
Understanding The Security 
of Discrete GPUs

Zhiting Zhu1, Sangman Kim1, Yuri Rozhanski2, Yige Hu1, Emmett Witchel1, 
Mark Silberstein2

1.The University of Texas at Austin 2.Technion-Israel Institute of Technology



Outline

● Can GPUs improve the security of a computing system?
○ PixelVault
○ Attacking PixelVault

● Can GPUs subvert the security of a computing system?
○ GPU driver attack
○ GPU microcode attack
○ IOMMU mitigation

2



Can GPUs improve the security of a computing system?

3

CPU

PCIe Bus
GPU

SM SM SM...

Register

Global memory

Motivation: Dedicated hardware resources



Can GPUs improve the security of a computing system?

4

CPU

PCIe Bus
GPU

SM SM SM...

Register

Global memory

Independent 
computational 
resources

Motivation: Dedicated hardware resources



Can GPUs improve the security of a computing system?

5

CPU

PCIe Bus
GPU

SM SM SM...

Register

Global memory

Independent 
computational 
resources

Independent 
memory system

Motivation: Dedicated hardware resources



Can GPUs improve the security of a computing system?

6

CPU

PCIe Bus
GPU

SM SM SM...

Motivation: Dedicated hardware resources

Register

Global memory

Independent 
computational 
resources

Independent 
memory system

Physically partitioned 
from CPU



Can discrete GPUs enhance the security of a computing system?

7

CPU

PCIe Bus

GPU

Register

Global memory



Can discrete GPUs enhance the security of a computing system?

8

CPU

PCIe Bus

GPU

Register

Secret Data

Global memory

Secret Data



Can discrete GPUs enhance the security of a computing system?

9

CPU

PCIe Bus

GPU

Register

Secret Data

Global memory

Secret Data

…...



Can discrete GPUs enhance the security of a computing system?

10

CPU

PCIe Bus

GPU

Register

Secret Data

Global memory

Secret Data

…...



PixelVault (CCS 14)

11

CPU

GPU
Plaintext

Ciphertext

● Runs AES/RSA 
encryption in GPU.

Register

Global memory



PixelVault (CCS 14)

12

CPU

GPU
Plaintext

Ciphertext

● Runs AES/RSA 
encryption in GPU.

● Encryption(Enc) keys 
are encrypted by a 
master key and are 
stored in GPU memory.

Register

Global memory

Enc key



PixelVault (CCS 14)

13

CPU

GPU
Plaintext

Ciphertext

● Runs AES/RSA 
encryption in GPU.

● Encryption(Enc) keys 
are encrypted by a 
master key and are 
stored in GPU memory.

● Master key is stored in a 
GPU register.

Register

Master key

Global memory

Enc key



PixelVault (CCS 14)

14

CPU

GPU
Plaintext

Ciphertext

● Runs AES/RSA 
encryption in GPU.

● Encryption(Enc) keys are 
encrypted by a master 
key and are stored in 
GPU memory.

● Master key is stored in a 
GPU register.

Register

Master key

Global memory

Enc key

Enc key



PixelVault (CCS 14)

15

CPU

GPU
Plaintext

Ciphertext

● Runs AES/RSA 
encryption in GPU.

● Encryption(Enc) keys are 
encrypted by a master 
key and are stored in 
GPU memory.

● Master key is stored in a 
GPU register.

Register

Master key

Global memory

Enc key

Enc key



PixelVault (CCS 14)

16

CPU

GPU
Plaintext

Ciphertext

● Runs AES/RSA 
encryption in GPU.

● Encryption(Enc) keys are 
encrypted by a master 
key and are stored in 
GPU memory.

● Master key is stored in a 
GPU register.

● Prevent any adversarial 
from accessing registers.

Register

Master key

Global memory

Enc key

Enc key



Threat model
● System boots from a trusted configuration and sets up 

PixelVault execution environment on GPU.

17



Threat model
● System boots from a trusted configuration and sets up 

PixelVault execution environment on GPU.
● After setup, attacker can have full control over the platform.

○ Execute code at any privilege.
○ Has access to all platform hardware.

● Attack goal: Steal keys from GPU.

18



Threat model

19

Security guarantees depend on several NVIDIA GPU characteristics.

● Some of these characteristics are well known and confirmed.
● Some are experimentally validated.
● Others are only assumed to correct.

○ Experimentally verify.



Assumption about NVIDIA GPU

20

Assumption PixelVault safety property Attack

A running GPU kernel cannot be 
stopped and debugged.

Secure register contents from 
CPU-based debugger.

Debugger API.

GPU registers can’t be read after 
kernel termination.

Cannot get the master key after 
kernel termination.

Concurrent kernel.

Can’t replace code of GPU kernel 
executing from instruction cache.

Cannot replace PixelVault code 
without stopping the kernel. 

Flush instruction cache using 
MMIO registers.



Assumption: A running GPU kernel cannot be stopped and 
debugged.

21

CUDA 4.2 CUDA 5.0 and newer

● Compiled with explicit debug 
support. 

● Insert breakpoints before kernel 
is running.

Stop a running kernel and inspect all 
GPU registers via debugger API.



22

CUDA 4.2 CUDA 5.0 and newer

● Compiled with explicit debug 
support. 

● Insert breakpoints before kernel 
is running.

Stop a running kernel and inspect all 
GPU registers via debugger API.

Assumption: A running GPU kernel cannot be stopped and 
debugged.



Assumption about NVIDIA GPU

23

Assumption PixelVault safety property Attack

A running GPU kernel cannot be 
stopped and debugged.

Secure register contents from 
CPU-based debugger.

Debugger API.

GPU registers can’t be read after 
kernel termination.

Cannot get the master key after 
kernel termination.

Concurrent kernel.

Can’t replace code of GPU kernel 
executing from instruction cache.

Cannot replace PixelVault code 
without stopping the kernel. 

Flush instruction cache using 
MMIO registers.



CUDA Stream

● An operation sequence on a GPU device.
● Every CUDA kernel is invoked on an independent stream.
● Share the same address space.

24



PixelVault

25

Data Transfer
Stream

Computation
Stream

GPU

Register Register

CPU



Assumption: GPU registers can’t be read after kernel termination.

Attack: 

 

Stream BStream A

26

Register Register



Assumption: GPU registers can’t be read after kernel termination.

Attack: If GPU kernel B is invoked in parallel with running kernel A, 
A’s register state can be retrieved using the debugger API even 
after A terminates, as long as B is still running.

 

Stream BStream A

27

Register Register Register Register

Stream BStream A

Debugger 
API



Loading a program into the GPU

28

GPU global memory

GPU

CPU
PCIe Bus 

GPU Chipset

Instruction cache



Loading a program into the GPU

29

CPU
PCIe Bus 

GPU Chipset
Program

GPU global memory

GPU

Instruction cache



Loading a program into the GPU

30

GPU global memory

GPU

CPU
PCIe Bus 

GPU Chipset

Program

Instruction cache



Loading a program into the GPU

31

GPU global memory

Instruction cache

GPU

CPU
PCIe Bus 

GPU Chipset

Program

Program



32

GPU global memory

Instruction cache

GPU

CPU
PCIe Bus 

GPU Chipset

Program

Program
…...

If CPU writes to GPU instructions in memory while 
the GPU is running

Program



33

GPU global memory

Instruction cache

GPU

CPU
PCIe Bus 

GPU Chipset

Program

Program
…...

If CPU writes to GPU instructions in memory while 
the GPU is running



No public API for flushing the instruction cache.

34



Assumption about NVIDIA GPU

35

Assumption PixelVault safety property Attack

A running GPU kernel cannot be 
stopped and debugged.

Secure register contents from 
CPU-based debugger.

Debugger API.

GPU registers can’t be read after 
kernel termination.

Cannot get the master key after 
kernel termination.

Concurrent kernel.

Can’t replace code of GPU kernel 
executing from instruction cache.

Cannot replace PixelVault code 
without stopping the kernel. 

Flush instruction cache using 
MMIO registers.



Discussion

● Security guarantees rely on proprietary hardware and software 
which is poorly (often purposefully) publicly documented. 
○ Some MMIO registers that flush the GPU instruction cache 

are not documented as flushing the cache.
○ Private debugger API.

36



Discussion

● Security guarantees rely on proprietary hardware and software 
which is poorly (often purposefully) publicly documented. 

● Manufacturers are free to change what’s implemented in 
software and what’s implemented in hardware across 
generations.
○ Debugger API

37



Discussion

● Security guarantees rely on proprietary hardware and software 
which is poorly (often purposefully) publicly documented. 

● Manufacturers are free to change what’s implemented in 
software and what’s implemented in hardware across 
generations.

● Manufacturers can change the architecture that invalidates the 
security of systems based on GPU.

38



Discussion

● Security guarantees rely on proprietary hardware and software 
which is poorly (often purposefully) publicly documented. 

● Manufacturers are free to change what’s implemented in 
software and what’s implemented in hardware across 
generations.

● Manufacturers can change the architecture that invalidates the 
security of systems based on GPU.

● Discrete GPUs cannot enhance the security of the computing 
system.

39



GPU as a host for stealthy malware

1. Threat Model
2. GPU driver attack
3. GPU microcode attack
4. IOMMU mitigation

40



Threat model
Attacker:

● Load and unload kernel modules via module loading capability.
● Access the GPU control interface i.e., MMIO register regions.
● Loses the module loading capability and is allowed only 

unprivileged access after the malware is installed.

Stealthiness
● Originate with the GPU reading and writing CPU memory.

41



DMA attack

● GPU is a programmable 
device.

● Easier to launch DMA attack 
compared to other DMA 
capable devices.

● GPU driver attack.
● GPU microcode attack.

42

GPU

Memory

DMA
request

Device address = Physical address
Kernel data structure

IO Device



IOMMU

● Hardware
● Software management
● IOMMU attack

43



IOMMU

IO Device IO Device

Memory

Kernel data structure

● Maps device addresses to CPU 
physical addresses.

● Check access permission.

44

IOTLB
IOMMU



IOTLB

IOTLB

IO Device

IO Page Table

Device 
Address

Miss

Memory

Physical 
Address

Hit

45

● Not kept coherent with the 
IO page table by hardware.

● Software must explicitly 
flush the cached mappings 
when they are removed 
from the IO page table.



IOMMU configurations

46

Mode Characteristics

Disable ● Default configuration for many linux distributions.
● Reduce IO performance.
● Incompatible with certain devices and features. 

Pass through ● Hardware IOMMU is turned off.
● Device address is used as CPU physical address.

Deferred Default mode when IOMMU enabled.

Strict IOMMU enabled.

Not secure

Secure

Security

Fast

Slow

Performance



Mode Characteristics

Disable ● Default configuration for many linux distributions.
● Reduce IO performance.
● Incompatible with certain devices and features. 

Pass through ● Hardware IOMMU is turned off.
● Device address is used as CPU physical address.

Deferred Default mode when IOMMU enabled.

Strict IOMMU enabled.

IOMMU configurations

47

Not secure

Secure

Security

Fast

Slow

Performance



Mode Characteristics

Disable ● Default configuration for many linux distributions.
● Reduce IO performance.
● Incompatible with certain devices and features. 

Pass through ● Hardware IOMMU is turned off.
● Device address is used as CPU physical address.

Deferred Default mode when IOMMU enabled.

Strict IOMMU enabled.

IOMMU configurations

48

Not secure

Secure

Security

Fast

Slow

Performance



When system memory is unmapped from IO devices:

49

Clear the entry in IO page table



When system memory is unmapped from IO devices:

50

Clear the entry in IO page table

IOTLB Flush

Deferred Mode Strict Mode

Strategy Flush entire IOTLB. Flush individual entry in given 
domain.

Timing When deferred list is full or 
10 ms after the first entry, 
whichever comes first.

Immediately after unmapping 
entry from IO page table.



When system memory is unmapped from IO devices:

51

Clear the entry in IO page table

IOTLB Flush

Deferred Mode Strict Mode

Strategy Flush entire IOTLB. Flush individual entry in given 
domain.

Timing When deferred list is full or 
10 ms after the first entry, 
whichever comes first.

Immediately after unmapping 
entry from IO page table.



IO Page Table

IOMMU attack

1. Writes a malicious IO page table entry.

52

IOTLB MemoryGPU



IO Page Table

IOMMU attack

1. Writes a malicious IO page table entry.
2. Launch a GPU kernel which accesses the device address of 

the mapping, causing the entry to be cached in IOTLB.

53

IOTLB MemoryKernel
GPU



IO Page Table

IOMMU attack

1. Writes a malicious IO page table entry.
2. Launch a GPU kernel which accesses the device address of 

the mapping, causing the entry to be cached in IOTLB.

54

Miss

IOTLB MemoryKernel
GPU



IO Page Table

IOMMU attack

1. Writes a malicious IO page table entry.
2. Launch a GPU kernel which accesses the device address of 

the mapping, causing the entry to be cached in IOTLB.

55

IOTLB MemoryKernel
GPU



IOMMU attack

1. Writes a malicious IO page table entry.
2. Launch a GPU kernel which accesses the device address of 

the mapping, causing the entry to be cached in IOTLB.
3. Overwrite the IO page table.

56

IOTLB

IO Page Table

MemoryKernel
GPU



How long can a stale entry last in IOTLB?

57

Workload Bit rate Stale period

Idle ssh connection 10 bps 1 day

Web radio 130 Kbps 1 hour

Web video: Auto 
(480p)

2 Mbps 1 min

IOTLB

IO Page Table

Memory
Kernel

GPU



Stealthiness

● IOTLB entry is not accessible by software.
● IO page table can be monitored by security tools.

58



Conclusion

● Discrete GPUs are not an appropriate choice for a secure 
coprocessor.

● Discrete GPUs pose a security threat to computing platform.

59



60


