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Abstract

Current stream processing systems provide exactly-once se-
mantics using checkpointing or a combination of logging and
checkpointing. These approaches can introduce high over-
head, significantly increasing the latency for normal stream
processing because maintaining exactly-once semantics re-
quires coordination across distributed nodes and streams to
capture a globally consistent state. We observe that mod-
ern distributed shared logs offer a promising solution for
maintaining exactly-once semantics with a small overhead.
We propose Impeller, a stream processing system that uses
a distributed shared log for data storage and exactly-once
processing. To maintain exactly-once semantics, Impeller in-
cludes a novel and efficient progress marking protocol based
on string tags and selective reads in a shared log. The key
idea is to leverage the log’s record-tagging feature to atomi-
cally mark progress across all streams. The experiments over
the NEXMark benchmark show that Impeller achieves 1.3×
to 5.4× lower p50 latency, or 1.3× to 5.0× higher saturation
throughput than Kafka Streams.
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1 Introduction

Stream processing is a paradigm for continuously transform-
ing and analyzing data as it arrives. To handle high data rates,
streamprocessingsystemsdistribute theworkloadacrossmul-
tiple nodes. However, unlike simple data-parallel batch jobs,
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streaming computations are long-running and stateful – they
maintain and update intermediate results over time as new
data arrives (which is called the dataflowmodel [3, 29, 30], and
§ 2). This stateful nature, combined with distributed process-
ing, introduces challenges to ensuring correct and consistent
results in the face of node failures. Stream processing systems
must provide fault tolerance mechanisms that can recover
the state of a streaming computation after a failure, while still
achieving high throughput and low latency. The need to coor-
dinate distributed state and reliably persist high volumes of
state updates places significant demands on the storage layer.

Fault tolerance is crucial for stream processing systems to
ensure results remain correct in the presence of failures. The
key challenge is providing exactly-once semantics – ensuring
each input record is reflected in the processing results exactly
one time, even if failures occur. Exactly-once semantics are
difficult because a failure can happen at any point during pro-
cessingan input record.Forexample, anoperatormayhaveup-
dated its internal state but not yet produced its output record
whena failure strikes. Simply reprocessing the input record af-
ter recoverywould produce incorrect results. Distributed pro-
cessing further complicates the situation as each node can fail
independently. Recovering the entire streaming computation
to a globally consistent state requires careful coordination.
Most modern streaming systems use a combination of

checkpointing and logging to achieve fault tolerance [5, 37,
43]. Streaming systems mostly use simple, dedicated logging
systems; in our work, we want to use the capabilities of mod-
ern fault-tolerant, distributed, shared, and scalable logs [8–
10, 16]. Scalable shared log systems have nodes dedicated to
storage and ordering which provide fault-tolerant storage
whose bandwidth capacity scales with increasing resources.
Some of these shared logs support string tags for selective
reads [22]. String tags are a set of strings provided by the user
of the log, stored as metadata associated with a data record in
the log, and the log builds an index based on the tags. A key
observation for this work is that string tags can implement an
efficient atomic multi-stream append by a specific encoding of
metadata on a single data record append (§3.2).Writing one
data record with two string tags (e.g., {“A”, “B”}) allows that
record to be read by clients interested in the “A” stream and
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the “B” stream. Compared to current systems that send mes-
sages to coordinate the atomic logging, using this advanced
features of modern shared logs significantly reduces the cost
of maintaining exactly-once semantics and subsequently the
median and tail latencies for a range of workloads (§5.3).
In this paper, we propose Impeller1, a stream processing

engine that uses a distributed shared log for both data stor-
age and providing exactly-once processing. Impeller achieves
exactly-once processing via a novel progress tracking proto-
col built on the shared log. The key idea is to use the log itself
to coordinate progress across multiple streams and operators,
avoiding the need for a separate atomic append protocol.
We emphasize that while Impeller gets scalability, fault-

tolerance, and tagging from the underlying log, the contribu-
tion of Impeller is how to use the log to provide exactly-once
semantics to streaming queries. Preserving exactly-once pro-
cessing requires several complexprotocols thatmaintain their
invariants during arbitrary failures, and it forms the bulk of
our design (§3) and the complexity of our implementation
(16,895 lines of Go code (§4)).

In Impeller’s progress tracking protocol, each operator
writes special progress marker records to the log, indicat-
ing which input records it has successfully processed, which
output records it has produced, and the state changes. By
including the log sequence number of the last processed in-
put, progress markers act as a frontier of processing state.
Crucially, progress markers leverage the log’s record tagging
feature to atomically mark progress across all relevant input
and output streams. When a progress marker is written, it
is tagged with the identifiers of all streams involved in the
operator’s processing. This effectively creates a consistent cut
across all these streams, without needing additional coordina-
tion (§3). That one data record appears in all of the identified
streams (eachofwhich is totallyordered), identifyingaunique
log location across multiple streams. To support stateful op-
erators, Impeller also writes periodic checkpoints of operator
state to the shared log, taggedwith the operator’s state stream.
On failure recovery, operators resume processing from the
point indicated by the last progress marker, and stateful op-
erators restore their state from the most recent snapshot and
replay the remaining changelog to the last progress marker.
Impeller’s comprehensive support of both stateless and

stateful operators allows us to port the complete NEXMark
benchmark suite [32, 34].We compare the performance of Im-
peller with Kafka Streams [23], which is an industry-leading
distributed stream processing engine that uses logging for
fault tolerance. Evaluation results showthat Impeller achieves
1.3× to 5.4× lower p50 latency, or 1.3× to 5.0× higher satura-
tion throughput than Kafka Streams on NEXMark workloads.
We also compare different mechanisms for achieving exactly-
once semantics all within our framework: Impeller progress

1An impeller turns kinetic energy into pressure energy to promote the flow
of a fluid.

Stage 1

Task 1a: Map

Task 1b: Map

Stage 2
Task 2a: GroupBy+Count

Task 2b: GroupBy+Count

Stream X

input substream (X, 2a)
input substream (X, 2b)

Figure 1.Word count: an example of distributed query processing.

markers, Kafka Streams transactions [23], and checkpoint-
ing [35]. We show that progress markers achieve a maximum
of 1.4× lower p50 latency and 3.1× lower p99 latency com-
pared to Kafka Streams transactions. Impeller progress mark-
ing achieves a maximum of 4.5× lower p50 latency and 5.8×
lower p99 latency compared to checkpointing.

This paper makes the following contributions.
• Wepropose a novel progressmarkingprotocol that lever-

ages log tags and the total order provided by the shared log
to achieve exactly-once processing with small overhead com-
pared to existing approaches (§3).

• Weimplementa streamprocessingsystem, Impeller, over
the shared log, which supports exactly-once processing using
a wide range of stateless and stateful operators, such as map,
window aggregate, and stream-to-stream join (§4).

• We evaluate Impeller using complex queries from NEX-
Mark [32, 34], and compare it with Kafka Streams and two
baselines implemented in Impeller. Our results show that Im-
peller can significantly reducemedian and tail latencies while
supporting much higher saturation throughput compared to
the existing approaches (§5).

2 Background

In this section, we discuss the background of distributed
stream processing, fault tolerance for stream processing, and
shared logs.

2.1 Distributed Stream Processing

Stream processing frameworks, such as Kafka Streams [23]
and Flink [5], process an unbounded and continuous input
stream of data records, and generate a similarly unbounded
and continuous output stream. A stream processing frame-
workprovidesusers a set of streamoperators, suchasmap, join,
groupby, and aggregate, to build a stream query that analyzes
input data records. A stream query is a directed acyclic graph
(DAG) of stream operators, where each node is an operator
and each edge is a flow of data records from the output of one
operator to the input of another. An operator can be stateless
(e.g., filter) or stateful (e.g., join).

Because the input data of a stream query is unbounded, it
can be useful for users to define window semantics to deter-
mine when to output a result. Two options are a tumbling
window, which computes a result for every fixed interval of
input data (e.g., every 5 seconds), or a sliding window, which
updates the result at regular intervals but considers a broader
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range of input data (e.g., updating every second based on data
from the past 5 seconds).
To execute a DAG of operators in a distributed environ-

ment, the DAG is broken into multiple stages, where each
stage includes a sequence of operators [23, 46] executed in
parallel. The data between any two consecutive stages needs
to be exchanged such that the output data of the upstream
stage is reorganized to fit the input requirement of the down-
stream stage (e.g., partitioned by a key). The data between
any two operators in a stage is pipelined since the output data
of the former operator fits the input requirement of the latter
operator (e.g., a scan operator followed by a filter).

We define a task as a unit of execution for processing a par-
tition of the input data within a stage. Thus, the execution of
a stage is parallelized bymultiple tasks. In addition, we define
a stream as the input/output data of a stage, with a substream
as the input/output data for an individual task within a stage.
Figure 1 shows an example of a stream query that counts

the number of appearances of each distinct word in a stream
of text sentences. Stage 1 of the stream query includes a map
operator (executed by two tasks) to tokenize each sentence
into words and send the words to Stage 2. Between the two
stages, the words are repartitioned such that identical words
will always be sent to the same task. For example, all the
“Hello”words fromTask 1a and Task 1bwill be sent to Task 2a.
Finally, Stage 2 uses the groupby and count operators to count
the number of appearances of each word within a window
(e.g., every 5 seconds). Here, the data sent from Stage 1 to
Stage 2 is a stream (i.e., “Stream X”) and the input data for
Task 2a (X, 2a) and for Task 2b (X, 2b) are input substreams.

2.2 Fault Tolerance for Stream Processing

Fault tolerance in stream processing requires the system to
deliver correct query results in spite of system failures and
delays. One important and widely adopted criterion for de-
livering correct results is maintaining exactly-once seman-
tics [4, 12, 26, 31, 40, 43]. That is, for each record fromthequery
input data streams, its processing result will be reflected ex-
actly once in the query output data streamevenunder failures.
This paper assumes a failure model with server failures [17],
network partitions, and delayed or reordered network pack-
ets, which present the following challenges for maintaining
exactly-once semantics.

• Recovering state. In case of a server failure, a stateful
operator will lose its in-memory state. The system needs to
reconstruct the state correctly and efficiently to maintain
exactly-once semantics.

• Tracking progress. To ensure each task recovers to a con-
sistent point after a server failure, the system needs to track
the progress of each task, such as the input data records it
has processed and the output data records it has generated. In
addition, tasks must use this progress information to identify
duplicate input data records and avoid generating duplicate
output data records.

• Neutralizing zombies.A stream processing system uses
a task manager to monitor the status of each task [5, 23].
Network failures or delays may cause the task manager to
erroneously identify a running task as failed. In this case,
the task manager will start a new task and kill the old task
if it exists. We call the old task a “zombie task”. The system
must prevent the zombie fromcreating duplicate outputwhile
detecting and killing it in a timely fashion (§3.4).
Impeller creates multiple streams to allow parallel pro-

cessing of inputs. Without multiple streams, computation be-
comes the bottleneck factor. When a computation has fanout,
outputs must be atomic with respect to failure, so if for exam-
ple one input record creates an output record on 4 different
streams (which is a property of the streaming query, not a
feature of Impeller), then any fault tolerant streaming sys-
tem needs some way to coordinate the output. Impeller uses
progress markers, Kafka streams uses a two-phase commit
protocol.

Existingsystemsmaintainexactly-oncesemanticsviacheck-
pointing or a combination of logging and checkpointing.
Checkpointing is easy to implement – it is a consistent snap-
shot of the computational state written to durable storage.
However, checkpoints canbe largeand therefore slow towrite.
For example, Flink startedwith checkpointing [5] and applied
many optimizations, but migrated to using checkpoints and
logging [37] due to unacceptable delays. Kafka Streams [43]
also adopts logging plus checkpointing, logging state changes
and stream processing progresses while performing full state
checkpointing asynchronously. The challenge is that the sys-
tem needs to atomically log state changes and stream pro-
cessing progress to get a consistent snapshot. Kafka Streams
models these operations as a transaction and uses a separate
transaction coordinator to atomically commit this transac-
tion, which introduces performance overheads as we show
in our evaluation.

2.3 Fault-tolerant, Distributed, Shared Logs

Fault-tolerant, distributed, shared logs [9] represent a system
design where flash drives are attached to multiple machines
to create a distributed storage service optimized for appends.
Initially, shared log systems were only optimized for write-
heavy workloads, but techniques for selective log reads have
significantly improved read-heavy workloads [22, 44].
Impeller relies on four key features provides by shared

log systems: scalable consensus via the shared log abstrac-
tion [8, 22], high-throughput appends with global total or-
der [16], selective reads that are not limited by physical log
placement, and set-of-strings tagmetadata for log entries [22]
(see §6 for details). Even though Impeller uses a log, the read
and write bandwidth of that are scalable.
The recent innovation of log tags [22] plays a key role in

Impeller’s design. Log tags are the mechanism for selective
reads: each log entry has a set of string tags as metadata, and
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Figure 2. Stream processing in Impeller. Stream processing
applications execute on different hosts and use Impeller to compose
processing logic and communicate via a shared log.

log reads can specify a specific log tag. Tag format is not de-
fined by the log, any number of any length string is acceptable
(though of course large string tags consume log storage). The
purpose of tags is to provide users with a flexible mechanism
to filter log entries on reads. Impeller uses log tags to logi-
cally partition adata stream into substreams, enablingparallel
processing using multiple tasks. More importantly, Impeller
employs sets of log tags to implement an efficient alternative
to Kafka Streams transactions. Impeller implements a multi-
stream atomic append using a single log entry with multiple
log tags, avoiding the use of a transaction coordinator and
the exchange of messages.
Log tags are supported directly by the log, so they are su-

perior to user-defined typed records (like those inDARQ[27]).
The log indexesentriesbasedontags, allowinghigh-bandwidth
reads of records with a specific tag even as the number of tags
increases. Impeller is the first stream processing system to
incorporate tagged logs into its design.

3 Impeller design

We now discuss the design of Impeller, a high-throughput
stream processing system that provides exactly-once seman-
tics [4, 12, 26, 31, 40, 43] based on modern shared logs [8–
10, 16, 44]. Conceptually, Impeller stores intermediate stream
data in shared logs and achieves high throughput by leverag-
ing the partitioning of shared logs; that is, a shared log can
be logically split and processed in parallel to enable efficient
execution. At the same time, Impeller maintains exactly-once
semantics by leveraging the flexible tag metadata supported
by some shared logs, which means that Impeller can atomi-
cally mark the progress of stream processing by appending
one log record (i.e., the progress marker) that is read by
multiple logically partitioned logs.
We present definitions and assumptions of shared logs in

§3.1 and discuss themodern features thatwill enable their use
in a stream processing system. Then, we discuss supporting
streamprocessing over shared logs (§3.2) and ourmethods for
maintaining exactly-once semantics under failures (§3.3-3.4)
in Impeller. Finally, we will discuss supporting checkpoint-
ing, supporting window semantics, and compare with Kafka
Streams (§3.5).

3.1 Definitions and Assumptions

We assume a distributed and globally ordered shared log,
where clients can concurrently append log records. Each log
record has metadata that can be provided during the append
operation, which includes a list of string tags. The log sup-
ports efficient selective reads of a sub-sequence of log records
in order based on their tag value [22]. For example, a tagmight
include a logical stream name and the name of a destination
task. We further assume that each stream query is backed
by a separate shared log instance, for simplicity (otherwise
the performance of different queries would interfere with
each other in possibly chaotic ways). The important terms in
Impeller are summarized in Table 1.

3.2 Stream Processing over Shared Logs

Figure 2 gives an overview of Impeller. External applications
like IoT devices or network monitors send data to Impeller
through the gateway’s network interface ( 1○). The gateway
forwards input records to the data ingress component, which
materializes each input record as a log entry in the shared
log ( 2○- 3○). Finally, a stream query pulls records tagged with
its input stream from the shared log, processes them, and
appends output records tagged with its output stream to the
shared log. ( 4○- 5○).
As mentioned in §2.1, a stream query is composed of mul-

tiple stages and each stage is executed by multiple tasks. In
Impeller, we use a task manager for scheduling tasks and
monitoring the status of each task (e.g., deciding if a task
has failed). The task manager assigns each task a unique id
(i.e., task id) and an instance number. After a task fails and is
restarted by the task manager, the restarted task has the same
id as the failed one but has an incremented instance number.
Each running task repeatedly i) reads a data record from its
input substreams, ii) processes the data record and modifies
its internal state if this task includes stateful operators (e.g.,
join or aggregate operators), iii) writes the output records to

Table 1. Impeller terminology.

Term Explanation
task Unit of execution. A task processes a partition

of data of an input stream for a stage, which
could include multiple operators.(§3.2)

stream Named sequence of data records.
substream Totally ordered sub-sequence of a stream. A

stream is partitioned into substreams to allow
parallel processing by concurrent tasks.

progress marker In-log marker for a computation’s progress
that supports exactly once semantics under
failures (§3.3)

task log Contains progress markers to optimize
recovery (§3.2).

change log Contains updates to stateful operators to
optimize recovery (§3.2).
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Stage 1

Task 1a: Map

Task 1b: Map

Stage 2
Task 2a: GroupBy+Count

Task 2b: GroupBy+Count

(X, 2b)8 “World”1a

LSN tag
producer 
task id application data

(X, 2a)7 “Hello”1a

(X, 2b)6 “UT”1b

(X, 2a)5 “Hello”1b

Log PayloadLog Metadata

Shared log

Log 
tail 

Log 
head 

Impeller Metadata

“Hello World”

“Hello UT”

(“Hello”, 2)

(“UT”, 1)
(“World”, 1)

Figure 3. Stream X is stored in the shared log and buffers data be-
tween stages. Each log record has a tag that identifies its substream.

all output substreams, whichwill be consumed by tasks of the
next stage, and iv) potentially writes additional log records
to the shared log for efficient recovery.
Impeller stores the input and output streams of all stages

and information for maintaining exactly-once semantics in
the shared log to enable the following benefits: 1) the shared
log provides high throughput for communicating data, and it
is scalable in these dimensions: read bandwidth, write band-
width, storage capacity, and ordering capacity (where order-
ing capacity is the maximum throughput for ordering log
appends, which is decoupled from persisting them [16]); 2)
the shared log is fault-tolerant, providing a reliable infras-
tructure; 3) the shared log is durable and supports high write
bandwidth, so there is no need for Impeller to handle stream
backpressure created by bursty data streams; 4) the shared log
enables exactly-once semantics with small overhead through
mechanisms discussed in the next subsection.
Representingstreamsinashared log. Dataflowsbetween
two consecutive stages via the shared log. Log records are
comprised of metadata and a payload. The metadata includes
a log sequence number (LSN ) assigned by the underlying
shared log system, and one or more tags assigned by Impeller.
As a matter of encoding, the log payload includes Impeller
metadata, like the task id for the task that produced the log
record, and application data (see Figure 3).

Figure 3 showsanexampleofword counting. Stage1 takes a
lineof text as input, breaks it into singlewords, andwriteseach
word alongwith the producer task id and tag to the shared log.
The tag determines the task that consumes the corresponding
log record and is represented as a pair of values (StreamName,
Input Substream Name). Tasks selectively read their input
substreambasedon the tag, for example, Task 2a reads records
with the tag (X, 2a) only. The tag is known to the fault-tolerant
distributed log,whichoptimizes the placement and transfer of
the data read by Task 2a. The tags for log records from Stage 1
guarantee that i) Stage 1’s output log records belong to the
logical stream called “X”, which will be consumed by Stage 2
only and ii) identical words will have the same substream
identifier, so they will be processed by the same task (e.g.,
all instances of the word, “Hello” have tag (X, 2a) and are
processed by Task 2a). In Stage 2, each task selectively reads

its input substream based on its tag and builds a hash table
to count the number of appearances for each distinct word.
Reading frommultiple inputs. Tasks in Impeller can have
more than one input substream, such as the join operator,
which requires two (or sometimes more) input substreams. A
stage implementing a join operator can have two upstream
stages (e.g., the data from stream Y and stream Z), where each
stage places log records with identical join keys in the same
substream. Each task for the join operator will read the log
recordswhose tags include thenamesof the two input streams
(e.g., streamsYandZ) and the same substreamname.Thisway,
the upstreamdata records that have the same join key are sent
to the same task and the join operation is performed locally.
Other operators, such as union, can be supported similarly.
Atomically appending tomultipleoutputsusing tags. If
Impeller appends a log record with the tags (X,2a) and (X,2b),
then that record will be read by both Task 2a and Task 2b.
The log record appears once in the log, but it appears in both
logical substreams when those substreams are read by a task.
This will be important in §3.3.1 when we discuss atomically
appending progress markers to multiple substreams.
Supporting fault tolerance. Impeller stores additional
record types in the shared log tomaintain exactly-once seman-
tics. It uses progress markers to atomically mark the progress
of stream processing. Progress markers are appended by
tasks into regular data streams. Progress markers are also
appended to two additional streams, the task log and the
change log, which are used for recovery. The task log stream
stores progress markers and the largest instance number of
each task for fast recovery. The task log stream is split into
substreams, one per task. Each substream is tagged with (T,
task id) (see § 3.3 and Figure 4 for more details). The change
log stream records changes to the state of each task that in-
cludes stateful operators (e.g., hash tables for join or aggregate
operators). The change log stream has a substream for each
task, tagged with (C, task id). Each task can recover the state
of its operators by reading the substream for its task id. We
next discuss how Impeller uses these two streams tomaintain
exactly-once semantics and achieve fast recovery.

3.3 Maintaining Exactly-Once Semantics

We begin with some definitions. Consider a stream operator
Opwith initial state 𝑆0.Op processes input record 𝑖𝑛 with state
𝑆𝑛 to produce anewstate𝑆𝑛+1 and zero ormore output records
[𝑜0𝑛,𝑜1𝑛,...]. Op processes a sequence of inputs inductively in
the obvious way, beginning with state 𝑆0 and processing each
record using the previous state.
An execution of Op with input sequence 𝐼 = [𝑖0,𝑖1,...] has

the: (1) exactly-once property ifOp processes exactly sequence
𝐼 ; (2) at-least once property ifOp processes a supersequence
of 𝐼 ; (3) at-most once property ifOp processes a subsequence
of 𝐼 . We say thatOp has a property if every execution ofOp
has the property. We now argue briefly that if each operator
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Stage 1

Task 1a: Map

Task 1b: Map

Input stream Output stream

first LSN:5last LSN:8 first LSN:12(X, 2a) last LSN:15

(X,2a), (X,2b), (T,1a)17 (5,8), (12,15), (11,14)1aProgress marker
tags producer

task id
LSN marked progress

Tag for task log

Task log

log 
head 

log 
tail 

log 
tail 

log 
head 

first LSN:11(X, 2b) last LSN:14

Figure 4.An example of a progress marker for a stateless stage

has the at-least once and at-most once properties, then every
stream query has the exactly-once property.
First, note that at-least once is a liveness property and

at-most once is a safety property, and together they imply
exactly-once. Then, note that operators can be composed by
merging their state and piping the output of one to the input
of the other, and furthermore that if both operators have the
exactly-once property, then so does their composition. Finally,
note that a stage can be modeled as a sequential composition
of operators, and a stream query is a DAG of stages, which
we can again inductively compose.
At-least once. This property is easier to satisfy. Impeller
uses a shared log for durability, so no input records can be lost.
The task manager ensures that a slow or dead operator will
eventually be restarted to recover and continue processing.
At-most once. This property is normally difficult to satisfy,
as it requires an operator to atomically record not only what
inputs it has processed, but also the resulting state changes
andoutputs. Kafka Streams’s transaction approach is outlined
in § 3.6, for reference. Impeller uses progress markers, which
are consistent cuts of operator input, state, and output. More
concretely, progress markers contain LSN ranges for (1) input
records that have been processed, (2) change log records for
operator state updates, and (3) output records generated by
processing. We call a record committed by a task if that task
writes a progress marker referencing the record’s LSN. Then
two simple invariants are enough to establish the at-most
once property: an operator may only process input records
committed by an upstream operator, and it may commit an
input record only once. The atomicity of a progress marker
append ensures that a downstream operator sees its input
as committed exactly when the current operator commits its
input as processed.

In the sections that follow,we elaborate onprogressmarker
construction and failure recovery. There are two cases: (1) a
stage that only includes stateless operators and (2) a stage
that includes at least one stateful operator.

3.3.1 Stateless stage: progressmarker Figure 4 depicts
a stage with a scan operator followed by other stateless oper-
ators, such as map or filter. Each task for this stage processes

an input substream and writes the data to one or more out-
put substreams—which, in turn, are input substreams of the
downstream stage. For now, we assume all input records are
committed, and will discuss uncommitted input records in
Section 3.3.3. Periodically, each task writes a progress marker
to the shared log. This progress marker stores metadata for
the input log records the task has processed, andmetadata for
the corresponding output log records it has generated since
the last progress marker. Specifically, the LSNs of the first and
last input log records the task has processed along with the
LSNs of the first and the last output log records are recorded in
the progress marker. Since a task will write output records to
multiple downstream substreams (e.g., for grouping data tu-
ples based on a key), one challenge is to ensure that a progress
marker is atomically appended to the shared log and can be
read by all the downstream substreams. To address this chal-
lenge, Impeller setsmultiple tags on the log record containing
the progressmarker–one tag for each downstream substream.
When a downstream task selectively reads its substream via
the tag, it will read all the progress markers of upstream tasks
(see the discussion in §3.2 on log records with multiple tags).
The progress marker is additionally appended to the task log
with the tag (T, task id) so a recovered task can quickly find the
last progress marker by reading the tail of the substream (T,
task id). Figure 4 shows an example of a progress marker for
a stateless stage. The input and output streams are physically
stored in the shared log. The progress marker is appended by
Task 1a. It marks progress by storing the information that the
output log records for substream (X, 2a) between LSNs 12 and
15andsubstream(X,2b)betweenLSNs11and14arecomputed
fromthe input log recordsbetweenLSNs5and8.Thisprogress
marker includes three tags.Twoof themcorrespond to the two
downstream tasks and the third one (i.e., (T,1a)) corresponds
to the task log substream. Note that since other tasks can
concurrently write log records to the shared log, a log record
whose LSN is within the recorded range may be the output
of a different task, for example Task 1b. These records will be
skipped by downstream tasks based on their tags and task id.

3.3.2 Stateless stage: handling failures If a task fails, it
might have written some output records, but not yet writ-
ten the progress marker for those records. Such records are
uncommitted. After Impeller restarts the task, the task finds
its most recent progress marker by reading its task log, gets
the LSN for the last input record in this progress marker, and
processes its substream starting from the next log record after
the last input LSN.

3.3.3 Stateful stage: progress marker Tasks in a stage
with at least one stateful operator, like groupby or aggregate,
must additionally store some representation of their state in
order to recover after failure. In Impeller, state is represented
as a sequence of change log records. These records are stored
in the shared log, and are tagged with (C, task id) as part of
the change log stream. We will now discuss how a stateful
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Figure 5.An example of a stateful task processing input records

task processes its input substreams, and then how it generates
progress markers. For simplicity, we will focus on a stateful
task that takes one substream as input.

A stateful task may read uncommitted log records (i.e., log
records not marked by progress markers) due to task failures
in its upstream stage. These uncommitted log records are
identified based on progressmarkers from the upstream stage
and should be discarded to maintain exactly-once semantics.
Conceptually, the stateful task buffers input log records until
it sees a progress marker. Then it uses the committed LSN
range in each upstream task’s progressmarker (e.g., the range
for recording the output log records) to decide whether a log
record is uncommitted.

We use the example in Figure 5 to explain the algorithm. In
this example, we assume the task has buffered records whose
LSNs are between 5 and 8 and is processing the progress
marker from Task 1a. Tasks maintain an in-memory queue
of buffered log records and a mapping from producer task
id to committed LSN ranges.When a task enqueues a progress
marker, itfirstupdates thismappingwith theprogressmarker’s
producer task id and output LSN range, and then begins pro-
cessing by repeatedly examining the log record at the head of
the queue. This record’s producer task id (which may be dif-
ferent from the progressmarker’s producer task id) ismapped
and compared to a set of committed LSN ranges; then this
record’s LSN falls into one of three cases.

• LSN is before the earliest committed range. This record
is uncommitted and can be dequeued and discarded. It is not
covered in the current committed range and cannot be cov-
ered by future committed ranges. In Figure 5, the committed
LSN range for Task 1a is [6,8], so log record 5will be discarded.
Its LSN is smaller than the first LSN of the current committed
range (i.e., 6), and future committed ranges will always be
larger than [6,8].

• LSN is within a committed range. This record is
committed and can be dequeued and processed by task opera-
tors. In Figure 5, log record 6will be processed by the groupby
and count operators.

• LSN is after the latest committed range. This record is
unknown, as a later progressmarkermay transition this record
to either committedoruncommitted; a record fromaproducer
that has not committed anything also falls in this case. The

Stage 2

Task 2a: GroupBy+Count

Task 2b: GroupBy+Count

Input stream Output stream

first LSN:5last LSN:8 first LSN:15last LSN:25

(Y,3a),(T,2a),(C,2a)27 (5,8), (15,25) (13,23)2aProgress marker
tags producer 

task id
LSN marked progress

state

Change log

first LSN: 13last LSN:23

state

Task log

log 
head 

log 
tail 

Tag for change log

Figure 6.An example of a progress marker for a stateful stage

task stops processing and returns to buffering until it sees a
new progress marker. In Figure 5, log record 7 is from Task 1b.
Its state is unknown because Task 1b has not yet generated
a progress marker that commits an LSN range.

As the stateful task processes the input substream, updates
the state, and writes data to the output stream, it needs to
periodically record its progress. Similar to a stateless task,
it needs to record the range of input/output log records the
task has read/written and write a progress marker commit-
ting these records with the proper tags such that downstream
substreams and the task log substreamwill read this progress
marker. It will additionally record the range of the log records
for the change log tag the recordwith (C, task id).Oneexample
is shown in Figure 6. We see that the progress marker needs
to record three pairs of LSNs, where the first two correspond
to input/output LSN ranges and the third corresponds to the
change log LSN range. The record contains multiple tags, in-
cluding the tags for downstream substreams (e.g., (Y,3a)), the
task log substream (i.e., (T,2a)), and the change log substream
(i.e., (C,2a)).

3.3.4 Stateful stage: handling failures A stateful task
must recover to a consistent state before it can process new
inputs. In Impeller, each progressmarker is a consistent cut of
state changesand inputs, soa taskcansimply replay its change
logup toand including the latestprogressmarker. If aprevious
progress marker has a checkpoint (§ 3.5), the task can replay
from after that progress marker instead of the beginning.
To replay the change log, the task reads and buffers log

records until it sees a progress marker. Then it takes this
progress marker’s change log LSN range (e.g., (13, 23) in Fig-
ure 6) and replays change log records in the range. It repeats
this procedure until it has processed the most recent progress
marker, after which its state is synchronized with all com-
mitted input records. At this point, it is safe to resume nor-
mal processing at the LSN immediately after the most recent
progress marker, just like a stateless task.

3.4 Zombies

Networkpartitions andpacket reordering create an important
corner case: duplicate task instances. Consider a task instance
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that temporarily loses its network connection to the taskman-
ager. The manager may assume it failed, and start another
instance to replace it. However, the original instance, which
we now call a zombie, may still be running and generating
duplicate outputs.
Impeller solves the zombie problem using two features of

the shared log: global metadata and conditional appends. As
part of its configuration state, the shared log itself has key-
value metadata. The task manager uses this metadata store
to associate each task id with an instance number, atomically
incrementing it every time a new task instance is started. Im-
peller invokes the shared log’s conditional append with the
instance number to exclude zombies: only records matching
the current instance number will be appended. It is sufficient
to protect only progress markers this way; even if zombies
successfully append output or state change records, these
records cannot be consumed without a progress marker to
commit them. Downstream consumers detect and discard
zombie inputs when they receive a progress marker for the
same task id but a higher instance number. The instance num-
ber is part of the individual log records. Because the instance
number is incremented atomically, it is impossible for two
progress markers to be committed for the same outputs.

3.5 Discussion

Shrinking progressmarkers. We have thus far depicted
progress markers with two LSN ranges for input and output
streams (e.g., Figure 4), and optionally a third range for the
change log stream (e.g., Figure 6).

We can reduce this overhead with two observations. First,
the start of the input range is not used in Impeller; only the end
of the input range is used in recovery. Because the progress
marker represents progress up to the end of the input range.
Second, Impeller can use the LSN of the progress marker it-
self as a conservative estimate for the end of the output and
change log ranges. The progress marker is the log record that
logically follows the last output log record and the last state
change log record, so its LSN is a validupper bound.Therefore,
one LSN in each range is unnecessary and can be omitted.
Accelerating state recovery. To reduce the time for restor-
ing the state of a stateful task, Impeller supports checkpoint-
ing the state of an operator up to a progress marker. Check-
pointing is performed asynchronously to avoid impacting
the performance of normal data processing. Impeller builds
a checkpoint by replaying the change log of a task up to and
including a progress marker, skipping uncommitted records.
All the log records before this progress marker can be deleted.
Each checkpoint is incrementally built on the previous one
by replaying new log records. The checkpoint is for local op-
erator state only, the input and output streams do not need
checkpointing because they are persistent. In Impeller, the
checkpoint is stored in an external database, such as Kvrocks.
Garbage collection (GC) Records marked by a task as con-
sumed can be garbage collected. Records from the beginning

of a substream to the most recently committed consumed
records by a task processing that substream can be collected.
Shared logs provide a trim API which trims a prefix of the
log, so Impeller provides support to determine the proper
trim command based on records consumed by tasks. For each
substream, there is a GC task that accepts the most recently
committed consumed record LSN from all tasks that consume
that substreamandcomputes theminimumof theLSNs.There
is a master GC task for each shared log that accepts LSN from
GC tasks of the substreams stored in that shared log, com-
putes the minimum, and issues the trim API using this global
minimum value.
Supportingwindowsemantics. Thedesignof Impellernat-
urally supports any window semantics, such as different win-
dow types (e.g., sliding windows vs. tumbling windows [3])
and different time domains a window is applied to (e.g., event
time vs. arrival time [3]). The metadata for maintaining these
semantics is stored in the payload of a log record, so it is
orthogonal to Impeller’s fault-tolerant design.
Log ordering. The input stream and output streams for each
stage are independent. They have no ordering constraints
and could be placed in different physical logs. The output and
changelog stream share a physical log. The advantage of a
totally ordered log is that it allows Impeller to use scalars to in-
dicate progress, and therefore recover from faults. (A scalar is
sufficient to indicate progress in a totally ordered log, while in
general a vector is needed formultiple logs). Impeller progress
records are compact, which makes themmore efficient than
current logging alternatives. Using a single physical log has
become more reasonable recently, as systems like Scalog [16]
have shown admirable scaling by decoupling ordering from
persistence. As a future optimization, it might be possible to
require less ordering from the log for some operators, but add
a barrier/flush operation before writing a progress marker.
Duplicate appends to a single substream. Aproducer to a
substreammight generate the same recordmultiple times due
to various failure scenarios such as time-outs due to network
jitter. Impeller must ensure that only one record is consumed
despite thatmultiple records could appear in the input stream.
Each record sent by the producer has a monotonically in-

creasing sequence number. The consumer uses this sequence
number with the producer’s task id to ignore the duplicate
entries appended by the producer. The duplicate entry can be
garbage collected in the background.

3.6 Comparing Impeller to Kafka Streams

Kafka Streams leverages Kafka, a partitioned log system, to
transfer data andmaintain exactly-once semantics [23]. Kafka
Streamsuses similar terminologyas Impeller, except forKafka
topics, partitions, and offsets, which correspond to Impeller
streams, substreams, and LSNs, respectively; this section will
use Impeller terms for consistency. Both systems need to
synchronize reading input records and writing state change
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and output records across multiple streams. The key differ-
ence is that Kafka does not support a single-operation atomic
appends to multiple streams, so Kafka Streams must imple-
ment its own complex transactional protocol on top of Kafka,
including a separate transaction coordinator with its own
transaction stream, and a per-task, per-stream LSN stream to
record the latest input record a task has processed.
Kafka Streams transaction. Consider a task that has pro-
cessed some input records and buffered the resulting state
change and output records in memory. The task must atom-
ically append its (1) latest processed input record to its LSN
stream, (2) buffered state change records to its change log
stream, and (3) buffered output records to its output streams.
In Kafka Streams, the task executes the following two-phase
transaction protocol. While Kafka Streams calls it a trans-
action protocol [43], it implements a multi-stream atomic
append, without isolation.

In the first phase, before a task can append to any stream, it
must register the stream name and substream identifier with
the coordinator, which appends these values to its transac-
tion stream. The task can then (non-atomically) append (1),
(2), and (3) above. Afterward, the task asks the coordinator
to commit the transaction, and the coordinator appends a
pre-commit record to its transaction stream. Upon receiving
the pre-commit response from the coordinator, the task can
resume processing input records, but needs to buffer state
changes and output records until the current transaction is
committed. If its buffer fills up, it must pause processing until
this transaction commits.

In thesecondphase, thecoordinatorappends commit records
to all relevant streams. If all appends succeed, the coordinator
appends a commit record to its transaction stream; at this
point the transaction is committed. Whenever the task tries
to start a new transaction (by registering the stream name
and substream identifier with the coordinator), it may need
to wait for an in-progress transaction to commit.

This protocol introduces several additional appends to im-
plement transactional semantics, whereas Impeller only re-
quires one append per progress marker. The first phase of
the protocol is synchronous, which could cause higher tail
latency compared to Impeller if the network connection to
the transaction coordinator is unreliable. While the second
phase is mostly asynchronous, its latency cannot always be
hidden by pipelining if buffers reach capacity or if the commit
interval is too short (see §5.3.2 for a performance evaluation).

4 Implementation

Impeller is implemented on top of Boki, a state-of-the-art
shared log [22] that aims to enable stream processing with
high performance and strong consistency. The codebase for
Impeller consists of 16,895 lines of Go (all of which is inde-
pendent from Boki). Impeller implements a set of stateless
stream operators: scan, stream/table filter, and map, and a set
of stateful stream operators: groupby, stream/table aggregate,

streamwindow aggregate, stream-stream inner join, stream-
table inner join, and table-table inner join. The operators are
implemented with algorithms from Kafka Streams [23].

Impeller stores state in memory for low access latency and
high bandwidth. Updates to the local state store are appended
toa change log streamfor fault tolerance [33, 43].Whencheck-
pointing is enabled, Impeller checkpoints the state store every
10 seconds as a progress marker is written. Auxiliary data in
the progressmarker indicates the presence of a checkpoint. In
recovery, Impeller will read the latest checkpoint (if it exists)
from the checkpoint store and replay the rest of the records
in the change log (§3.5).

5 Evaluation

We compare Impeller with Kafka Streams and two baselines
implemented in Impeller that maintain exactly-once seman-
tics. Our evaluation addresses the following questions:

1. Does using Boki in Impeller as a shared log provide an
inherent performance advantage over Kafka Streams? §5.2
shows that Kafka’s produce-to-consume latency is (in almost
every case) lower than Boki’s, indicating that Impeller’s end-to-
end performance advantages are not because it uses Boki as a
shared log.

2. How does Impeller perform relative to Kafka Streams?
§5.3.1 shows that Impeller has significantly lower p50 and p99
latencies thanKafkaStreamswhenprocessing the same through-
put of input events.

3. Howdoes Impeller’sprogressmarkingcompare toKafka
Streams’s transaction protocol?We implement Kafka Streams’
transaction protocol in Impeller. §5.3.2 shows that Impeller’s
progress marking protocol yields better performance than the
one from Kafka Streams.

4. Howdoes Impeller’sprogressmarkingcompare toFlink’s
checkpointing?We implement Flink’s checkpointing approach
[35] in Impeller. §5.3.3 shows that Impeller’s progress marking
protocol has much lower p50 and p99 latency.

5. How much performance does Impeller give up to ob-
tain exactly once semantics? §5.3.4 shows that Impeller’s p50
latency is 1.2×–2.0× compared to unsafe Impeller, which dis-
ables the progress marking protocol. Impeller’s p99 latency is
1.0×–1.8× unsafe Impeller’s p99 latency (Figure 9).

6. Is Impeller’s failure recovery efficient? §5.3.5 shows that
asynchronous checkpointing greatly reduces the recovery time
by limiting the size of the log that needs to be replayed.

5.1 Experiment Setup and Baselines

We conduct all our experiments on Amazon EC2 c5d.2xlarge
instances in the us-east-2 region. Each instance has 8 vCPUs,
16 GiB DRAM, 1x200GiB NVMe SSD, and runs Ubuntu 20.04
VMs with Linux 5.10.39 and hyper-threading enabled. Ev-
ery experiment uses 13 nodes total: 4 storage nodes, 4 input
generation nodes, 4 compute nodes, and 1 control plane node.
Impeller’s storage nodes run Boki stores for the shared

log and Kvrocks 2.7.0 for the checkpoint store. Boki also has
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sequencers, which are replicated on three storage nodes. The
compute nodes use the Impeller API. The control plane node
runs ZooKeeper (for Boki configuration) and a Boki gateway.
Kafka Streams’ storage nodes run Kafka (cp-kafka:7.1.0)

for the shared log. The compute nodes use the Kafka Streams
API (7.1.4-ccs streams and clients). The control plane node
runs ZooKeeper (cp-zookeeper:7.1.0).

Impeller uses an inmemory state store for its operator state,
so we also configure Kafka Streams to use its in memory state
store (instead of the default RocksDB). Impeller uses Kvrocks
as a checkpoint store, and we configure it to synchronously
flush appends to its write-ahead log to avoid losing state
checkpoints. Unless otherwise stated, experiments use the
following settings:

• Replication factor: 3. Topic replicas in Kafka, sequencer
and store replicas in Boki.

• Commit interval: 100ms. This is the interval between
progress checkpoints, transaction interval in Kafka Streams,
and progress marking interval in Impeller.

• Snapshot interval: 10s. Operator state checkpointing
interval in Impeller.

In addition to Kafka Streams, we implement two baselines
in Impeller that maintain exactly-once semantics. We imple-
ment the baselines in Impeller because we could not fully
explain the performance differences by simply comparing
end-to-end performance of the systems. There are thousands
of configuration settings for these systems.
Kafka Streams transaction. We implement Kafka Streams’
transaction protocol [43] in Impeller, which is described in
§ 3.6. For this protocol, we place one transaction coordinator
on each storage node and use gRPC to implement the transac-
tion API. Kafka topics and partitions are emulated by shared
log tags in Impeller.
Aligned checkpoint. We implement Flink’s aligned check-
point protocol [12] in Impeller. For this protocol, we store
checkpointmetadata, state checkpoints and substreamoffsets
in Kvrocks instances. Flink calls these checkpoints “aligned”
because they are created by having a checkpoint marker flow
through the data stream. This approach creates a logical snap-
shot, but can only be done as fast as data flows through the
system.We allow one in-progress checkpoint in the system.

5.2 Impeller’s log vs. Kafka Latency

Table 2 shows the latency between appending a 16 KiB log
entry and consuming it fromanother node at various through-
puts. Impeller appends to its shared log, while Kafka appends
to a topicwith a single partition. Both Impeller’s log andKafka
disable batching. Impeller’s log’s p50 latency is about 1ms
higher than Kafka’s at all input throughput levels, which is
a relative slowdown of 1.3×–1.8×. While Kafka’s p99 latency
at 10 log entries per second is higher than Impeller’s log, it is
lower for 50 and 100 log entries per second. We can conclude
that Impeller’s log does not have a latency advantage over

Table 2. p50 and p99 latencies to read an appended 16 KiB record
for Impeller’s log (Boki) and Kafka at different append rates. aps
is appends per second and the number in the parentheses is the
slowdown of Impeller’s log relative to Kafka.

Impeller’s log Kafka

p50 (𝜇s) p99 (𝜇s) p50 (𝜇s) p99 (𝜇s)

10 aps (1.30×) 2714 (0.83×) 3711 2074 4448
50 aps (1.63×) 2604 (1.10×) 3832 1596 3463
100 aps (1.76×) 2546 (1.22×) 3596 1449 2942

Table 3.NEXMark queries and their operators. For each query, we
include its semantics and the stateless and stateful operators they
include.

Stateless Operators Stateful Operators

Q1: Transforms bids from USD to Euro.

Streammap and filter

Q2: Filters bids by their auction identifiers.

Stream filter

Q3: Joins auctions and people to find the person selling in particular US states.

Branch, stream filter Table-table inner join, stream groupby

Q4: Selects the average of the wining bids for all auctions in each category.

Branch, table map values Stream-stream inner join, stream/table groupby
stream aggregate, table aggregate

Q5: Reports, every 2 seconds, the auctions with the
highest number of bids taken over the previous 10 seconds.

Stream filter Stream aggregate, stream groupby
stream-table inner join

Q6: Reports the average selling price per seller for their last 10 closed auctions.

Branch, table map values Stream-stream inner join, stream/table groupby
stream aggregate, table aggregate

Q7: Reports the highest bid each minute.

Groupby, stream filter Stream aggregate,
stream-stream inner join

Q8: Reports a 10 second windowed join between new people and new auction sellers.

Branch, stream filter Stream-stream inner join, stream groupby

Kafka, and therefore the performance difference between Im-
peller and Kafka Streams cannot be attributed to using the
Boki log instead of Kafka.

5.3 NEXMarkworkloads

We select the NEXMark benchmark suite [32, 34] to exper-
imentally compare Impeller with the three baselines. The
NEXMark suite simulates an auction site whose input is a
high-volume stream of new users, auctions, and bids. The
suite consists of eight queries that contain stateless (e.g., pro-
jection and filtering) and stateful (e.g., join) operators; these
queries are summarized in Table 3.

Weimplement the inputgenerator followingApacheFlink’s
NEXMark reference implementation [32]. The average size
for bid, auction and new user events are 100, 500 and 200
bytes respectively. The input stream contains 92% bids, 6%
auctions and 2% new user events. All experiments run four
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input generators, which provide sufficient throughput to satu-
rate all systems under test. All input generators output events
in batches, flushing every 10 ms for Q1-2 and every 100 ms
for Q3-8. Both Impeller and Kafka Streams has an in-memory
output buffer to batch log appends for greater efficiency. We
set the buffer size to 128 KiB based on a small sensitivity study
that shows making the buffer 64KiB or 256KiB reduces the
performance by less than 5% compared to using the size of
128 KiB. All experiments run each query for 3 minutes, which
is long enough to show stable performance.
We use the default configuration for Nexmark, which in-

cludes skewed key popularity. Impeller has somemechanisms
to tolerate skew, like supporting reconfiguration and it can
create more substreams to enable higher processing paral-
lelism.Bokihasa storagecacheon functionnodes that reduces
IO traffic. But a thorough treatment of data skew is beyond
the scope of this paper.
We report the end-to-end event-time latency for a given

throughput of input events. This latency is the interval be-
tween the record’s event-time, the time the event was gen-
erated, and its emission time from the output operator [25].
Since each query has different performance characteristics,
we start with different input throughputs for each query and
run them until their p99 event-time latency exceeds 60 ms for
Q1 and Q2 and one second for Q3-Q8.

5.3.1 Impeller vs. Kafka Streams Figure 7 shows the
event-time latency as a function of input throughput for the
NEXMark queries. Comparing Kafka Streams to Impeller
shows that Impeller is either very close in performance to
Kafka Streams, or clearly superior.
Q1 and Q2 are single-stage stateless queries representing

the simplest cases. Both systems have similar p50 latencies,
but the p99 latency of Q1 for Kafka Streams exceeds 100ms at
256,000 events/s while Impeller’s p99 latency remains stable
until 320,000 events/s. The event-time latency is calculated
before a record is pushed to the output stream. In most cases,
this latency includes the time the record stays in the input
generator’s batch buffer, the time to push to and read from
the input stream, and then a very small amount of processing
time for the stateless operator. The sum of these small laten-
cies roughly corresponds to the p50 latency. The overheads of
progress marking is reflected on the record after the progress
marking finishes, and therefore it shows up in the p99 latency,
where Impeller is superior to Kafka Streams at higher input
rates.
For all stateful queries (Q3-Q8, Figure 7(c) to 7(h)) Im-

peller hasmuch lowerp50 andp99 event-time latencies. Kafka
Streams’ p50 latency is 1.3× to 5.4× Impeller’s p50 latency and
its p99 latency is 1.2× to 5.7× Impeller’s p99 latency. When
we limit the p99 latency to 1 second, Impeller can handle 1.3×
to 5.0× higher input throughput than Kafka Streams.

5.3.2 Progressmarkingvs.KafkaStreamstransactions
in Impeller Figure 7 shows the performance of the Kafka

Streams transactionprotocol implemented in Impeller.We see
that progressmarking in Impeller has smaller p50 latencies for
Q1 and Q3 and smaller p99 latencies for Q1, Q2, Q3, Q5, and
Q7 compared to Kafka Streams transactions. The maximal
speedup of Impeller over Kafka Streams transaction for the
p50 latency is 3.0×.

We have also observed many cases where the performance
differencebetween the twoprotocols isnot evident.TheKafka
Streams transaction protocol has two phases, with the first
being synchronous and the second is asynchronous (§3.6).
When the commit interval is 100ms, the second phase often
overlaps with the normal stream processing work, which
hides the latency.

Therefore, we further evaluate the performance impact of
four different commit intervals: 100, 50, 25 and 10 ms. We ex-
amine commit intervals down to 10ms because the designers
of Kafka Streams also evaluate a 10ms commit interval [43].
For each query, we choose the largest input throughput that
meets two criteria: (1) it does not increase Impeller’s latency
formore than 10% compared to the smallest input throughput
and, (2) the latency difference between progress marking and
Kafka Streams transactions in Figure 7 is within 10%. The
intuition is that we want to choose an input throughput that
gives both protocols similar performance at the commit in-
terval of 100 ms, and is large enough to stress the system, but
is not too large to overwhelm the system.
Figure 8 shows that the progress marking protocol has a

larger performance benefit compared to Kafka Streams trans-
action for all queries when the commit interval decreases.
This is because when the commit interval decreases, Kafka
Streams transactions need to append more log entries com-
pared to Impeller’s progress marking protocol and its second
phase cannot fully overlap with normal stream processing,
increasing its latency. Looking at Q4 as an example, the p50 la-
tency of Kafka Streams transactions at 10ms is 1.4× Impeller’s
latency, and its p99 is 3.1× Impeller’s.

5.3.3 Impeller progress marking vs. aligned check-
point Aligned checkpoints are efficient when the amount of
state being checkpointed is small, so the p50 latency ofQ1 and
Q2 is about the same as Impeller shown in Figure 7. However,
as the input throughput grows, the need to persist the check-
point to storage can cause the system to bottleneck onwriting
checkpoints, which we start to see for the p99 of Q1 and Q2.
For the stateful queries (Q3-Q8), checkpointing shows its
weakness in inferior p50 and p99 latencies relative to Impeller
almost everywhere. There are a few regions, like low input
throughput forQ5andQ6,where checkpointing is themost ef-
ficient alternative because the checkpoint sizes are very small.
Aligned checkpoint achieves 1.9× lower p50 latency for Q5 at
96,000 events/s. But our results validate the widely perceived
weaknesses of checkpoints that they create performanceprob-
lems as soon as their size is non-trivial. Impeller progress
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Figure 7.NEXMark results. For a given input throughput, charts show the event-time latency, both median (p50) and tail (p99) for Impeller
and Kafka Streams.

marking achieves a maximum of 4.5× lower p50 latency and
5.8× lower p99 latency compared to aligned checkpoint.

5.3.4 Costofprogressmarking While Impeller’sprogress
marking protocol enables exactly-once semantics, it intro-
duces overhead to normal stream processing. In this exper-
iment, we want to understand the performance cost of main-
taining the strong semantics in Impeller. We implement a
variant, called unsafe, in Impeller, which disables the progress
marking protocol of Impeller, and compare its performance
with the other approaches using Q5. The variant is unsafe be-
cause without progress marking, it cannot guarantee exactly-
once processing if there are server failures. The results in
Figure 9 show that Impeller’s p50 latency is 1.2×–2.0× the
unsafe Impeller’s p50 latency. Impeller’s p99 latency is 1.0×–
1.8× unsafe Impeller’s p99 latency. The progress marking
protocol adds 15–96ms to the p50 event-time latency of un-
safe Impeller and 13–250ms to the p99 event-time latency.
Both Impeller and unsafe Impeller’s p50 and p99 event-time
latency exceed 1s at 256,000 events/s.

5.3.5 Failure recovery. Wenow evaluate the performance
of recovering from failures. We use Q8 for our failure recov-
ery experiment because it contains many stateful operators.
The experiment runs 4 tasks for each stage for 330 seconds
with input throughput 80,000, 96,000 and 112,000 events per
second. The query fails at 300s then recovers, andwemeasure

the recovery time. We include a baseline that does not do
checkpointing. Recall that for Impeller, we asynchronously
generate a checkpoint every 10 seconds. Table 4 shows that
with checkpointing, the recovery process is 14×–16× faster—
going from 3.8s–4.7s to below 300ms. The number of log
entries and changes needed to read and apply are reduced by
a factor of 27×–30×.
6 Related work

Exactly-onceprocessing. Many streamprocessing engines
strive to achieve a consistency guarantee of exactly-once pro-
cessing, meaning the system can recover to a consistent pro-
cessing state after server failures, as if stream records are
processed exactly once without failures [2, 5, 6, 23, 29, 30, 35].
Taking a consistent checkpoint across different components
within a distributed system is challenging. Some systems
adopt different checkpointing methods to achieve exactly-
once semantics, including lazy checkpointing [29, 30, 35, 36],

Table 4. Recovery performance with and without checkpointing.

Input throughput (events/s)
80,000 96,000 112,000

Recovery time (s) baseline 3.858 3.920 4.758
+checkpoint 0.273 0.270 0.297
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Figure 8. Event-time latencies for different commit intervals at a fixed input rate.

eager checkpointing [1, 2, 6], or ahybridapproach [18].Check-
pointing is known to be costly when the checkpointed state
is large, which is confirmed by our experiments using a rep-
resentative checkpointing method from Apache Flink [35].
Millwheel [2] achieves exactly-once semantics by material-
izing the IDs for each processed record. To ensure at-least
once semantics, Millwheel keeps sending a generated record
to its downstream operator until it gets ACKed. To ensure at-
most once semantics, each generated record is associated
with a unique ID and each operator materializes the IDs
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Figure 9.NEXMark Q5: For a given throughput show the median
(p50) and tail (p99) processing latency for Impeller and Kafka
Streams. This figure includes data for a configuration of Impeller
that is unsafe (but faster) because it does not write progressmarkers.

of the records received and processed in external storage
(e.g., BigTable) and checks the materialized IDs for dedupli-
cation [2]. This approach is fundamentally different from
Impeller, which does not materialize record IDs for each oper-
ator. Instead, it uses a progress marker to record the progress
and ensure exactly once semantics.
Structured Streaming [7] and Kafka Streams [31, 43] are

both streamprocessing systems designed for high throughput
with exactly-once semantics. Both systems use a combina-
tion of logging and asynchronous checkpointing to provide
exactly-once semantics. Structured Streaming requires out-
put sinks to support idempotent writes, which is not required
in Impeller. Kafka Streams involves a complex two-phase
transaction protocol as discussed in the previous section. Our
experiments (§5.3.1) show the high median and tail latencies
of the Kafka Streams’ transaction protocol.
DARQ [27], Ambrosia [19], Netherite [11] and Tempo-

ral [39] focus on providing a generic programmer framework
for exactly-once processing.While bothDARQ andAmbrosia
use log-structured storage to facilitate fault tolerance, their
designs do not explore improvements on log-structured pro-
tocols for scalable stream processing. Impeller introduces a
novel atomic append protocol across multiple partitioned
logs, which is largely orthogonal to DARQ’s innovations on
programming model. DARQ and Impeller rely on a single
physical log, but Impeller’s log is physically partitioned and
hence has scalable read and write bandwidth. Recovery in Im-
peller can be performed independently by workers, without
requiring a centrally coordinated Distributed Prefix Recovery
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algorithm [28].While wewould like to compare directly with
DARQ, its source code is not publicly available.
Portals [38] uses Flink’s aligned checkpoint protocol and

two-phase commit to provide exactly-once semantics. Ex-
oflow [50] provides exactly-once semantics for workflows
that are composed of different data processing systems. Im-
peller is an efficient stream processing system with fast re-
covery that can be composed by Exoflow.
Distributed, replicated, shared, fault-tolerant logs. Im-
peller’s storage layer relies on recent advances on distributed,
replicated, shared, fault-tolerant logs. Corfu [9] pioneered the
abstraction of a shared log, and Scalog [16] further improves
shard logs’ ordering protocol for scalable, high-throughput
log appends. A shared log that is scalable and fault-tolerant
enables Impeller to store data records of streams, task logs,
and change logs all in the same log. Other shared log works,
including Tango [10], vCorfu [44], Delos [8], and Boki [22],
improve the selective read functionality of shared logs. Im-
peller uses a fault-tolerant, distributed, scalable, shared log,
but Impeller’s contribution is in how it uses the performance
and tagging of the log to achieve efficient stream queries.

Boki’s main contribution is to introduce shared logs to the
serverless paradigm, with three use cases studied in the Boki
paper: workflows, a key-value store, and message queues.
Workflows and key-value stores use log tags for a consistency
protocol and transactions. The message queue only uses tags
for sharding, but not for a consistency protocol. In contrast,
Impeller is a system for stream processing, which represents
an application distinct from all of Boki’s use cases. Impeller
uses log tags for both data sharding and consistency protocols,
but in a way that is specialized for streaming (e.g., Section 3
shows how to provide exactly-once semantics for streaming
queries). None of these mechanisms are needed or presented
in Boki and Boki’s use cases.
Distributed streaming systems. Stream processing is an
important data-intensive workload that requires distributed
processing for high throughput. Early work [2, 3, 13, 29, 30,
33, 46] provides a flexible abstraction for stream computation
while achieving desired properties such as high throughput
and fault tolerance. More recent work [14, 20, 21, 24, 41, 42,
45, 47–49] focuses on designing new scaling and scheduling
algorithms for distributed streamprocessing systems to better
utilize resources, or develops new algorithms for optimizing
stream operators. In contrast, Impeller designs a new and
light-weight protocol for maintaining exactly-once seman-
tics to improve the performance of stream processing. While
Samza [33] and Facebook Stylus [15] use Kafka, a partitioned
log, to provide fault tolerance and communication, Impeller
uses the new features in distributed, replicated, shared, fault-
tolerant logs to provide exactly-once semantics using a novel,
high-performance progress marking protocol.

7 Conclusion

Impeller is the first streaming system that leverages a dis-
tributed shared log for communicating data and maintaining
exactly-once semantics efficiently at the same time.Througha
novel progress tracking protocol that uses log tags for atomic
multi-stream append, Impeller minimizes overhead and re-
duces latency compared to existing approaches.
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A Artifact Appendix

A.1 Abstract

The artifact includes source code of Impeller and scripts to
recreate the experiments.
A.2 Description &Requirements

A.2.1 How to access The public source code repository
is inhttps://github.com/ut-osa/impeller-artifactand it isarchived
in zenodo with DOI: 10.5281/zenodo.14877808.
A.2.2 Hardwaredependencies Ourevaluationworkloads
run on AWS EC2 instances in us-east-2 region.
A.2.3 Software dependencies EC2 VMs for running ex-
periments use a public AMI (ami-0c6de836734de3280) from
Boki, which is based on Ubuntu 20.04 with necessary depen-
dencies installed. Install instructions for software dependen-
cies to compile the artifact is documented in the Readme of
the artifact.
A.2.4 Benchmarks This artifact uses nexmark [34] stream
processing benchmark.
A.3 Set-up

Please follow the Readme of the repository to setup the con-
troller machine, EC2 security group and placement group,
and compile the source code.

A.4 Evaluation workflow

For artifact functional evaluation, run query 1 for 60 sec-
onds with 1 iterations. Run ./run_q1_quick.sh in impeller-
artifact/impeller-experiments/nexmark_impeller.
A.4.1 Major Claims

• (C1): Impeller’s progressmarking protocol yields better
performance than the one from Kafka Streams. This is
proven by the experiment (E1) described in §5.3.2.

• (C2): Impeller’s process marking protocol has much
lower p50 and p99 latency than Flink’s checkpointing
approach [35]. This is proven by the experiment (E2)
described in §5.3.3.

A.4.2 Experiments
• Experiment (E1): [6300 mins compute]: Run run_q<1-
9>_commit_interval.sh script in impeller-artifact/
impeller-experiments/nexmark_impeller.

• Experiment (E2): [1600 mins compute]:
– Run run_q<1-9>.sh script in impeller-artifact/
impeller-experiments/nexmark_impeller.

– Thenrun run_q<1-9>.sh script inimpeller-artifact/
impeller-experiments/nexmark_kafka-streams
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