPU
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Assumption PixelVault safety property Attack

A running GPU kernel cannot be 
stopped and debugged.

Secure register contents from 
CPU-based debugger.

Debugger API.

GPU registers can’t be read after 
kernel termination.

Cannot get the master key after 
kernel termination.

Concurrent kernel.

Can’t replace code of GPU kernel 
executing from instruction cache.

Cannot replace PixelVault code 
without stopping the kernel. 

Flush instruction cache using 
MMIO registers.
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● Compiled with explicit debug 
support. 

● Insert breakpoints before kernel 
is running.

Stop a running kernel and inspect all 
GPU registers via debugger API.



22

CUDA 4.2 CUDA 5.0 and newer

● Compiled with explicit debug 
support. 

● Insert breakpoints before kernel 
is running.

Stop a running kernel and inspect all 
GPU registers via debugger API.

Assumption: A running GPU kernel cannot be stopped and 
debugged.



Assumption about NVIDIA GPU

23

Assumption PixelVault safety property Attack

A running GPU kernel cannot be 
stopped and debugged.

Secure register contents from 
CPU-based debugger.

Debugger API.

GPU registers can’t be read after 
kernel termination.

Cannot get the master key after 
kernel termination.

Concurrent kernel.

Can’t replace code of GPU kernel 
executing from instruction cache.

Cannot replace PixelVault code 
without stopping the kernel. 

Flush instruction cache using 
MMIO registers.



CUDA Stream

● An operation sequence on a GPU device.
● Every CUDA kernel is invoked on an independent stream.
● Share the same address space.
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Assumption: GPU registers can’t be read after kernel termination.

Attack: 

 

Stream BStream A
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Assumption: GPU registers can’t be read after kernel termination.

Attack: If GPU kernel B is invoked in parallel with running kernel A, 
A’s register state can be retrieved using the debugger API even 
after A terminates, as long as B is still running.

 

Stream BStream A
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No public API for flushing the instruction cache.

34



Assumption about NVIDIA GPU
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Assumption PixelVault safety property Attack

A running GPU kernel cannot be 
stopped and debugged.

Secure register contents from 
CPU-based debugger.

Debugger API.

GPU registers can’t be read after 
kernel termination.

Cannot get the master key after 
kernel termination.

Concurrent kernel.

Can’t replace code of GPU kernel 
executing from instruction cache.

Cannot replace PixelVault code 
without stopping the kernel. 

Flush instruction cache using 
MMIO registers.



Discussion

● Security guarantees rely on proprietary hardware and software 
which is poorly (often purposefully) publicly documented. 
○ Some MMIO registers that flush the GPU instruction cache 

are not documented as flushing the cache.
○ Private debugger API.
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Discussion

● Security guarantees rely on proprietary hardware and software 
which is poorly (often purposefully) publicly documented. 

● Manufacturers are free to change what’s implemented in 
software and what’s implemented in hardware across 
generations.
○ Debugger API
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● Manufacturers can change the architecture that invalidates the 
security of systems based on GPU.

38



Discussion

● Security guarantees rely on proprietary hardware and software 
which is poorly (often purposefully) publicly documented. 

● Manufacturers are free to change what’s implemented in 
software and what’s implemented in hardware across 
generations.

● Manufacturers can change the architecture that invalidates the 
security of systems based on GPU.

● Discrete GPUs cannot enhance the security of the computing 
system.
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GPU as a host for stealthy malware

1. Threat Model
2. GPU driver attack
3. GPU microcode attack
4. IOMMU mitigation
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Threat model
Attacker:

● Load and unload kernel modules via module loading capability.
● Access the GPU control interface i.e., MMIO register regions.
● Loses the module loading capability and is allowed only 

unprivileged access after the malware is installed.

Stealthiness
● Originate with the GPU reading and writing CPU memory.
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DMA attack

● GPU is a programmable 
device.

● Easier to launch DMA attack 
compared to other DMA 
capable devices.

● GPU driver attack.
● GPU microcode attack.
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IOMMU

● Hardware
● Software management
● IOMMU attack
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IOMMU

IO Device IO Device

Memory

Kernel data structure

● Maps device addresses to CPU 
physical addresses.

● Check access permission.
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IOTLB
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● Not kept coherent with the 
IO page table by hardware.

● Software must explicitly 
flush the cached mappings 
when they are removed 
from the IO page table.



IOMMU configurations
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When system memory is unmapped from IO devices:
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Clear the entry in IO page table

IOTLB Flush

Deferred Mode Strict Mode

Strategy Flush entire IOTLB. Flush individual entry in given 
domain.

Timing When deferred list is full or 
10 ms after the first entry, 
whichever comes first.

Immediately after unmapping 
entry from IO page table.
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Clear the entry in IO page table

IOTLB Flush

Deferred Mode Strict Mode
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IO Page Table

IOMMU attack

1. Writes a malicious IO page table entry.
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IO Page Table

IOMMU attack

1. Writes a malicious IO page table entry.
2. Launch a GPU kernel which accesses the device address of 

the mapping, causing the entry to be cached in IOTLB.
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IO Page Table

IOMMU attack

1. Writes a malicious IO page table entry.
2. Launch a GPU kernel which accesses the device address of 

the mapping, causing the entry to be cached in IOTLB.
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IO Page Table

IOMMU attack

1. Writes a malicious IO page table entry.
2. Launch a GPU kernel which accesses the device address of 

the mapping, causing the entry to be cached in IOTLB.
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IOMMU attack

1. Writes a malicious IO page table entry.
2. Launch a GPU kernel which accesses the device address of 

the mapping, causing the entry to be cached in IOTLB.
3. Overwrite the IO page table.
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How long can a stale entry last in IOTLB?
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Workload Bit rate Stale period

Idle ssh connection 10 bps 1 day

Web radio 130 Kbps 1 hour

Web video: Auto 
(480p)

2 Mbps 1 min

IOTLB

IO Page Table

Memory
Kernel

GPU



Stealthiness

● IOTLB entry is not accessible by software.
● IO page table can be monitored by security tools.
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Conclusion

● Discrete GPUs are not an appropriate choice for a secure 
coprocessor.

● Discrete GPUs pose a security threat to computing platform.
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