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Abstract
GPUs have become an integral part of modern systems, but

their implications for system security are not yet clear. This pa-

per demonstrates both that discrete GPUs cannot be used as secure

co-processors and that GPUs provide a stealthy platform for mal-

ware. First, we examine a recent proposal to use discrete GPUs

as secure co-processors and show that the security guarantees of

the proposed system do not hold on the GPUs we investigate. Sec-

ond, we demonstrate that (under certain circumstances) it is possi-

ble to bypass IOMMU protections and create stealthy, long-lived

GPU-based malware. We demonstrate a novel attack that compro-

mises the in-kernel GPU driver and one that compromises GPU mi-

crocode to gain full access to CPU physical memory. In general, we

find that the highly sophisticated, but poorly documented GPU hard-

ware architecture, hidden behind obscure close-source device dri-

vers and vendor-specific APIs, not only make GPUs a poor choice

for applications requiring strong security, but also make GPUs into

a security threat.

1 Introduction
GPUs have enjoyed increasing popularity over the past decade,

both as hardware accelerators for graphics applications and as

highly parallel general-purpose processors. With general purpose

computing on GPUs (GPGPUs) diffusing into the mainstream, re-

searchers are looking at their security implications. In this paper we

analyze two related questions: can GPUs be used to enhance the se-

curity of a computing platform? and can GPUs be used to subvert

the security of a computing platform?

Understanding the security of GPUs requires understanding the

interplay among the GPU hardware, its software stack, and the

busses and chipsets that coordinate a platform’s transfer of data.

The interplay of these features is complicated by GPU hardware
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that contains quirky features absent from CPUs, such as auxiliary

embedded microprocessors, and by the GPU’s deep software stack

whose boundaries and interactions with GPU hardware are deliber-

ately blurred by the vendor. Unfortunately, the complexity of this

interplay can hide vulnerabilities that attackers can use to subvert a

GPU’s expected behavior and break critical security properties, as

we show in this paper.

For discrete GPUs, their independent memory system and com-

putational resources are physically partitioned from the main CPU

which makes it plausible that a GPU could function as a secure

processor; it might be possible to protect computation on a dis-

crete GPU from code executing on the CPU. While plausible in

theory, we systematically analyze the shortcomings of one specific

proposal to use GPU hardware registers as secure storage (called

PixelVault [44]). We show that PixelVault’s security depends on

assumptions about GPU hardware features that do not hold, and in

practice fully depend on the vulnerable GPU software interface that

GPU vendors expose.

The flaws we find in PixelVault’s GPU security model stem from

the lack of a clear software/hardware boundary and shifting respon-

sibilities of hardware and software across GPU generations. For ex-

ample a non-bypassable hardware feature in one version of a GPU

can migrate to a bypassable software feature in another version.

The problem with such a fluctuating software/hardware boundary

is that it becomes hard, if not impossible, to reason about the actual

security guarantees of a GPU system.

We also systematically analyze risks that originate with NVIDIA

GPUs, where the GPU serves as a host for stealthy, long-lived ma-

licious code. It is difficult to detect the execution of GPU-hosted

malware and in certain cases, it is even difficult to detect its pres-

ence. We demonstrate attack code running on the NVIDIA GPU

that reads secrets from CPU memory and corrupts the memory state

of CPU computations by leveraging GPU Direct Memory Access

(DMA) capabilities.

We demonstrate two novel attacks: one against the proprietary

in-kernel closed-source GPU driver, the other against the GPU mi-

crocode running on an auxiliary microprocessor resident on the

GPU card. For the driver attack, we binary patch the proprietary

NVIDIA GPU driver while it is loaded and being used by the OS

kernel, and force it to map sensitive CPU memory into the address

space of an unprivileged GPU program. Our second attack lever-

ages auxiliary microprocessors [27, 32] which GPUs use for various

functions like power management and video display management.

These microprocessors are not exposed as part of the standard GPU

programming model (e.g., CUDA or OpenCL). We implement the

attack microcode running on such an auxiliary microprocessor that

combines the functionality of the original microcode with malicious
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Figure 1. CPU-GPU architecture overview. IOMMU use is op-

tional and its behavior is configured by the operating system.

code that can read and write arbitrary CPU memory. To the best of

our knowledge it is the first such attack on NVIDIA GPUs.

Our attacks rely on unlimited DMA access from GPU to CPU

physical memory. The common way to foil such DMA attacks has

been to restrict peripheral access to system memory by using the

IO memory management unit (IOMMU), intended to protect CPU

memory against malicious or malfunctioning peripherals. We, how-

ever, show novel techniques to subvert IOMMU security and bypass

its protection in the strict operation mode that has previously been

considered the most secure (§4).

Similar DMA attacks on other peripherals are known [10, 11,

34, 40] However, our GPU DMA attacks are particularly dangerous

because they are relatively easy to program: the ability of modern

GPUs to execute general purpose code lowers the bar for imple-

menting sophisticated malware on GPU.

Our attacks assume an adversary who transiently gains the ability

to load a kernel module. The primary danger of the GPU-based

attacks is their stealthiness. They would evade most known tools

and research proposals that provide software system integrity.

Our work focuses on discrete GPUs from NVIDIA which come

mounted on an expansion card which is plugged into a computer’s

IO bus. The only current proposal to use a GPU as a secure proces-

sor is for a discrete GPU. While integrated GPUs also use IOMMUs

for safety, we leave for future work the dangers and mitigations for

integrated GPU security.

We begin by summarizing the portions of the GPU architecture

that are most relevant for security (§2), and then describe how we

can defeat the security of PixelVault (§3). Then we discuss how

to bypass IOMMU protections (§4) and attack CPU memory using

a compromised GPU driver (§5) and compromised microcode run-

ning on an embedded GPU microprocessor (§6). We summarize

related work (§7) and conclude.

2 Architecture
This section summarizes relevant aspects of GPU architecture,

paying close attention to the memory subsystem and CPU-GPU

communications. We describe discrete GPUs that connect to the

host via a peripheral component interconnect express (PCIe) bus,

because this paper focuses on discrete GPUs, and in particular on

NVIDIA GPUs. A high-level view of a CPU-GPU system model

used throughout this paper is shown in Figure 1. Process and kernel

are shaded, because they are software abstractions.

2.1 GPU execution model

GPUs are slave processors controlled entirely by a CPU execut-

ing a GPU driver running in privileged mode. Any CPU process can

initiate the execution of a GPU program by making API calls to the

kernel-resident GPU driver. The initiating CPU process is called the

GPU-controlling process. The unprivileged CPU process invokes a

GPU kernel, which is specially written and compiled for execution

on a GPU.

There are public APIs to allow the CPU-controlling process to

manipulate the address space of any GPU kernel that it launches.

Both NVIDIA CUDA and OpenCL contain APIs that allow man-

agement of the GPU kernel’s memory, including transfer of data

from/to the CPU, and mapping CPU memory into a kernel’s ad-

dress space, as we discuss next. Once the GPU-controlling process

terminates, all the GPU resources associated with it are released.

In particular, the driver reclaims the GPU memory and terminates

active GPU kernels associated with the process.

2.2 Memory Hierarchy

NVIDIA GPUs contain several streaming multiprocessors

(SMs), which concurrently run thousands of sequential threads.

Each thread may access its private registers, local on-die scratchpad

memory, and global GPU memory shared among all SMs. Global

memory is cached with two levels of hardware cache. The L1 data

cache is local for each SM, while the L2 is shared across all SMs.

Instruction cache. NVIDIA GPUs have multiple levels of instruc-

tion cache, though the exact architecture has not been officially dis-

closed. Wong et al. [48] suggest that there are three levels. The in-

struction caches in GPUs are used exclusively for instructions. Fur-

ther, the instruction cache is not kept coherent with the GPU global

memory where the instructions are stored. The GPU driver flushes

the instruction cache when a new GPU program starts. However, if

the CPU writes to GPU instructions in memory while the GPU is

running, the (stale) instructions are not invalidated from the cache.

NVIDIA does not provide any public API for flushing the instruc-

tion cache. Therefore, overwriting a GPU kernel’s program code in

GPU memory while a GPU is running may not change the actual

running program.

2.3 Accessing CPU memory from the GPU

Modern GPUs provide limited access to CPU memory

from programs running on a GPU. In particular, a stan-

dard API (cudaHostRegister for CUDA [33] and

clEnqueueMapBuffer for OpenCL [23]) allows the CPU

to map a CPU memory region into a GPU kernel’s address space.

Once mapped, the GPU may directly access the mapped CPU

memory without CPU involvement via direct memory access

(DMA). Similarly, GPUs may be configured to access memory-

mapped input/output (MMIO) regions of other peer peripheral

devices connected to the PCIe bus. For example, the NVIDIA

GPUDirectRDMA API enables peer-to-peer access to Infiniband

network cards, allowing GPU programs to communicate over the

network without CPU mediation [31]. The GPU internal page table

is generally accessible only through the GPU driver and is not

visible to the CPU OS.

In contrast to CPU programs, in which memory protection is en-

forced for every load, store and instruction execution at runtime by

hardware, GPU accesses to CPU memory do not pass through the

CPU’s memory management unit (MMU) and therefore the CPU
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performs no runtime checks. Rather, the GPU driver validates ac-

cess rights at the time of mapping in software. Additional hardware

protection can be provided by the IOMMU which we describe next.

2.4 IOMMU

When a device performs direct memory access (DMA) to read

or write CPU physical memory, it uses device addresses. When the

IOMMU is working, it maps device addresses to CPU physical ad-

dresses (just as the CPU’s MMU maps virtual to physical address).

The IOTLB caches entries from the IO page table, just as the CPU’s

TLB caches entries from the process’ page table. IO page table en-

tries contain protection information, and the IOMMU will check

each access to system memory from a peripheral device, to make

sure it has sufficient permissions.

The IOTLB is not kept coherent with the IO page table by hard-

ware, similarly to TLBs in most common CPUs. Software must

explicitly manage the IOTLB, flushing the cached mappings when

they are removed from the IO page table. We exploit this software-

managed IOTLB coherence mechanism to circumvent IOMMU pro-

tection and enable unauthorized access to system memory from the

GPU, as we discuss in Section 4.

2.5 Microprocessors and MMIO registers in GPUs

GPUs expose a set of memory mapped input output (MMIO)

registers used by the driver for GPU management [2, 27]. In addi-

tion, they contain several special-purpose microprocessors used to

manage internal hardware resources. A GPU driver updates GPU

microprocessor code every time a GPU is initialized. The docu-

mentation about the actual purpose of microprocessors and MMIO

registers used in NVIDIA GPUs is fairly scarce; it usually comes

from unofficial sources, such as open-source driver developers who

partially reverse-engineered the official driver.

We found that the GPU MMIO registers can invalidate the GPU

instruction caches. Flushing the instruction caches is key to dynam-

ically updating the code of a running kernel, which breaks the se-

curity guarantees of PixelVault (§ 3.2). Our microcode attack (§ 6)

leverages an important capability of NVIDIA microprocessors that

allows unrestricted access to GPU and CPU memory [17].

3 Attacking PixelVault
In this section we analyze the GPU model and security guaran-

tees PixelVault uses to claim a GPU as a secure co-processor. We

then present several attacks that clearly violate PixelVault’s assump-

tions, and therefore its security properties. We conclude that sys-

tems developed using PixelVault’s approach are insecure.

Experimental platform. The attacks described in Section 3.4

and Section 3.3 are performed on NVIDIA Tesla C2050/C2075

GPU (Fermi) and an NVIDIA GK110GL Tesla K20c (Kepler), us-

ing NVIDIA driver versions 319.37 and 331.38 respectively, and

CUDA version 5.5. The attack in Section 3.2 is performed on an

NVIDIA Tesla C2050/C2075 (Fermi) with the open source nou-

veau [29] and gdev [21] [22]) drivers.

3.1 PixelVault summary and guarantees

PixelVault proposes a GPU-based design of a security co-

processor for RSA and AES encryption which is resilient to even

a strong adversary with full control of CPU and/or GPU software.

PixelVault stores the secret keys encrypted in GPU memory, and the

master key in GPU registers. It implements a software infrastruc-

ture that strives to prevent any adversarial access to these registers

from CPU or GPU.

PixelVault threat model. PixelVault assumes that the system boots

from a trusted configuration, and it can set up its execution environ-

ment on the GPU. Once PixelVault is established, the attacker may

have full control over the platform. Specifically, the attacker can

execute code at any privilege level and it has access to all platform

hardware.

To achieve this goal PixelVault leverages several characteristics

of the NVIDIA GPU architecture and execution model. While some

of these characteristics are well known and have been officially con-

firmed, some were only assumed to be correct and others were par-

tially validated experimentally.

Below we list only those assumptions that we later experimen-

tally refute. Even if only one of these assumptions is not satisfied,

PixelVault is no longer able to guarantee the secrecy of the master

encryption key under its threat model.

1. It is impossible to replace the code of a running GPU kernel

if the code is fully resident in the instruction cache. This

feature is critical to ensuring that an adversary cannot re-

place the PixelVault GPU code without stopping the kernel,

and therefore without losing the master key stored in GPU

registers. We show that NVIDIA GPUs have unpublished

MMIO registers that flush the instruction cache, allowing

replacement of code from running kernels that are as small

as 32B (4 instructions).

2. The contents of GPU registers cannot be retrieved after ker-

nel termination. This feature is essential to PixelVault’s

ability to prevent a strong adversary from retrieving a mas-

ter key by stopping a running PixelVault kernel. We show

that under certain conditions it is possible to retrieve the

contents of registers after kernel termination, and the Pixel-

Vault design satisfies these conditions.

3. A running GPU kernel cannot be stopped and debugged if

it is not compiled with explicit debug support. This fea-

ture is necessary to ensure that an adversary cannot retrieve

register contents by attaching a GPU debugger to the run-

ning PixelVault kernel. We show that newer versions of

the NVIDIA CUDA runtime provide support for attaching

a debugger to any running kernel and it is unclear how to

disable this capability. This attack requires root privileges

to attach to any running process, yet this is permitted under

PixelVault threat model.

In the remainder of this section, we explain in more details how

we have invalidated the listed assumptions, thereby debunking Pix-

elVault’s security.

3.2 Replacing PixelVault as it runs

To run a kernel, a GPU needs the binary code to be resident in

GPU memory. The binary is transferred from CPU memory to GPU

memory by the driver prior to kernel invocation. GPUs do not sup-

port code modification while the kernel is executing. Therefore,

PixelVault assumes that GPU hardware makes it impossible for an

attacker to alter the execution of a running PixelVault kernel by re-

placing the original PixelVault binary in GPU memory, as long as

the binary is entirely resident in the instruction cache. PixelVault

explicitly validates that its kernel is small enough to fit in the in-

struction cache. Assuming the kernel is simple, PixelVault also ex-

plores all possible execution paths to make the kernel fully resident

in the cache soon after starting execution.
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We find that the lack of software interfaces for dynamic code

update does not imply the lack of hardware support. Using the open

source Envytools [13] reverse engineering toolkit, we can invalidate

the instruction caches and replace the instructions of the running

kernel with the attacker’s modified instructions from GPU memory.

Technical details. We perform an experiment to show that we can

dynamically update GPU kernel code using a matrix addition ker-

nel and an updater process. The updater process locates the GPU

kernel code in GPU physical memory by searching for the kernel’s

instructions. In the case of PixelVault, the binary is not secret, so

it can be detected by an attacker. Once invoked, PixelVault kernel

runs indefinitely, giving the updater enough time to identify and up-

date its code. If the code is erased from memory, the attacker can

speculate on its location, methodically working through the address

space.

The updater replaces the addition instructions in our test kernel

with subtraction instructions. When the effective size of the code

in the GPU kernel loop is larger than 32 KB, overwriting the in-

structions in memory causes the behavior of the kernel to change.

Such a large kernel (presumably larger than the size of the last level

instruction cache) experiences instruction cache misses at runtime,

yielding a result that is not a simple matrix addition.

However overwriting the kernel’s program has no effect if the

size of the kernel’s main loop is smaller than 32KB. In these cases,

only if we flush the instruction cache via GPU MMIO registers do

we see the expected change in the kernel output.

Our prototype requires 3.1 seconds to scan and identify kernel

code in GPU memory. Therefore, we can only effectively flush the

cache for long running kernels. The PixelVault kernel is intended to

run continuously as it provides a runtime encryption service, there-

fore it is vulnerable to this cache flush attack.

MMIO registers for instruction cache flush. To invalidate the

L1 instruction cache with the updated code memory, it is nec-

essary to flush all the cache levels. The addresses in paren-

theses are the offsets within the MMIO region, which is re-

ferred by the first set of the PCI base address registers (BAR0)

of NVIDIA GPUs. The register that flushes the per-GPC

caches is PGRAPH.GPC BROADCAST.CCACHE.CACHE CTRL

(0x419000), especially the first bit of the 32-bit register.

For the per-SM flush, we used the first and ninth bits

of PGRAPH.GPC BROADCAST.TPC ALL.MP.CCACHE CTRL

(0x419ea4). To the best of our knowledge, the use of the ninth

bit of CCACHE CTRL for flushing per-SM cache is not reported or

documented.

3.3 Capturing PixelVault secrets after termination

PixelVault relies on GPU registers being initialized to zero when

a new kernel is loaded onto a GPU and begins execution. Initial zero

values for registers is necessary to prevent an adversary from termi-

nating the PixelVault kernel and running a new kernel that looks

for PixelVault secrets in its initial register values. Because initial

zero values is not a feature officially documented by NVIDIA, 1

the PixelVault developers experimentally validate that the register

contents cannot be retrieved by another kernel invoked after Pix-

elVault terminates. Yet, there is no guarantee that GPU hardware

clears registers after termination of a GPU kernel.

1http://docs.nvidia.com/cuda/parallel- thread-execution/index.html#state-
spaces-types-and-variables

We find that a cuda-gdb debugger can retrieve register values

even after kernel termination. However it requires that other GPU

tasks are concurrently active with the execution of the victim ker-

nel. Specifically, NVIDIA CUDA enables multiple GPU operations

such as CPU-GPU memory transfers or GPU invocations to be in-

voked concurrently by the same CPU process. Each operation is in-

voked in its own CUDA stream, and a GPU handles the operations

in different streams concurrently. We found that if GPU kernel B is

invoked in parallel with running kernel A, A’s register state can be

retrieved using the debugger API even after A terminates, as long

as B is still running.

The PixelVault implementation employs two CUDA streams,

one for kernel execution and another for data transfers between a

CPU and a GPU. An attacker may take advantage of the data trans-

fer stream to invoke a long-running kernel, terminate PixelVault,

and retrieve its secrets.

Technical details. We modified the cuda-gdb source code to

read the registers of a terminated kernel. The modifications were

necessary because by default cuda-gdb will refuse to read the

registers of a terminated kernel. If we launch two kernels on differ-

ent CUDA streams, cuda-gdb can read the register values from

the terminated kernel so long as the other kernel is running. As soon

as both kernels terminate, we cannot access either of their registers.

3.4 Stopping PixelVault with a debugger

The PixelVault version discussed in their paper runs NVIDIA

CUDA version 4.2. This version of CUDA provided no support for

attaching and setting a breakpoint in a running GPU kernel, unless

that kernel was explicitly compiled with debug information. This

property of the runtime environment disguised itself as a hardware

feature. Therefore, PixelVault relied on it to ensure that an adver-

sary cannot attach a debugger to retrieve the values of GPU registers

which store the secret keys, without stopping the running PixelVault

GPU kernel and consequently without erasing the contents of those

registers.

However, with the GPU system software evolving so rapidly,

many desirable features like attaching a debugger to a running ker-

nel are added in every new release. In particular, this feature was

added in the cuda-gdb GPU debugger starting from CUDA ver-

sion 5.0 [18]. By using the CUDA debug API it is possible to stop

a kernel, and inspect all GPU registers of the executing kernel from

the CPU. This ability invalidates the privacy guarantees for Pixel-

Vault’s master encryption key.

We found no simple way of preventing software from being able

to attach to a running kernel. When attaching, cuda-gdb needs

access to certain predefined memory locations stored as symbols

in libcuda.so [30], which is the main library providing CUDA

driver API support to GPU applications. In an older version of the

CUDA driver (we tested version 319.37), the attach information re-

sides in the symtab section and it can be safely stripped. However,

more recent versions of the library (we tested version 331.38), no

longer place the attach information in symtab, they place it in the

dynsym section. The dynsym section cannot be stripped from

the binary because it holds important data necessary for dynamic

linking. If we remove the dynsym section from the binary, the

dynamic linker can no longer load libcuda.so.

It is possible to zero out the entries in the dynsym section used

by cuda-gdb, which causes cuda-gdb to crash the controlling

CPU process when attaching to the running GPU kernel. PixelVault

could make its own copy of libcuda.so (so that other users can

http://docs.nvidia.com/cuda/parallel-thread-execution/index.html#state-spaces-types-and-variables
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html#state-spaces-types-and-variables
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continue to debug their kernels) and just zero out or corrupt the

attach information in dynsym. Ultimately however, the ability to

stop the running kernel is a hardware feature that PixelVault cannot

disable. Because the PixelVault threat model assumes the attacker

controls the host, the attacker can still attach to a running kernel

and examine its register state even if the default support for how

cuda-gdb attaches is removed from a version of libcuda.so.

Technical details. We use cuda-gdb to attach to a running GPU

kernel, and retrieve all GPU registers via the CUDA debugger call

CUDBGResult (*CUDBGAPI st::readRegister) even if

the CUDA application is compiled without debug information (i.e.,

without the -G flag for the NVCC compiler).

A simple experiment verifies this attack. A CUDA application

launches a kernel with one thread that spins in an infinite loop

and continuously changes a value stored in a register. We attach

cuda-gdb to the GPU-controlling CPU process and then attach

to the GPU kernel that the process spawned. All register values

from the running kernel can be extracted whether or not the GPU

kernel was built with debug information.

Using this technique, we can also attack a more realistic kernel.

We implement the AES encryption algorithm in a GPU program,

emulating part of PixelVault’s operation. The AES key is stored in

GPU registers. While the kernel is running, we attach to it using

cuda-gdb, read the GPU registers, and expose the secret key.

3.5 Discussion

Discrete GPUs appear to have potential as secure coproces-

sors because they have physically distinct and complete process-

ing resources: processor, caches, RAM, and access to I/O. They

also have micro-architectural (though seemingly robust) guarantees

about non-preemption and an incoherent instruction cache. The Pix-

elVault system is an intelligent attempt at trying to build a secure

system from these components.

However, our investigation yields the clear conclusion that GPUs

are not appropriate as secure coprocessors and cannot contribute to

the trusted computing base (TCB) of the system. GPUs are complex

devices that rely on sophisticated proprietary hardware and soft-

ware which is poorly (often purposefully so) publicly documented

– the opposite of a firm basis for security. GPU manufacturers are

not interested in exposing their architecture internals, and they can

easily change the architecture in ways that invalidate the security of

systems based on a GPU, e.g., by adding preemption.

We have found a variety of documented and undocumented ways

of violating the security of PixelVault. We learned of the existence

of many MMIO registers from the Envytools GPU reverse engineer-

ing project [13]. However, some registers that allowed us to invali-

date the GPU instruction cache are not documented as flushing the

cache—yet another example of an obscure GPU architectural sub-

tlety which undermines its use as a secure coprocessor.

4 Threat model and IOMMU
We explore how GPUs might host stealthy malware. Our mal-

ware attacks compromise the privacy and integrity of system mem-

ory by reading and writing it from the GPU. First we specify our

threat model.

4.1 Threat model

An attacker may load and unload kernel modules. In Linux, this

can be done by briefly gaining the CAP SYS MODULE capability

(which is a user credential stored in the process control block) using

kernel exploits (e.g., [4, 6, 7]), by bypassing capability checks (e.g.,

[5, 8, 9]), or by exploiting kernel module loader weaknesses [12].

After loading a module, the attacker also has access to the GPU con-

trol interface i.e., MMIO register regions, and as we explain in our

microcode attack (§6), it can use these registers to load malicious

microcode onto an embedded auxiliary GPU processor. Loading

the microcode is done by reloading the GPU driver module into the

OS kernel. After the malware is installed, the attacker loses the

module loading capability and is allowed only unprivileged access.

If an attacker can load a module, why should he or she bother

with the attacks we describe? The primary reason is stealthiness:

all of our attacks originate with the GPU reading and writing CPU

memory (e.g., sensitive operating system data structures), making

them hard to detect. Detecting root-level compromise is the subject

of much published work (e.g., [20], [36], [35], [3]), open source

tools (e.g., chkrootkit) and commercial tools (e.g., Malwarebytes

AntiRootkit, McAfee Rootkit Remover). To our knowledge, there

are no tools and precious few research studies to detect GPU-based

malware. Our attacks require no changes to the page table of any

unprivileged process, and they bypass the CPU’s MMU and mem-

ory protection settings. The GPU page table that stores the map-

pings into system memory are not visible from the CPU (at least

not via the public API). Therefore, once mapped into the GPU, a

malicious unprivileged GPU kernel may keep accessing any CPU

memory without raising suspicion.

Modern systems, however, usually contain an input/output mem-

ory management unit (IOMMU) which monitors devices’ Direct

Memory Accesses (DMAs) to system memory in order to protect it

from unauthorized accesses. The IOMMU restricts the devices to

access only the CPU memory pages specified in its I/O page table.

Unlike the hidden GPU page tables, the I/O page table can be mon-

itored by security tools (though we are not aware of any that do),

undermining the stealthiness of the attack.

The malware, therefore, must circumvent IOMMU protection to

evade detection, and the next section details the techniques to ac-

complish that.

4.2 IOMMU

We exploit the subtleties of IOTLB management in the Linux

kernel and our prototype is based on the Intel IOMMU. We first

provide a brief overview of the IOMMU management policies.

IO device drivers strive to make all memory mappings as short-

lived as possible to increase security at the expense of higher man-

agement overheads [26]. The OS, therefore, offers several IOMMU

configurations that influence the IOTLB management policy and

enable different tradeoffs between management cost and security.

The configurations and their respective management policies are

summarized in Table 1.

IOMMU disabled. Though it is detrimental to security, many

systems, especially those that include discrete GPUs, disable their

IOMMU by default. IOMMU support for Intel chipsets must be

configured through the BIOS as part of setup for device virtualiza-

tion technology (VT-d), and it also must be enabled in the Linux

kernel. Some server manufacturers ship their products with VT-d

disabled in the BIOS by default [14].

Several major Linux distributions (e.g., Ubuntu 15.04, CentOS

7, RHEL 7, OpenSUSE 13.2) ship with Intel’s IOMMU disabled

in the kernel. The primary reasons for disabling the IOMMU is re-

duced I/O performance [49] and the IOMMU’s incompatibility with

certain devices and features. For example, the peer-to-peer DMA
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Mode IOTLB Flush

Strategy Timing

Disabled None NA

Pass

through
None NA

Deferred
Flush entire

IOTLB.

When deferred list is

full or t ms after the

first entry 2, whichever

comes first.

Strict

Flush individual

entry in given

domain.

Immediately after

unmapping entry from

IO page table.

Table 1. Different IOMMU modes, their properties and security

characteristics.

capability of NVIDIA GPUs, essential for high I/O performance in

multi-GPU systems, requires the IOMMU to be disabled [31].

While we state the obvious, when the IOMMU is disabled, it

does not protect CPU memory from malicious accesses performed

from the GPU.

IOMMU pass through mode. In pass through mode, device ad-

dresses are used directly as CPU physical addresses. In this mode

the hardware IOMMU is turned off, so there is no permissions

checking for DMA requests. Devices enter pass through mode if

it is enabled by a kernel parameter, and if during device discovery,

the kernel determines that a device can address all of physical mem-

ory. Some devices can be in pass through mode without all devices

being in this mode.

Because there is no permissions checking, our driver and mi-

crocode attacks work in pass through mode. Pass through mode is

intended to use a software TLB [50], but we verified that on our sys-

tem, the software TLB does not check permissions. In our system,

even though GPU device addresses are 40 bits, it identifies as a 32-

bit device during its initialization. Therefore, the kernel must boot

with less than or equal to 4 GB of memory to enable pass through

mode. We verified that regardless of how much physical memory

is in the machine, if the kernel boots with a mem=4G option, the

kernel defaults to pass through mode where our attacks work.

IOMMU deferred mode. If the IOMMU is enabled, Linux config-

ures it to work in deferred mode by default. When system memory

is unmapped from IO devices, the OS clears the IO page table entry

and adds it to a flush list. The IOMMU driver flushes the entire

IOTLB when the list contains a certain number of entries (250 for

the kernel version 4.1) or at most 10ms after an entry is added to

the list, whichever comes first.

Deferred mode is considered less secure for memory integrity

because the memory unmapped from the device by the device driver

remains accessible from the device for up to 10ms [26]. However,

we show below that this mode foils the GPU malware attack.

IOMMU strict mode. Strict mode does not defer flushing the

IOTLB when unmapping IO memory; each page is flushed by the

driver immediately after its entry is unmapped from the IO page ta-

ble. The driver flushes only the region covered by the entry (which

can be a single page, or a power-of-two contiguous and aligned se-

quence of pages) and it never flushes the entire IOTLB, as it does

in deferred mode.

2In Linux t = 10 for Intel IOMMUs

Workload Bit rate Stale period

Idle ssh connection 10 bps 1 day

Web radio 130 Kbps 1 hour

Web video: Auto (480p) 2 Mbps 1 minute

Table 2. Workload, average measured bit rate, and the time a stale

IOTLB entry stays resident.

Strict mode also respects IO protection domains. Each device,

e.g., NIC, GPU, is placed in its own protection domain and en-

tries in the IOTLB are tagged with the domain identifier. When

the IOMMU driver flushes an entry from one domain, it does not

affect other domains.

This mode is considered safer than the deferred mode, because

it flushes the IOTLB immediately after the entry gets unmapped.

4.3 IOMMU attacks

Our driver and microcode attacks work when the IOMMU is dis-

abled or in pass through mode. Therefore, we now describe how we

attack strict mode and how we can surreptitiously transition from

deferred mode to strict mode.

We describe how to keep a stale malicious mapping in the IOTLB

without having it installed in the I/O page table. Keeping the entry

out of the I/O page table makes an attack more difficult to detect

(though we know of no security tool that even validates I/O page

tables).

Stale IOMMU entries in strict mode. Our attack writes a mali-

cious IO page table entry (e.g., one that maps an unrelated process’

credential structure), launches a GPU kernel which accesses the de-

vice address of the mapping, causing the entry to be cached in the

IOTLB. Then the attack code overwrites the IO page table entry and

the GPU kernel terminates. The malicious entry remains cached in

the IOTLB, with no way for software to detect its presence, and no

evidence of it in the backing IO page table.

The question remains, how long can a stale entry last in the

IOTLB? We do experiments on a machine running Ubuntu 14.04

with X and Xfce desktop, the Linux 3.16 kernel with an Intel

82579LM Gigabit Network Card. We run several experiments each

with progressively more network traffic to create different levels of

IOTLB contention, because the network card competes for IOTLB

entries with the GPU. We also tried to create IOTLB pressure from

the GPU by running glxgears, a web browser, and displaying

video, but none of these activities generated significant competition

for IOTLB entries, and none of them caused the GPU or driver to

flush the IOTLB.

Table 2 summarizes our experiments where we run workloads

with increasing network load and measure the stale period—the pe-

riod of time a stale entry stays in the IOTLB.

The first workload keeps an open ssh connection (using the

TCPKeepAlive option) to an idle machine. We measure a stale

period of more than 24 hours (after one day we discontinued the ex-

periment). Next we continuously stream a web radio station which

generates on average 130 Kbps of incoming network traffic. With-

out refreshing the stale entry, the stale mapping can be read after

T = 1 hour. By periodically running an unprivileged GPU kernel to

read the memory mapped by the stale IOTLB entry every hour, we

can keep the stale IOTLB entry resident for 10 hours.

Finally, we increase the network load by streaming a video from

youtube using the Firefox web browser. The video is played at the

“Auto (480p)” setting, generating an average of 2 Mbps as measured



Understanding The Security of Discrete GPUs GPGPU-10, February 04-05 2017, Austin, TX, USA

by a network monitor. This workload uses the NIC and the graph-

ics rendering capability of the GPU. The mapping can be reliably

read 1 minute after it was erased from the IO page table. Running

a GPU kernel every 1 minute is sufficient to keep the stale IOTLB

entry resident for one hour, after which we discontinued the exper-

iment. Streaming higher bandwidth videos, like the “Auto (720p)”

setting, cause the attack to fail, even when we refresh the stale en-

try every minute. We use round numbers like 1 minute for a stale

period to validate that our attacks are practical. Future work might

determine more clever ways to keep an IOTLB entry resident, but

our experiments establish a large enough window of vulnerability

to be a security concern.

Stealthy transition from deferred to strict. Keeping a stale entry

in the IOTLB is possible only if the IOMMU is configured in strict

mode, because it is the only mode that invalidates each IOTLB en-

try separately. However, if the IOMMU is enabled, Linux uses de-

ferred mode by default, which flushes the IOTLB as a whole. These

IOTLB flushes frustrate our attacks (and form a practical counter-

measure to both of our attacks).

We find that the kernel transitions between deferred

and strict mode based on the state of a single variable

(intel iommu strict). By setting this variable to 1, the

kernel will put all devices into strict mode. Because this is a small,

legal change to kernel state, it is quite stealthy. We experimentally

verify that it is effective at engaging strict mode, where we can

cache a stale IOTLB entry and launch one of the attacks we now

describe.

We leave for future work developing a Linux IOMMU manage-

ment policy that combines the best parts of strict and deferred mode.

Strict mode minimizes the chances of memory corruption by a de-

vice by quickly unmapping DMA memory. Deferred mode frus-

trates our attacks by periodically flushing the entire IOTLB.

5 GPU driver attack
In this section we show an attack on the stock NVIDIA closed-

source GPU driver. The attack enables arbitrary CPU memory map-

ping into an unprivileged GPU program, concealing malware code

which monitors or changes CPU memory from a GPU kernel.

The attack scenario. An attacker loads a malicious kernel mod-

ule which installs a backdoor by patching a GPU driver in CPU

memory (Step 1 in Figure 2). The driver continues to operate nor-

mally. To trigger the backdoor, an unprivileged GPU-controlling

process performs a sequence of standard GPU API calls (a trigger

sequence) 3 , and maps the requested CPU memory into the GPU

4 . The driver patch bypasses the standard access control checks

in the driver, and allows the attacker to map any user or kernel mem-

ory page. The CPU process invokes a malicious, unprivileged GPU

kernel 5 which accesses the mapped page 6 . The attack module

may unload itself, leaving the modified driver in kernel memory to

subsequently repeat the attack from another unprivileged process.

If no more attacks are planned, a stealthier alternative is to recon-

struct the original driver code to evade detection by kernel code

integrity scanners [35]. We implement two proof-of-concept GPU

malware kernels – one that escalates the privileges of a given pro-

cess by manipulating its cred structure, and another that diverts

the execution flow of a given process by updating its code, which

resides in read-only memory.

Our attack is similar to the previously reported GPU keylog-

ger [24] attack. Both attacks exploit GPU DMA capabilities; in

User Process 3

Attack

Module

Patch

GPU driver

4

User Space

Kernel Space

1

2

2

CPU

CPU RAM

Chipset

Kernel

6

GPU RAM

PCIe Bus

GPU

GPU Chipset

DMA

5

Figure 2. The driver attack, where a patched GPU driver has its

memory mapping access control bypassed to allow a GPU kernel to

access all of the CPU’s memory.

the keylogger case access is to the keyboard buffer in OS kernel

memory. The primary difference is that our attack requires no long-

running CPU process to proceed, while the keylogger does. That

is because for the keylogger, the malicious memory mapping to the

keyboard buffer must be installed into an unprivileged process that

is running while the root-level compromise is active. The attack is

lost if that unprivileged process subsequently terminates. Attack-

ing the driver directly allows us to map any page to any process as

many times as necessary, and without modifying sensitive kernel

data structures.

Driver patch. Identifying the specific locations in the NVIDIA

driver that control access to memory would seem difficult because

most of the driver is proprietary and undisclosed. However, the par-

ticular functions that control memory mapping reside in the wrap-

per of the driver that is shipped open source and compiled at the

time of driver installation, making it easier to determine the exact

location that needs patching.

We choose to patch the NVIDIA driver in memory rather than

modify its source code. Patching the driver enables the attack on a

system where the GPU driver module has been already loaded and

is in use by the kernel, allowing the attack to avoid unloading it first,

which can be easily noticed. The patch is installed by a malicious

module which finds the driver module in memory, overwrites some

of its code, and then unloads itself.

The patch diverts the original control flow of the driver to bypass

the memory permission checks when handling the cudaHost-

Register()API call, which is normally used to lock CPU mem-

ory pages (os_lock_user_pages()) and map them into the

GPU address space (nv_dma_map_pages()).

The driver acts normally as long as the trigger sequence has not

been detected. The trigger sequence is a series of legal but erro-

neous calls to cudaHostRegister(), e.g., passing pointers to

unallocated memory. Once triggered, the modified driver expects

another call to cudaHostRegister()with the hidden buffer as

a parameter. The hidden buffer contains the actual parameters of

the malicious mapping request. For instance, the driver may map

the virtual address of a certain process, or some known kernel data

structure like the task control block (task_struct in Linux).

The patch resolves the physical address of the requested memory

region, injects this address into the original control structures of the

driver, and resumes the original driver which updates the internal
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GPU page table with the new mapping. The GPU-controlling pro-

cess then may launch the malicious GPU kernel that accesses the

mapped region.

6 GPU microcode attack
We demonstrate a novel attack that modifies GPU microcode to

spy on or corrupt CPU and GPU state. The attack uses an embed-

ded microprocessor in NVIDIA GPUs and can evade any detection

mechanism that relies on evidence from CPU or GPU memory.

6.1 Background: NVIDIA GPU microprocessors

NVIDIA GPUs contain several on-board microprocessors for

power management, video display, decoding, decryption, and other

purposes. The existence of multiple Falcon microprocessors in

NVIDIA GPUs has been officially disclosed by NVIDIA [32], but

no official public API has been released. The reverse-engineering

community discovered that Falcon microprocessors are capable

of issuing data transfers from CPU or GPU physical memory to

microprocessor memory using dedicated memory transfer instruc-

tions [13, 17].

Falcon microprocessors expose a common set of MMIO regis-

ters that both a CPU and the microprocessor can access or update

(GPU kernels normally cannot access them). These registers enable

communication between privileged CPU code and the microcode.

Certain MMIO registers update the code and data memory of the

microprocessor and restart its execution. Linux kernel source code

contains the assembly code for certain Falcon processors3 .

The platform’s GPU driver loads control code onto the Falcon

microprocessors as part of its initialization sequence. The code is

invoked in response to certain events, for example when serving re-

quests to switch GPU control to another CPU process (called GPU

context switch [15]). It is this control code that we attack. We call

this a GPU microcode attack because the microprocessor code is

one of several non-user visible code modules loaded into the GPU

at its initialization, and because it is terminology accepted by GPU

driver developers [16].

6.2 The attack

The attack consists of three phases: launch, monitor, and execute,

as illustrated in Figure 3. In the launch phase, the attacker with

privileged access installs the attack microcode on one of the Fal-

con microprocessors, and executes the code. Now the attack enters

the monitor phase, in which the microprocessor monitors regions

of GPU memory to identify commands from the attacker. The com-

mands can be located in GPU memory or MMIO registers, though

our prototype monitors only specific GPU memory locations. Fi-

nally, once the commands are identified, they are executed by the

microprocessor as part of the execution phase.

In our proof-of-concept attack, we use a seemingly random bi-

nary string as the trigger for the attack. An unprivileged attacker

executes a CUDA program that has a large data structure contain-

ing repeated copies of the trigger string. Our modified microcode

detects the trigger (probably) in one of its monitoring locations and

transitions into the attack execution phase. In our prototype, the

attacking microcode escalates the privilege of a predefined running

shell process, by writing into the process’ credential structure in

CPU memory.

Stealth and unobtrusiveness. The key benefit of this attack is

stealth. We observe no evidence that the attack is occurring in

3Located in drivers/gpu/drm/nouveau/core/engine/graph/fuc.
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Figure 3. The GPU microcode attack. ( 1 Launch) The attacker

loads the attack code into microprocessor storage. ( 2 Monitor)

The microcode transfers data from GPU memory to its own memory

in order to identify triggers or commands from the attacker. ( 3

Execute) Once it detects the commands, it launches the attack by

writing to critical data structures in CPU memory.

CPU memory or in GPU memory. We check all of the GPU base

address register (BAR) regions mapped by the CPUs (BAR0 for

MMIO, BAR1 for VRAM aperture, BAR3 for kernel-accessible

control memory) and none contain any sign of the microcode data

or code, both in big- and little- endian representations. The only

forensic tool we could find for dumping GPU memory [37] did not

reveal the microcode. The microcode resides only in the GPU mi-

croprocessor memory. The Falcon processor has MMIO registers

for uploading the microcode from CPU memory to microprocessor

memory. It also has an MMIO register for transferring microproces-

sor memory back to CPU memory, but we know of no tool that uses

this interface, let alone one that tries to determine if the microcode

is malicious.

Once established, the microcode attack does not require support

from a kernel module or a CPU user process, unlike previously

known GPU malware attacks [24]. The attack does not affect the

integrity of kernel-level data structures.

6.3 Technical details

The attack code is written in C, based on the microcode assem-

bly code in the Linux kernel. It is then compiled by the publicly

available LLVM backend and envytools [17]. The Falcon’s xfer

instruction can initiate DMA, and it can transfer data from both

GPU and CPU memory to its own memory, or vice versa.

Out of many Falcon microprocessors, we use a microproces-

sor that manages context switching between multiple command

streams, e.g., between the X server and a 3D application. There are

several microprocessors involved in this process; microprocessors

manage the context switch of a group of SMs (graphics process-

ing clusters, or GPCs), and a HUB microprocessor that manages

these GPC microprocessors. We update the microcode of HUB mi-

croprocessor because it has larger code and data memory, and the

open-source version of the microcode is available in the Linux ker-

nel. An official version of the microcode can be also extracted [16],

and used to build modified microcode.
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The compiled binary is loaded into the microprocessor of the

NVIDIA C2075 GPU using a set of MMIO registers. The envy-

tools [13] project contains a set of tools the open-source commu-

nity has developed and used to build the open-source nouveau

Linux driver for NVIDIA GPUs. RNN is the community-built

knowledge base for MMIO registers in NVIDIA GPUs. The ad-

dresses in parentheses are the offsets within the MMIO region,

which is referred by the first set of the PCI base address registers

(BAR0) of NVIDIA GPUs.

Microcode is uploaded to Falcon using CODE VIRT ADDR

(0x188) and CODE (0x180) registers. The user can issue 32 bit

stores to the CODE VIRT ADDR register for the index of the 256B

chunk of code to be written, and CODE for the content of the code

at the address pointed by CODE VIRT ADDR.DATA (0x1c4) allows

upload of microcode data.

Most of the attack microcode is loaded into regions that do not

overlap with the existing code or data, to have minimal effect on the

normal system operation. Only small patches to the code region are

needed to redirect the control flow to the injected attack code.

To remain unobtrusive, we split the work done by the attack mi-

crocode into small units and execute only for a limited time, chain-

ing together subsequent executions using continuations. The mi-

crocode is originally designed to be interrupt-driven: most of the

functions are interrupt handlers for different types of interrupts,

such as periodic timers or commands waiting to be handled. The

microprocessor assumes that interrupt handlers will be brief.

We test the unobtrusiveness of our attack code by running glx-

gears from the Mesa GL utility library. This application reports

the frame rate of 3D graphics rendering, and we could observe

lower frame rates or even GPU lockup if the execution time of

our inserted operations took too long. By fine-tuning the amount

of work done at each interrupt, our attack microcode supports the

same glxgears framerate as the unmodified microcode. We also

could not subjectively observe an effect on typical desktop opera-

tions.

We implement our proof-of-concept microcode attack on top of

the open source nouveau driver. The attack code for the nouveau dri-

ver includes all of the attack steps we describe in the attack scenario.

We verify that we can unobtrusively inject simple code sequences

into the NVIDIA microcode, but do not implement the entire attack

for the NVIDIA microcode.

The embedded NVIDIA microprocessor has a periodic timer in-

terrupt and a one-shot watchdog timer, but in our experience, the

use of the periodic timer affects the graphics output. Therefore, to

remain undetectable, we use the watchdog timer and have the watch-

dog event handler reschedule another watchdog event. Our attack

code is 4KB, which we add to the 3KB of Nouveau microcode fit-

ting comfortably in the device’s 16KB capacity.

6.4 Discussion

Falcon microprocessors are relatively slow, the one we used runs

at 270MHz. We only read a small number of GPU memory loca-

tions to keep execution time short. Therefore, our trigger consists

of a GPU program that fills much of its memory with the target

string which gives a high probability of it being read by the attack

microcode. Our proof-of-concept trigger fills 3GB of data and the

microcode reads five memory locations at 1GB offsets. This com-

bination makes the microcode recognize the trigger for each of 10

trials.

Small code size. Different types of Falcon processors have differ-

ent limits on code and data memory. For example, the maximum

code size and data size for a microprocessor are 16 KB and 4 KB,

respectively, whereas the limits for closely related microprocessors

is only 8 KB and 2KB. If multiple microprocessors communicate

and launch a more complex attack than one microprocessor can han-

dle, the attacker can distribute the work according to the memory

limit of each processor.

Microcode validation. Starting from Maxwell GPUs, NVIDIA

significantly strengthened the security of Falcon microprocessors

by requiring their code to be signed and preventing code modifica-

tions after code is initially loaded [32]. Unsigned microprocessor

code may run in unsecure mode, but it cannot use certain hardware

features (the precise set of constraints depends on the processor).

These new security mechanisms, therefore, are likely to complicate

or even entirely prevent our microcode attack, because most (but

not all) Falcons on NVIDIA Pascal GPUs do not allow unsigned

code access to physical memory. We leave the vulnerability analy-

sis of Pascal GPUs for future work.

7 Related work
GPU malware. Vasiliadis et al. [45] present two GPU malware

techniques, code unpacking and runtime polymorphism, used to

evade malware detection. These techniques make use of the GPU

computing capacity to build more complex packing algorithms and

leverage GPU direct memory access (DMA) to modify host mem-

ory.

Ladakis et. al. implement a keylogger on the GPU [24], leverag-

ing the DMA capability of GPUs to monitor the operating system

keyboard buffer from a GPU kernel. The GPU-based keylogger re-

quires an unprivileged helper process to set up the attack. It relies

on a kernel module to update a page table entry of the helper, so

that the process’ address space contains a window on the kernel-

level keyboard buffer. The keyboard buffer address is then moved

to the GPU page table, and erased from the page table in the CPU,

keeping the kernel memory mapping for a short time.

Both of these attacks require helper processes on the CPU, and

these processes violate certain address space integrity properties

(though in most systems, these integrity properties are implicit).

Hiding malware with unpacking and polymorphism on the GPU re-

quires mapping a CPU memory region that is executable, writable,

and IO-mapped. The GPU-based keylogger has a user-level page

that maps kernel memory which no user process should ever map.

These distinctive memory regions that clearly violate certain safety

properties make the malware easy to detect by some rootkit detec-

tors [19, 36].

The GPU-based microcode attack described in this paper does

not require any running process once it is installed in the micropro-

cessor. It leaves no trace in CPU or GPU memory and therefore

does not violate any memory integrity property. The GPU driver

attack does not need a CPU helper until the malicious behavior is

triggered. The attack is entirely encapsulated in the driver and does

not change any kernel data structure, however the patched driver

module might still be detected by kernel integrity checkers.

Villani et. al. analyze four GPU-assisted malware anti-memory-

forensics techniques without modification of GPU microcode: un-

limited code execution, process-less code execution, context-less

code execution and inconsistent memory mapping and apply them

to integrated Intel GPU cards [46].



GPGPU-10, February 04-05 2017, Austin, TX, USA Zhu et. al.

GPU as secure co-processor. PixelVault [44] proposes to use

GPUs as secure co-processors for cryptographic operations. We

have shown in this paper how features from the official NVIDIA

debugger to unofficial hardware interfaces violate the security as-

sumptions of PixelVault.

Firmware attacks. There are several firmware-based attacks that

target diverse devices [1, 3, 10, 41, 47, 51]. Similar to the mi-

crocode attack in this paper, these attacks embed malicious code

into the firmware to circumvent the platform’s security while evad-

ing detection. Triulzi [42] presents a sniffer that uses a combination

of NIC and GPU to access main memory. The GPU runs an ssh dae-

mon that accepts packets from the NIC through PCI-to-PCI transfer.

The firmware modification on the GPU is mainly due to lack of PCI-

to-PCI transfer support. With GPUDirectRDMA [31], this attack

can be implemented without GPU firmware modification. To the

best of our knowledge, our attack is the first GPU microcode-based

attack that leverages GPU embedded microprocessors.

Newer NVIDIA GPUs are expected to disallow the use of un-

signed microcode, preventing the microcode attack.

Information leaks through GPU. Recent works notice that the

GPU driver does not erase the device memory after kernel termi-

nation, leaking private information [25, 28]. This paper describes a

different type of attacks that leverage the GPU to stealthily perform

unauthorized accesses to CPU memory.

Attacks using graphics software stack. The security aspects of

using GPUs in graphics applications have been the subject of much

work [38, 39, 43]. Our work is complementary in that we focus on

the GPU microcode and the driver, and investigate the weaknesses

of using GPUs as secure co-processors.

Reverse-engineering GPU hardware. Detailed information about

GPU hardware architecture is usually never disclosed by the ven-

dors. Wong et al. [48] reverse engineer GPU internals via carefully

crafted microbenchmarks. We use similar techniques in this paper

to discover the size of the instruction cache. Fujii et al. [17] explain

the internal organization of GPU microprocessors which we use to

implement the microcode attack.

8 Conclusion
GPUs are not an appropriate choice for a secure coprocessor, and

they pose a security threat to computing platforms, even those with

an IOMMU. The problem with making hardware, especially hard-

ware as complex as a GPU, into something that enhances security is

that the security guarantees rely on a large set of assumptions about

architectural, micro-architectural, and software features. These as-

sumptions are difficult to verify and they can change for different

versions of the product because the underlying motivation of the

manufacturer is not security.

As an attack platform, they combine powerful access to plat-

form hardware with an opacity encouraged by its proprietary nature.

While forensic tools for GPUs will improve, they represent another

nettlesome resource for determined attackers.
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