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ABSTRACT
A matrix giving the traffic volumesbetweenorigin anddestination
in a network hastremendouslypotentialutility for network capacity
planningandmanagement.Unfortunately, traffic matricesaregener-
ally unavailablein largeoperationalIP networks. On theotherhand,
link loadmeasurementsarereadilyavailablein IP networks. In this
paper, we proposea new methodfor practicaland rapid inference
of traffic matricesin IP networksfrom link loadmeasurements,aug-
mentedby readilyavailablenetwork androutingconfigurationinfor-
mation. We applyandvalidatethemethodby computingbackbone-
routerto backbone-routertraffic matricesonalargeoperationaltier-1
IP network – a problemanorderof magnitudelarger thanany other
comparablemethodhastackled. The resultsshow that the method
is remarkablyfastandaccurate,deliveringthetraffic matrix in under
fiveseconds.

Categoriesand SubjectDescriptors
C.2.3[Computer-CommunicationsNetworks]: NetworkOperations—
networkmonitoring

GeneralTerms
measurement,performance

Keywords
Traffic Matrix Estimation,Traffic Engineering,SNMP

1. INTRODUCTION
A fundamentalobstacleto developingsoundmethodsfor network

andtraffic engineeringin operationalIP networkstodayis theinabil-
ity of network operatorsto measurethetraffic matrix. A traffic matrix
provides,for every ingresspoint � into thenetwork andegresspoint�

out of the network, the volume of traffic ����� 	 from � to
�

over a
given time interval. Taken togetherwith network topology, routing
andfault data,the traffic matrix canprovide a greatdealof help in
thediagnosisandmanagementof network congestion[1]. On longer
time scales,traffic matricesarecritical inputsto network design,ca-
pacityplanningandbusinessplanning.

Unfortunately, today’sproductionsystemsfor IPnetworkmeasure-
mentdo not provide the inputsneededfor direct computationof IP
traffic matrices.Instead,thesesystemsgatherdataon:
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 resourceutilizationatnetwork nodesandlinks, (e.g.link loads);
 end-to-endperformancemetricsfor specifictransactions,suchas
oneway delaystatisticsfor packetsexchangedbetweenmeasure-
mentserversat thenetwork edge;
 statusandconfigurationof network topologyandrouting.

Thoughthesemeasurementsmayreveal traffic anomaliesor conges-
tion problems,they do not in generalrevealpotentialsolutions.For
instance,link loadmeasurementsmayrevealcongestiononalink, but
shedlittle light on its cause,which in generalrequiresunderstanding
thetraffic matrix.

Theprincipal contribution of this paperis a simple,efficient, and
accuratemethodfor computingtraffic matrix estimatesfor IP net-
works,from widely availabledata:link loadandnetwork routingand
configurationdata.Themethoddrawson ideasfrom “gravity model-
ing” [2, 3, 4, 5, 6, 7] and“tomographicmethods”[8, 9, 10,11,12]. It
alsomakesuseof network configurationdatato dramaticallyreduce
computationalcomplexity.

We have validatedthe methodagainst direct traffic matrix mea-
surementsfrom detailedflow level dataon an operationaltier-1 IP
network, andtheresultsshow very goodaccuracy. It alsohastheap-
pealingcharacteristicthatadditionalinformation,sayfrom flow level
traces,may be includedin a straightforward manner. The method
is very fast, taking lessthan 5 secondson a 336 MHz Ultrasparc-
II processorto computea backbone-routerto backbone-routertraffic
matrix on the tier-1 IP network. The method,andits gravity model
prior havebeenusedin thatnetwork since2001for avarietyof tasks
rangingfrom traffic engineeringto router/link failureanalysisto ca-
pacityplanning,with considerablesuccess.

At their simplest,gravity modelsarebasedon theassumptionof a
simpleproportionalityrelationship[2, 4]:

����� 	
������� ��������� 	 (1)

where����� � and ����� 	 denotethetotal traffic enteringthenetwork at �
andexiting at

�
, quantitiesthatcanbeobtainedby summinglink load

dataat the network edge. (SeeSection3.1.) The gravity modelas-
sumesthatthetraffic componentfrom or to agivensitedependsonly
the total traffic enteringor leaving thatsite. By appropriatenormal-
ization,thegravity modelsolutionis guaranteedto beconsistentwith
measuredlink loadsat thenetwork edge,but notnecessarilysoin the
interior links. Alternatively, tomographicmethodsarebasedon the
systemof linearequations:

������� (2)

where � is the traffic matrix (written asa columnvector), � repre-
sentslink loads,and � thenetwork routingmatrix – seeSection3.2
for details.In essence,equation(2) statesthatthetraffic matrix must
beconsistentwith network routingandmeasuredlink loadsthrough-
out the network, not just at the edge.However, this matrix equality
is highly under-constrained,andso allows many solutions. Tomo-
graphicmethodsdiffer in how a single “best” solution is identified



from the possibilities. The majority of existing statisticaltomog-
raphy� approaches(commonlyreferredto as“network tomography”
methods)usemodelsof the higher order statisticsof the link load
datato createadditionalconstraints.In contrast,optimization-based
tomography approaches(e.g.,linearor quadraticprogramming)often
attemptto find asolutionthatoptimizesanobjective function.

The methodintroducedin this paperrefinesand combinesboth
gravity andtomographicmethods:

1. We solve the gravity model using edgelink load data. Ad-
ditional informationon routing betweenpointsof ingressand
egressfor traffic flowscanbeincorporatedto obtainsignificant
improvements.In thenumericalresultspresentedhere,we in-
corporateinformationto modeltraffic exchangedwith peernet-
works(Section3.1.2).

2. As the final estimateof the traffic matrix, we apply quadratic
programmingto determinethe solution in the spaceof those
admittedby the tomography modelclosestto thesolutionob-
tainedby thegravity model.Thissteputilizesall availablelink
load data,anddoesnot require(higher-order)statisticsor ad-
ditional traffic modelingassumptions.Thekey computational
challengeis to computethepseudo-inverseof theroutingma-
trix  , which hashigh dimensionality. To overcomethis chal-
lenge,weapplynetwork configurationandroutingdatato dra-
matically decreasethe problemdimension. Iterative propor-
tional fitting is usedto ensurethenon-negativity of theresults.

We termthismethodfor computingIP traffic matricesthetomograv-
ity method,for wantof abettername.

The validation of the tomogravity methodis basedon a set of
hourly traffic matricesderived from direct flow level measurements
usingthemethodologydescribedin [13]. Thesetraffic matricescover
over 2/3 of a tier-1 IP backbonenetwork (including all the peering
traffic) over June2002. Obtainingdirect flow level measurement
acrosslargeIP networkstodayis a far moretaxingandcomplex task
thanlink androuterconfigurationmeasurement,dueto limited and
inconsistentroutersupportfor flow level measurementcapabilities.

Figure1 providesanindicationof theaccuracy of themethod.The
methodis remarkablyaccuratefor the all but the smallestentriesin
thetraffic matrix. We notethat the largervaluesin thetraffic matrix
dominatenetwork andtraffic engineeringapplications[14, 15, 13].
Themajorityof thetraffic lieswithin ! 23%relativeerror, andamore
than30%of thematrixelementshavenegligible error.

A moredetailedexaminationof thedatawill show thattherelative
errorsarelargestfor thesmallestmatrix elements,which fortunately
do not have largeabsoluteerrorsin generalandarethusunlikely to
matterin applications. The matrix elementsof most importance–
the largestvalues– arethe mostaccurate.Further, all of the errors
werefound to bewell-behaved, that is nonehave overly largeabso-
lute errors,andthey vary smoothlyover time, meaningtheir impact
on operationaltaskswill not be dramatic,even wherethe errorsare
largest.

Evenmoreimportantlyfrom anoperationsperspective,predictions
basedontheestimatedtraffic matrixareremarkablyaccurate.For in-
stance,therelative accuracy of computedlink loadsbasedon thees-
timatedtraffic matrix arewithin a few percentof thereal link loads.
Themethodinsuresthis will be thecase,but interestingly, otherre-
sultssuchasthedistribution functionsfor thesizesof traffic matrix
elementsbasedon real andestimateddataarealmostindistinguish-
ableaswell.

Thepaperis organizedasfollows: we startin Section2 with basic
network conceptsand terminology, and the featuresof the datawe
have available. This is followed by a detaileddescriptionof the to-
mogravity methodin Section3. Thenext section(Section4) presents
our validation resultsof the method,basedon real network traffic
matrices.Finally weconcludethepaperin Section5.
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Figure 1: Relative errors of traffic matrix estimatescompared to
dir ectestimatesof the traffic matrix (fr om flow level data) for the
largestcomponentsof the traffic matrix (representingover 75%
of the network traffic). Note that a significant proportion of the
flows (more than 30%) have a negligible error. The two vertical
dashedlinesshow the 5th and 95th percentilesof the distrib ution,
showing that theselie within !�"�# %.

1.1 RelatedWork
Tomographicmethodshave beenwidely andsuccessfullyapplied,

for example,in ComputerAided Tomography (CAT) scans,usedin
medical imaging. Thesemethodsdiffer in how they deal with the
under-determinationof the systemof tomographicconstraintequa-
tions. Optimization-basedtomography approachestypically find a
solution that optimizesan objective function, whereasnetwork to-
mography approachesoftenusethehigherorderstatisticsof thelink
loaddatato createadditionalconstraints.

Vardi[8] first puttheideasof network tomography into practicefor
computingtraffic matricesin communicationsnetworks,with subse-
quentcontributionsby TebaldiandWest[9], andby Caoet al. [10].
Thereis a dual of this problemalso referredto asnetwork tomog-
raphy in which link performancemetricsaredeterminedfrom path
measurements[11, 12], but this doesnotdirectly concernushere.

Network tomography, in somesense,comprisesdeterminingthe
solution � to equation(2), or at leastthe parametersof somemodel
of � , from measurementsof � . As notedabove, this systemis highly
under-constrained,andsothechallengeis to choosethe“best” solu-
tion from the spaceof possibilities. The typical approachhasbeen
to useadditionalmodelingassumptionto derive constraintsfrom the
higherorderstatisticsof the traffic. For instance,Vardi [8], adopted
a Poissonianmodelin which the $%� areindependentPoissonianran-
domvariablesof mean&'� . He observed that thenthe &'� arePoisso-
nian randomvariableswith covarianceCov ()&'�+*,&�	.- � /10 �2	3� /�45/
where 0 �2	3� / �  � /  / 	 . Thus, the equations�6�  4 aresupple-
mentedwith theequations7 �80 4 where9:�2	 denotesthemeasured
covarianceof thetraffic rateacrosslinks � and

�
. We canwrite these

compactlyas

�
7 � � ; �=< (3)

Vardi establishedthat underrealisticconditionson the matrix

;
,

thePoissonrates� areidentifiable,in thesensethattwo differentsets
of rates� cannotgive rise to thesameasymptoticdistributionsof �
and 7 for large numbersof probes. Caoet al. adopteda Gaussian
modelin which thevarianceof the

4 � hasa specifiedpower-law de-
pendenceon themean.Themeanratesof this modelareidentifiable
underthesameconditionson

;
.



Directly solving (3) for finitely many measurementsis problem-
atic. Due to statisticalvariability of the � and 7 , the equationsare
generallyinconsistent,while someof the 9:� maybenegative. To cir-
cumvent theseproblems,Vardi employed an iterative approachthat
usestheEM algorithm[16] to find approximatesolutions.In theap-
proachof Caoetal., amodifiedEM algorithmis useddirectly to find
maximallikelihoodparametersin theGaussianmodel.Convergence
is hastenedby usingsecond-ordermethods.Even with suchmeth-
ods, the complexity of the network tomography approachesgrows
as >?()@BA.- , where @ is the numberof regions,althougha reduction
to >C()@CDE- is claimedfor topologiesin which theingress-egresspairs
canbepartitionedovermostlydisjoint regions[17].

Furthermore,Medinaet al. [7] shows that the basicassumptions
underlyingthestatisticalmodels(Poissonor Gaussian)arenot justi-
fied, andthat themethodsabove mayperformbadlywhentheir un-
derlyingassumptionsareviolated.Thepaperconcluded[7] thatnone
of the prior methodsfor computingtraffic matriceswassatisfactory
for even a PoPto PoPtraffic matrix on a large network, let alonea
BR to BR matrix.

An alternative that is well known in socialsciencesfor modeling
commodityexchangesis thegravity model(See,for example[5, 6]).
In network applications,gravity modelshavebeenusedto modelmo-
bility in wirelessnetworks[3], andthevolumeof telephonecallsin a
network [4]. Recently, variantsof gravity modelshavebeenproposed
for computingIP network traffic matrices[18, 7, 2]. For instance,[7]
proposesan approachbasedon using the choice modelsto model
PoPfanouts, which canbeviewedasa variantof thegravity model
approach.Thepaperalsosuggestsusingtheirmethodto generatepri-
ors to serve asinputsto statisticaltomography techniques,but does
not testthis idea. An alternative generalizationof thegravity model
(detailedbelow) that explicitly modelsinter-peerrouting was used
by theauthorsof this currentpaperin capacityplanningexercisesin
2001for anoperationalIP network.

As notedabove, gravity modelsaretypically basedon edgedata,
andassuchdonotguaranteeconsistency with theobservedlink loads
ontheinteriorof thenetwork. Of course,in their full generality, grav-
ity modelscanindeedincludesuchinformationthroughtheuseof the@6F
@ friction matrix for @ ingress/egresspoints(seeSection3.1for
details).But the inferenceof thecompletefriction matrix is a prob-
lem of the samecomplexity asinferenceof the traffic matrix itself.
Wepreferto solve thelatterproblemdirectly.

Gravity models(basedon edgedata)are>?(G@CDE- complexity in the
worst case,for @ ingress/egresspoints(aswe needto compute@�D
elementsin thetraffic matrix),but thenumberof computationsis ac-
tually rathersmallperterm,andsothesemethodsarefastoneventhe
largestnetwork sizes.Hencegravity modelsarequiteappealing,but
we shalldemonstratethemodelof [2] canbesignificantlyimproved
by incorporatinginformationfrom theinternallink measurements.

2. BACKGROUND

2.1 Network
An IP network is madeupof IP routersandIP adjacenciesbetween

thoserouters,within a singleautonomoussystemor administrative
domain. It is naturalto think of the network asa setof nodesand
links, associatedwith the routersand adjacencies,as illustratedin
Figure2. We refer to nodesandlinks thatarewholly internalto the
network asbackbonenodesandlinks, andreferto theothersasedge
nodesandlinks.

In addition,it is helpful for IP networksmanagedby InternetSer-
vice Providers(ISPs)to further classify the edge. As shown in the
figure,in generalthenetwork will connectto otherautonomoussys-
temsandcustomersvia edgelinks. We categorizetheedgelinks into
accesslinks, connectingcustomers,andpeeringlinks, whichconnect
other(non-customer)autonomoussystems.A significantfractionof
the traffic in an ISP is inter-domainandis exchangedbetweencus-

Peer A

Peer B

Peering Links

Access Links

Peers

Customers

IP Network Backbone

Figure2: IP network componentsand terminology

tomersandpeernetworks. Traffic to peernetworks is todaylargely
focusedon dedicatedpeeringlinks, as illustratedin Figure2. Un-
derthetypical routingpoliciesimplementedby largeISPs,very little
traffic will transit the backbonefrom one peernetwork to another.
Transittraffic betweenpeersmayreflecta temporarystepin network
consolidationfollowing anISPmergeror acquisition,but shouldnot
occurundernormaloperatingcircumstances.

In largeIP networks,distributedroutingprotocolsareusedto build
theforwardingtableswithin eachrouter. It is possibleto predictthe
resultsof thesedistributed computations,from datagatheredfrom
router configurationfiles. (The resultsprovided hereare basedon
routerconfigurationfiles downloadedoncedaily). In our investiga-
tion, we employ a routing simulatorsuchasin [19] that makesuse
of staticallyconfiguredBorderGateway Protocol(BGP)andInterior
Gateway Protocol(IGP) topologyinformationgleanedfrom thecon-
figurationfiles. In operationalIP networks, this informationis quite
stableon thetime scalesof interest.

2.2 Traffic Data
In IP networks today, link load measurementsare readily avail-

ablevia theSimpleNetwork ManagementProtocol(SNMP).SNMP
is uniquein that it is supportedby essentiallyevery device in an IP
network. The SNMP datathat is availableon a device is definedin
a abstractdatastructureknown asa ManagementInformationBase
(MIB). An SNMPpoller periodicallyrequeststheappropriateSNMP
MIB datafrom a router(or otherdevice). Sinceevery routermain-
tainsacyclic counterof thenumberof bytestransmittedandreceived
on eachof its interfaces,we canobtainbasictraffic statisticsfor the
entire network with little additionalinfrastructuresupport– all we
needis anSNMPpoller thatperiodicallyrecordsthesecounters.

Thepropertiesof datagatheredvia SNMPareimportantfor imple-
mentationof a usefulalgorithm– SNMPdatahasmany limitations.
Data may be lost in transit (SNMP usesunreliableUDP transport;
copying to our researcharchive may introduceloss). Datamay be
incorrect(throughpoor router vendorimplementations).The sam-
pling interval is coarse(in our case5 minutes).Many of the typical
problemsin SNMPdatamayberemovedwith minimal artifactsus-
ing simple techniques. For instance,using hourly traffic averages
(with fiveminutedatapolls) mitigatestheeffectof missingdatasub-
stantially. Slightly moresophisticatedmethodsof anomalydetection
andinterpolationproduceevenbetterresults,but weshallusesimple
hourly datafor thepurposesof this study, ashourly (or longer)data
arecommonlydealtwith by many ISPs(with fiveminuteor finerdata
keptfor brief periodsfor trouble-shootingandalarming).

We useflow level datain this paperfor validationpurposes.This
datais collectedat the routerwhich aggregatestraffic by IP source
anddestinationaddress,andTCPport numbers.This level of granu-
larity is sufficient to obtaina realtraffic matrix [13], andin thefuture
suchmeasurementmay provide direct traffic matrix measurements,
but at presentlimitations in vendorimplementationsprevent collec-
tion of this datafrom theentirenetwork.



2.3 Terminology
For thepurposeof computingtraffic matrices,without lossof gen-

erality, weassumethatall accessandpeeringlinks terminateatEdge
Routers (ERs),andthat all remainingroutersareBackboneRouters
(BRs) that only terminatebackbonelinks. (We can always insert
dummyERsto force the assumptionto be true.) Figure3 provides
a simplifiednetwork topologyto illustratetheterminologyWe make
a furtherdistinctionthat links betweenBRsarecore links, andlinks
betweenERandBR arenon-corelinks.

BRBR

ER ER

PoP A

PoP B PoP C

core backbone link

non−core backbone link

edge link

2 3

41

Figure 3: A simplified network topology to illustrate the termi-
nology usedhere. Edge Routers (ERs) are shown shaded,while
BackboneRouters (BRs) areunshaded.

Given two ERs HI� and HJ	 , the traffic betweentheseedgerouters�LK�2	 is definedasthetotal amountof traffic that is entersthenetwork
at HI� andexits at HJ	 , with MNK � � �LK�2	 � theassociatedmatrix. We
mayalsodefinetraffic matricesbetweenBRs MNO in asimilarmanner,
wheretheelementsrefer to traffic enteringandleaving thecore.We
will often refer to a vectorform of the traffic matrix � in which the
indicesof thevectorreferto source/destinationpairs.

Theremaybemorethanoneroutebetweentwo routersevenusing
only shortestpaths.We assumethattraffic will beevenly distributed
acrossall suchroutes(thoughour methodcanbe easilyadaptedto
handleunevendistributions).

Onecouldcomputetraffic matriceswith differentlevelsof aggre-
gation at the sourceand destinationendpoints,for instance,at the
level of PoPto PoP, or routerto router, or link to link [20]. In thispa-
per, we areprimarily interestedin computingrouterto routertraffic
matrices,which areappropriatefor a numberof network andtraffic
engineeringapplications,andcanbe usedto constructmorehighly
aggregatedtraffic matrices(e.g. PoPto PoP)usingrouting informa-
tion [20].

3. SOLUTION
In this sectionwe provide our method,termedtomogravity, for

computingthe traffic matrix from link data. As its nameindicates,
themethodconsistsof two basicsteps– agravitymodelingstep,and
a tomographicestimationstep:

1. In thegravity modelingstep,an initial solutionis obtainedby
solving a gravity model using edgelink load data. We also
incorporatestaticISProutingpolicy informationandexplicitly
modelthetraffic exchangedwith peernetworks.

2. In the tomographicestimationstep,the initial solution is re-
finedby applyingquadraticprogrammingto find asolutionthat
minimizesthedistanceto theinitial solution(in weightedleast-
squaresense)subjectto the tomographicconstraints.We also
applyknowledgeof thenetwork routingandtopologyconfig-
urationto significantlyreducetheproblemsize. Iterative Pro-

portionalFitting (IPF) is usedto ensurenon-negativity of the
results.

Below we discusseachstepin a separatesubsection,followed by a
brief summaryof thecompletealgorithm.

3.1 Gravity Modeling
Oneof thesimplestapproachesto computinga traffic matrix is the

gravity model[2, 3, 4, 5, 6]. Gravity models,takingtheir namefrom
Newton’s law of gravitation, arecommonlyusedby socialscientists
to modelthemovementof people,goodsor informationbetweenge-
ographicareas[5, 6]. In Newton’s law of gravitation theforceis pro-
portionalto theproductof themassesof the two objectsdividedby
thedistancesquared.Similarly, in gravity modelsfor cities,therela-
tive strengthof the interactionbetweentwo citiesmight bemodeled
asproportionalto theproductof thepopulations.A generalformula-
tion of agravity modelis givenby thefollowing equation:

$%�2	 � @N�P�� Q	R �S	 (4)

where$%�S	 is the matrix elementrepresentingthe force from � to
�
;@N� representstherepulsivefactorsthatareassociatedwith “leaving”

from � ;  I	 representsthe attractive factorsthat areassociatedwith
“going” to

�
; and

R �S	 is a friction factorfrom � to
�
.

In ourcontext, wecannaturallyinterpret$%�S	 asthetraffic volume
thatentersthenetwork at location� andexits at location

�
, therepul-

sionfactor@N� asthetraffic volumeenteringthenetwork at location� ,
andtheattractivity factor  Q	 asthetraffic volumeexiting at location�
. Thefriction matrix ( R �2	.- encodesthelocality informationspecific

to differentsource-destinationpairs.Theinferenceof all @TFQ@ fric-
tion factorsis anequivalentproblemof thesamesizeastheinference
of the traffic matrix itself. Accordingly, it is necessaryto approxi-
matetheactualfriction matrix usingmodelswith fewer parameters.
In thispaper, weshallassumeacommonconstantfor thefriction fac-
tors,whichis arguablythesimplestamongall possibleapproximation
schemes.The resultinggravity modelsimply statesthat the traffic
exchangedbetweenlocationsis proportionalto thevolumesentering
andexiting at thoselocations.Our resultsshow that,remarkably, this
gravity modelwhencombinedwith detailedknowledgeof ISProut-
ing policies,is ableto matchtheactualInternetdatavery well. One
possibleexplanationfor this is thatgeographiclocality is notamajor
factor in today’s Internet,ascomparedto ISP routing policies. As
longasthegravity modelcapturestheessenceof theroutingpolicies,
it becomesvery accurateandthechoiceof thefriction factorsis less
critical.

Notethatwe do not expectour gravity modelto accuratelymodel
the traffic betweenall source-destinationpairs. In fact, onewould
naturallyexpectcertainpairsof locationsto standout from theover-
all distribution,simplydueto theirspecificcharacteristics(e.g.going
throughtransoceaniclinks). A key insightof thetomogravity method
is thatweonly needthegravity modelto capturetheoverall distribu-
tion; weexpectthetomographicestimationstepto correctmostof the
violationsin theassumptionsunderlyingthegravity modelandthus
significantlyimproving the overall accuracy. It is certainlypossible
to furtherimprovethemethodby usingmoreaccurategravity models
with additionalparameters.However, asweshow laterin Section4.3,
thetomogravity methodin its currentsimpleform is alreadyremark-
ablyaccurate.Themargin for improvementmaybelimited.

Anotherimportantissueconcerningthegravity modelis the level
of aggregation. Intuitively, we needtheaggregationlevel to besuffi-
ciently high sothat thetraffic exchangedbetweendifferentlocations
is notsensitive to thedetailedcompositionof thetraffic. Ontheother
hand,whentheaggregation level is too high (e.g. PoPto PoP),ISP
routing policiesoperatingat a moregranularlevel may have a pro-
found impactandcanintroduceserioussystematicdistortionto the
overall traffic pattern. In our tomogravity method,we applygravity
modelsat thelink to link level, which is thefinestlevel of resolution



obtainablewith SNMP data. We caneasilyuserouting information
to obtainmorehighly aggregatedtraffic matrices[20].

We formally presenttwo (link to link) gravity modelsbelow. The
first oneis quitesimpleandis primarily usedto provide insight into
theapproach.Thesecondapproachincorporatesmorerealisticrout-
ing assumptions,andits performanceis therebymuchimprovedover
thesimplemodel.

3.1.1 A SimpleGravityModel

In this very simplegravity model,we aim to estimatetheamount
of traffic betweenedgelinks. Denotethe edgelinks by U3V , U D , ....
We estimatethe volume of traffic �I(GU+�+*WUW	.- that entersthe network
at edgelink U,� and exits at edgelink UW	 . Let �IX YZ X YE[ ()U,�,- denotethe
total traffic thatentersthenetwork via edgelink U+� , and �Q\3]_^Z X YE[ ()U,�,- the
correspondingquantityfor traffic thatexits thenetwork via edgelinkU+� . Thegravity modelcanthenbecomputedby eitherof

�I(GU+�,*,UW	.- � � X YZ X Y_[ ()U+�W- �J\�]�^Z X Y_[ ()UW	.-/ � \�]�^Z X YE[ ()U
/ - *

�I(GU+�,*,UW	.- � �IX YZ X Y_[ (GU+�,-/ � X YZ X Y_[ ()U
/ - � \�]�^Z X YE[ ()UW	.- <

Thefirst equationstatesthat the traffic matrix elements�Q()U+�,*,UW	.- are
the productof the traffic enteringthe network via edgelink U+� and
the proportionof the total traffic leaving the network via edgelinkUW	 , while thesecondis reversedandis identicalundertraffic conser-
vation– that is, theassumptionthat the interior network is neithera
source,nor sink of traffic. While this assumptionis violated (e.g.,
protocolsrunningin the network interior act sourcesandsinks,and
packet dropsact assinks) the volumesinvolved are insignificantin
thenetwork considered.Mostnotablytheactualresultsfrom thetwo
equationsarealmostidentical.

3.1.2 GeneralizedGravityModel
It ispossibletogeneralizethesimplegravity modelof Section3.1.1

to take into accounta wide rangeof additionalinformationprovided
by link classificationandroutingpolicy. In this Section,we will in-
corporatenew informationto modellargeISProutingpolicies.

Typically, in largeNorth-AmericanISPs,themajority of traffic is
exchangedbetweennetwork customersandnetwork peers.Thepat-
ternsandhandlingof customerandpeertraffic arequalitatively dif-
ferent,andthis hasa largeimpacton thetraffic matrix. Furthermore,
this peeringtraffic hasa largeimpacton every aspectof network de-
sign andengineering,andso estimatingthe associatedtraffic matri-
cesis very important. In this Section,we adaptthegravity modelto
specificallydifferentiatebetweencustomerandpeeringtraffic.

We assumethatthenetwork hasa setof peerslabeled̀
VE*,` D * <5<5< ,
andexchangestraffic with peer̀a� over a setof edgelinks dedicated
to thispeer. Thisis commonlytermedprivatepeeringandis thedom-
inantmodeof peeringfor large IP backbonestoday. We alsohave a
setof customeraccesslinks, labeledb�VE*,b D * <5<5< , andasetof peerlinks
labeledc�V_*,c D * <5<5< . We denotethesetof edgelinks carryingtraffic to
peer `a� by d�� , and the set of all peerlinks by d . We denotethe
setof all customeraccesslinks by e . SNMPmeasurementsprovide
volumesof traffic on all edgelinks,

�
: � X Y � \�]�^Z X YE[ ( � - , wherethe super-

scriptsin (out) denotestraffic into (out of) thebackbone.Thetraffic
entering,or exiting thenetwork to peer̀a� , is

�JfgihWh,j (G`a�,- � k=l.mon �JfZ X Y_[ ()c1-3*
where& � in or out.

We will develop the equationsfor a gravity modelunderthe fol-
lowing additionalassumptions,which reflectdominantInternetand
ISProutingpolicies:


 Transit peer (peeringlink to peeringlink) traffic. We assume
thatthevolumeof traffic thattransitsacrossthebackbonefrom
onepeernetwork to anotheris negligible.


 Outbound (accesslink to peeringlink) traffic. We apply the
proportionalityassumptionunderlyinggravity modelingon a
peer-by-peerbasis:that is, thetraffic exiting to a specificpeer
comesfrom eachaccesslink in proportionto thetraffic on that
accesslink. We assumethat all of the traffic from a single
accesslink to the given peerexits the network on the same
peeringlink (determinedby the IGP andBGProutingconfig-
uration). We denotethe exit peeringlink for traffic from ac-
cesslink b�� to peer `p	 by $q()b��+*,`p	.- . This may be derived
from routingconfigurationinformation(See[13, 15].) Theas-
sumptionis typically truein practice,exceptfor examplewhen
short-termloadbalancingis performed.In suchsituations,our
methodcouldbesupplementedwith availablestatisticson the
affectedprefixes, thoughour experienceis that the impact is
smallanddoesnotaffecttheaccuracy of thetraffic matrixcom-
putations.


 Inbound (peeringlink to accesslink) traffic. A network opera-
tor haslittle controlover theinjectionof traffic into its network
from peernetworks. Accordingly, we assumethat the traffic
enteringfrom a given peeringlink is split amongsttheaccess
links in proportionto their outboundtraffic.


 Inter nal (accesslink to accesslink) traffic. We assumethat
the fractionof internaltraffic from a givenaccesslink bP� to a
secondaccesslink b1	 is proportionalto thetotal traffic entering
thenetwork at b�� , andcomputethetraffic betweenthelinks by
normalization.

Undertheseassumptionstheoutboundtraffic fromaccesslink bP��re to peeringlink c1s8rCdt	 is

� \�]�^�u.\�]EYEv ()b��,*,c1sw- �
xzy {| y {�}:~�� n,��C�E����� x y {| y {�} ~�� � � �J\�]�^g.h,hWj ()`�	.-�*

if c�s � $q()b��,*,`�	.-3*� * otherwise<
Theinboundtraffic from peeringlink c1� to accesslink b1	 is

� X Y3u.\�]EYEv ()c��+*,b1	.- � � X YZ X Y_[ ()c��,- �Q\3]_^Z X Y_[ ()b�	.-� � l5��� \3]�^Z X Y_[ (Gb
/ - <

Theinternaltraffic from accesslink bP� to accesslink b1	 is

� X Y�^ h,j YE� Z ()b��+*,b�	i- � �QX YZ X YE[ ()b��W-� � l.� � X YZ X Y_[ ()b
/ - � \�]�^X Y3^ hWj Y5� Z ()b1	.- <

where

� \3]_^X Y3^ h,j YE� Z ()b�	.- � � \3]_^Z X YE[ ()b1	.-o� k � l.m � X Y3u.\�]EYEv ()c
/ *,b1	.-

� � \3]_^Z X YE[ ()b1	.- ��� k5n�l.m �QX YZ X YE[ ()c��,-� � l5��� \3]�^Z X Y_[ (Gb
/ - <

Thecomplexity of thealgorithmis >?()��D5- in thenumberof edge
linksbeingconsidered,but thenumberof operationspertermissmall.
Computationof thegeneralizedgravity modelfor thecompletenet-
work in question(of theorderof 1000routers)took lessthan3 sec-
onds(on a 336MHz Ultrasparc-IIprocessor).Despitethespeedand
simplicity of gravity modelssuchasthatexpressedabove,themodels
have the significantdrawbackof not guaranteeingconsistency with
theinternallink measurementsin thenetwork. Remedyingthis leads
usto thetomographicmethodsdiscussednext.



3.2 Tomography
Netw� ork tomography, asmentionedearlier, is theproblemof deter-

mining theend-to-endtraffic matrix from link loads.Thelink traffic
is the sumof the traffic matrix elementsthat areroutedacrossthat
link, andsowemayseeourproblemasfollows. Wehaveasetof ob-
servables��� (G&�V_*,& D * <5<5< *,&���-

x
, thetraffic (asmeasuredin packets

or bytes)thattraversesthe � links of thenetwork duringsomeperiod,
whichderivefrom thetraffic matrix following equation(2) where� is
thetraffic matrix, written asa columnvector �Q� ( 4 VE* 4 D * <5<5< * 4.� -

x
,

wherethe � traffic matrix elements,
4E�

, arethe traffic betweenthe� th source/destinationpair, and ��� �  L� � � is the ��F�� routing
matrixwhere

 L� � � � � � * if traffic for � traverseslink �� * otherwise (5)

where� � � is thefractionof traffic from source/destinationpair � that
traverseslink � . In someformulationsof the problem,an additive
term � appearson theright handsideof equation(2) to modelmea-
surementerror.

We needto solve the inverseproblemto obtain � . For general
topologiesandroutingtherearetypically many moreunknownsthan
constraints,andsoequation(2) is highly under-constrainedanddoes
not have a uniquesolution. In order to infer � it is useful to adopt
a traffic modelof somekind – in the previous work on network to-
mography the model allows the addition of higher-order statistical
constraints.Ourapproachis not to incorporateadditionalconstraints,
but ratherto usethegravity modelto obtainaninitial estimateof the
solution,whichneedsto berefinedto satisfytheconstraints.Thede-
tailsarepresentedbelow, but first it is importantto reducethesizeof
theproblemto makecomputationof thesolutionmoremanageable.

3.2.1 ReducingtheComputationalComplexity
One of the main problemswith practicalapplicationof any to-

mographictechniqueis the sizeof the routing matrix. The chosen
datasamplesin the studycover on the orderof a thousandrouters,
which would leadto an intractablylarge problem(with millions of
unknowns).Oneapproachis to dealonly with smallerproblems.For
example,[7] examinesPoPto PoPtraffic matrices.In this paper, we
focuson computingBR to BR traffic matrices,which aregenerally
muchmoreuseful for traffic engineeringtaskssuchasload balanc-
ing, andareabsolutelynecessaryfor link/router failureanalysis.We
candirectly derive PoPto PoPtraffic matricesfrom BR to BR ma-
tricesusingrouting information. However, even if we only consider
backbonerouterstheremaybeof theorderof onehundred,leading
to a problemwith over ten thousandunknowns, which is ordersof
magnitudemorethantheavailableconstraintson link traffic volume.

In this sectionwe developtechniquesthatcansignificantlyreduce
thenumberof unknowns(in our caseby a factorof 10 for theBR to
BR traffic matrix) andthusmakingthecomputationof traffic matrix
bothmoreaccurateandmoreefficient.

Our key observation is that many BR to BR matrix elementsare
emptyasa resultof the fact that theremay be multiple BRs within
eachPoP, andso traffic will flow only betweenthe closestof these
(asdeterminedby IGP routing). For instanceconsiderthesimplified
topologyshown in Figure3. Here thereare two BRs in eachPoP,
connectingERswithin thePoPwith redundantlinks. Givenshortest
pathrouting(andequallink weightson backbonelinks), onecansee
that all of the traffic from PoPB, to PoPC will traversethe route
throughBRs2 and3, while therewill beno traffic enteringtheback-
bonenodesatBR 1 anddepartingatBR 4. While this is averysimple
example,in operationalIP networks,thesetof pathsconsistentwith
IP routingwill typically besignificantlylessthanthesetof all paths
betweenrouterpairs.

ConsidertheBR to BR traffic matrix,anddenotethetraffic matrix
from BR 0 � to 0 	 by �LO�S	 . Weusethefollowing simplealgorithmfor
removing all theemptydemands:

1 Initially markall elementsof theBR to BR traffic matrixasempty
2 For eachpairof ERssimulatetheIGPasin [19] to find theshortest

pathsbetweenthesourceanddestinationrouter;
3 For eachpath,let 0 � and 0 	 beits first andlastBRsrespectively,

andmark �LO�2	 asnotempty;

4 Remove all �LO�S	 that remainempty. This stepis equivalentto re-
moving elementsfrom � thatwill bezerobecausethecorrespond-
ing routeis notused(unlessfailuresoccur).

Wecanexploit thetopological equivalenceof ERsto avoid having
to run IGP simulationsfor all possiblepairs of routers,which can
be prohibitive due to their large number. We considertwo ERs to
be topologically equivalentif they connectto thesame(non-empty)
setof BRs andthe IGP weightson the correspondinglinks are the
same1. Wegroupsuchequivalentedgerouterstogether, andconsider
themasa singleEdge RouterEquivalenceClass(EREC).The key
observationis thattheroutesbetweenthecomponentERsof thesame
pair of ERECswill be the sameexcept for the first and last links.
Consequently, we only needto run oneIGP simulationfor eachpair
of ERECs.We foundthatcomputingrouteson this basisreducesthe
computationalburdenby at leasta factorof 20.

After eliminating all the empty demandswe are able to reduce
thenumberof unknownsby a factorof 10, therebyturninga highly
under-constrainedproblemintoamoderatelyunder-constrainedprob-
lem,while makingthecomputationordersof magnitudefaster.

The routing matrix is requiredfor all methodsexcept the simple
gravity model.Thetime takenin computingtheroutingmatrix dom-
inatesall otheralgorithmsweuse,takingtwo to threeminutes.How-
ever, notethat this costcanoften be amortizedover multiple traffic
matrix computationsbecausewe only needto recomputetherouting
matrix whenthenetwork topologychanges.Thealgorithmto reduce
theproblemsizecanbeperformedaspartof computingthe routing
matrix, with a computationalcostthat is a very small marginal cost
on topof computingtheroutingmatrix itself.

3.2.2 Quadratic Programming
Fromthe(link to link) gravity model,we caneasilyobtainanes-

timateof the BR to BR traffic matrix ( M O ) usingrouting informa-
tion [20]. The link to link traffic matrix elementsareroutedacross
thebackbone,andwethencomputethetraffic volumesbetweeneach
pair of backbonerouters(notethatwe loosethedistinctionbetween
peeringandaccesstraffic in this step). We term the resultingesti-
mateasthe gravity modelsolution (denotedas �.  ). We thenrefine
thegravity modelsolutionby usinga least-squaresolutionthatmin-
imizesthe Euclideandistanceto the gravity modelsolutionsubject
to the tomographicconstraints.More specifically, we would like to
solve thefollowing quadraticprogram

¡B¢�£ ¤
� � �. w¤¥ < ¦§< ¤
� 4 ��& ¤¨¢ ¥ ¡B¢�£©¢S¡B¢�ª5«5¬
where ¤J<©¤ is the � D normof avector(i.e., theEuclideandistanceto
theorigin).

We alsoinvestigateweightedleast-squaressolutionsin which the
projectiononto the subspaceis not orthogonal,but ratherweighted
by a functionof thesizeof theestimatedtraffic matrixelements( �.  ).
That is, we use ¤ ( � � �i  -3­i® ¤ asthe objective function to mini-
mize in theabove quadraticprogram,where ® is theweightvector,
and ­ is theelement-by-elementvectordivision. Weinvestigatethree
weightingschemesin thispaper;theweightfor eachtermof thetraf-
fic matrix is either:constant,linearly proportionalto thetermsin the
gravity modeltraffic matrix,or proportionalto thesquareroot of the
gravity model.V Theremay be a multiple layer hierarchy of ERswithin a PoP, and
lowerlayerERspasstraffic to BRsonly throughthehigherlayerERs.
Wemayremove thelower layerof ERsfrom considerationaswesee
their (network impacting)traffic at thehigherlayer.



Figure 4 illustratesthe approachin a simple casewith two un-
knowns¯ (unknown traffic alongtwo routes),andoneconstraint(one
known link load). The constraint(s)specifya sub-spaceof the pa-
rameterspace(in this casejust a line), while the gravity model is
one particularsolution. The simple least-squaresapproachis just
anorthogonalprojectionof thegravity modelsolutiononto thecon-
straintsub-space.Theweightedleast-squaressolutiongivesdifferent
weightsto differentunknownsin thesolution.

gravity

constraint
subspace

model

least−squares solution

weighted least squares

Figure 4: An illustration of the least-square solution. The point
shows the gravity model solution, and the dashedline shows the
subspacespecified by a single constraint equation. The least-
square solution is simply the point which satisfiesthe equation
which is closestto the gravity modelsolution. The weightedleast-
squaressolution givesdiffer ent weight to differ ent unknowns.

Notethatthetomographicconstraintsmaybeill-poseddueto pos-
sibledependency amongdifferentlink constraints.Furthermore,the
constraintsmay not be satisfiabledueto error andnoisein the link
load dataor possiblerouting changesthat are not capturedby the
topology data. The standardtechniquefor dealing with ill-posed
quadraticprogramsis to useSingular-ValueDecomposition(SVD)
of theroutingmatrix � to computeits pseudo-inverse.Theresulting
solution is the closestto the initial solution �i  amongall solutions
that minimize the discrepancy against the tomographicconstraints
( ¤Q� 4 �¨& ¤ ). Routinesto computethepseudo-inverseareavailable
in many numericalcomputingpackages(for instancesee[21]). We
have implementedour methodin Matlab,andtheactualalgorithmis
sosimplethatit only takes6 linesof code(seetheAppendix).

Theworst casecomplexity of theabove algorithmis linear in the
numberof unknowns (elementsof the traffic matrix), andquadratic
in thenumberof constraints,however, in practicethecomplexity of
singularvaluedecompositionmethodsis generallylessthanthis. For
instancetheSVD usedin LAPACK [21], andthenceMatlab (which
usestheseroutines)areusuallybetterthanthis complexity estimate
would indicate.In reality, thealgorithmis very fast,with thecompu-
tation timeson a 336 MHz Ultrasparc-IIprocessor(runningSolaris
7) all significantlyunder2 seconds.

Oneadditionallocusof complexity is that the least-squarealgo-
rithm mayresultin negativevalues,whicharewithoutphysicalmean-
ing. Onecanavoid this by viewing theproblemasa constrainedop-
timizationproblem. However, a simpleiterative procedureprovides
a fastandeffective alternative. Specifically, we useIterative Propor-
tionalFitting (IPF) assuggestedin [10] to ensurenon-negativity. We
do not modelhigherorderstatisticsof theprocess,andtherefore,the
initial conditionwe useis not ascomplex asthatin [10]. For theini-
tial estimate,we simply usethe traffic matrix estimatedabove, with
zeroreplacingthenegativeelementsof thematrix. IPFthenproceeds
by successively refiningtheestimateusingthesamemethodas[10].
In practiceit only takesa few iterationsto reduceerrorsin thecon-
straintequationsto thepointatwhich they arenegligible.

3.3 The CompleteAlgorithm
Below wesummarizethecompletetomogravity method.
1 Apply thegeneralizedgravity modelto obtaina link to link traffic

matrix.
2 Transformtheabove traffic matrix into a BR to BR traffic matrix,

anduseit asour initial gravity modelsolution( �.  ).
3 Reducethe complexity of the tomography problemby removing

emptyBR to BR demands.Topologicalequivalenceof ERscan
beexploitedto speedup theroutecomputationby a factorof 20.

4 Apply singularvalue decompositionto solve the quadraticpro-
gram and find a solution that minimizes its distanceto �.  (in
weightedleast-squaresense)subjectto thetomographicconstraints.

5 Replacenegative valueswith zero,andperformIPF to obtaina
non-negativesolutionthatsatisfiestheconstraints.

4. VALID ATION
In this section,we validateour methodsusingactualInternetdata.

We first describethebasicvalidationmethodology. We thenvalidate
the underlyingassumptionsfor the gravity modelswe use. This is
followed by a detailedcomparisonof the quality of the resultsob-
tainedby differentmethods. Finally, we presentsomepreliminary
resultson therobustnessof thetomogravity method.

4.1 Methodology
In anidealenvironment,wewould like to validatetheresultsusing

a consistentset of real traffic matrix, topology, and link measure-
ments.Unfortunately, we do not have thecompletesetof flow level
dataacrossthe edgeof the network (dueto problemsin the vendor
implementationsof flow collection). Furthermore,the routing data
wehaveavailablecomesin 24hoursnapshots,andtheflow level data
is sampleddata,with its own limitations.Therefore,it is notpossible
for usto obtaina completetraffic androutingmatrix consistentwith
theactualSNMPlink measurements.

Wesolvetheproblemof providing aconsistentsetof traffic, topol-
ogy andlink measurementdataasfollows. We first derive a setof
hourly (partial) traffic matricesbasedon direct flow level measure-
mentsusing the methodologydescribedin [13]. We thensimulate
OSPFroutingusingthetopologyandroutinginformation.Fromthis
we may computea routing matrix � , and thenderive a setof link
measurements� from equation(2). Thus the traffic matrix � , the
routingmatrix � andthemeasuredlink loads� areall consistent.

We can then estimate °� for a problem for which we know the
“ground truth” – the real traffic matrix. This approachhasthe ad-
ditional advantagethat it isolatesthe impactsof measurementerrors
andinconsistenciesfrom theperformanceof thealgorithms(thetopic
of this paper).We cantherebystudythe impactof measurementer-
rorsseparately, andmoreprecisely, aswecaninducetheerrors,rather
thaninfering themfrom multiple (possiblyinconsistent)datasets.

Notethatweuseusederivedlink loadmeasurementsfor validation
purposesonly. In practice,ourmethodis applicableto directlink data
suchasonewould obtainfrom SNMP, andwe have in fact applied
themdirectlyto SNMPdatafor operationaltasksin capacityplanning
andnetwork management.

4.2 Gravity Models
In this section,we validatethe basicassumptionsunderlyingour

gravity models,in particulartheassumptionon constantfriction fac-
tors,which is thesimplestpossibleapproximationto the @±FL@ fric-
tion matrix.

By simple rearrangementsof the basicequationsof the gravity
model,it is clearthatwhentheestimatedfriction factorsareconstant,
theactualfriction factorsareconstantif andonly if theratiobetween
theestimatedandtheactualmatrixelementsareconstant.Clearlythe
constantshouldbe1 asthegravity modelsmaintainthecorrecttotal
traffic volumethroughappropriatenormalization.As a result,to test



if theactualfriction factorsareconstant,oneonly needto verify that
thepoints² ()$ ��2	 *,$´³�2	 - lie onastraightline passingthroughtheorigin.
It is easyto show that the sameanalysisappliesfor the simpleand
thegeneralizedgravity modelsintroducedin Section3.1.
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Figure 5: A comparisonof the real traffic matrix elementsto the
traffic matrix elementsestimatedby the gravity model. The solid
diagonal line showsequality, while the dashedlinesshow ! 20%.

Figure5 illustratesthetwo link to link gravity modelsfor onehour
chosenrandomly from June2002. In eachcasewe plot the true
valueof theelementsof thetraffic matrix versustheestimatedvalue.
Clearly, the closerthe pointsclusteraroundthe diagonal,the more
accuratethemodel. It appearsthat the generalizedgravity modelis
moreaccuratethanthesimplemodel.

To quantify the linear associationbetweenthe real and the esti-
matedmatrix elements,we computethe correlationcoefficient for
eachhourly traffic matrix,alongwith theleast-squareregressionline.
We needto verify two facts: � ) thecorrelationcoefficient is closeto
1 (sothat thepointsarecloselycenteredaroundtheregressionline),
and��� ) theinterceptof theregressionline is closeto 0.

Figure6 shows thedistribution of thecorrelationcoefficientsover
theentireJune2002dataset.For thesimplegravity model,thecorre-
lation coefficient typically lies between0.65and0.8,which aresig-
nificant,but notaslargeaswewould like. In contrast,thecorrelation
coefficientsfor thegeneralizedgravity modelareconsistentlyabove
0.9,indicatingverystronglinearassociation.

We next computethe95%confidenceinterval for the interceptof
theregressionline undertheassumptionthattheregressionresiduals
is Gaussian.We find that the 95% confidenceinterval covers0 on
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Figure6: Distrib ution of the correlation coefficientsbetweenreal
and gravity estimateof traffic matrix.

all 507hourly traffic matricesfor boththesimpleandthegeneralized
gravity model.This indicatesthattheinterceptis indeedcloseto 0.

Theseresultsshow that the generalizedgravity model is signifi-
cantlymoreaccuratethanthesimplegravity model,whichhighlights
the importanceof explicitly taking into accountISProutingpolicies
in gravity modeling. Moreover, despiteits simplistic assumptions
aboutthetraffic (i.e. proportionality, andconstantfriction factor),the
modelcancapturetheoveralldistributionof thematrixelementsvery
well. As a result,the resultingestimatecanprovide a goodstarting
point for thetomographicestimationstep.

4.3 Performance
The main methodof validationwe useis to directly comparethe

estimatedtraffic matrixelementswith thetruetraffic matrix. Figure7
providesa comparisonof methodsfor computingthegravity matrix
for onehourchosenrandomlyfrom June2002. In eachcasewe plot
the true value of the elementsof the traffic matrix versusthe esti-
matedvalue. (Theexactvaluesof traffic on thenetwork in question
areconsideredproprietaryso the scalesarenot present,but arenot
neededfor thecomparisonto bevalid.) Thesoliddiagonalline shows
equalityandthedasheddiagonallinesshow ! 20%. For a base-line
comparisonwe first show in Figure7 (a) the least-squaresolutionto
equation(2), to demonstratethatadirectsolutionof theequationdoes
not producea goodresult. Figure7 (b) shows the resultof thesim-
ple gravity model, which are also fairly inaccurateoverall, though
betterthanthe pureleastsquaresapproach.Figure7 (c) shows the
generalizedgravity model,andwe canseea dramaticimprovement
over the previous algorithms,thoughit is still not perfect. Finally,
Figure 7 (d) shows the resultswith the generalizedgravity model,
andtheleast-squaressolution(usingsquareroot weights).This final
solutionappearsremarkablygood.

To quantifythequality of theresults,it might seemidealto estab-
lish a direct link to traffic andnetwork engineeringapplications,for
instancefor capacityplanning. However, theseinvolve complex al-
gorithmsin their own right, andsowe shallattemptto presentsome
simplemetricsfor the quality of the resultswhich have somelink-
ageto theengineeringrequirements.Therequirements(drawn from
extensive conversationwith engineersdoing capacityplanningand
network design)canbe approximatelystatedthus: we requirerea-
sonablerelativeaccuracy for thelargerelementsof thetraffic matrix,
andnot too largeabsoluteerrorsfor all matrix elements.How large
is a reasonableerror?In light of theothersourcesof errorin Internet
planning,andaccuracy measuredin a few ten’s of percentis quite
tolerable,especiallyif theerrorsfor thelargerflowsaresmaller. This
is furtherbackedup by work suchasthat in [22], which showedthat
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Figure 7: A comparisonof the real traffic matrix elementsto the estimatedtraffic matrix elementsfor four differ ent algorithms. All
plots areshown on the samescale.The solid diagonal line showsequality, while the dashedlinesshow ! 20%.

Algorithm traffic matrixerrors corelink errors
initial solution LSE weights RMSE(Mbps) RMSRE RMSE(Mbps) RMSRE
Raw yes N/A 89 65% 174 37%
SimpleGravity no N/A 85 62% 260 54%
SimpleGravity yes const 27 22% 9 2%
SimpleGravity yes linear 28 24% 4 1%
SimpleGravity yes root 25 21% 4 1%
GeneralGravity no N/A 40 31% 117 24%
GeneralGravity yes const 16 13% 4 1%
GeneralGravity yes linear 16 13% 4 1%
GeneralGravity yes root 15 12% 4 1%

Table 1: Performanceof the various algorithms over 507 individual hourly data setsfr om June 2002. The RMSREs are computed
on the largestmatrix elementscomprising 75% of the network traffic, and the RMSE is computedon all the traffic matrix elements
for the month.



at leastonenetworkingtask(routingoptimization)couldstill provide
substantialµ capacityimprovementsevenwhentheerrorsin the input
traffic matricesweresignificantlylargerthanthosereportedhere.

It seemsthatasinglemetricis unlikely to cover thisadequately, so
weshallpresentseveral.Two shown herearetheRootMeanSquared
Error(RMSE),andtheRootMeanSquaredRelativeError(RMSRE),
definedbelow.

RMSE � �
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TheRMSEgivesanoverallmetricfor theerrorsin theestimates,and
theRMSREgivesa relative measure,but notethattherelative errors
for small matrix elementsarenot really importantfor engineering,
andsowewhencomputingtheRMSREwetakeonly matrixelements
greaterthan somethreshold� (and thereforewhen computingthe
meannormalizedby the numberof matrix elementsgreaterthan � ,
namely� x � ¶�)·'V � ¸ n ¹ x � ).

We computethesemetricsnot just to comparethe errors in the
traffic matricesthemselves,but alsoto comparetheobservables.That
is weusetheestimatedtraffic matrix to predictthelink loadsoncore
links, andcomparewith therealloadon theselinks.

Table1 summarizestheresultsfor thedifferentpossiblealgorithms
– in theseresults � is chosenso that 75% of the traffic is capture
by the RMSRE.Note that this truncationremoves elementsof the
traffic matrix whosemagnitudeis at most5% of thecapacityof the
smallestlink the the backbonenetwork being considered. Hence,
evenquitelargerelativeerrorscanbetoleratedin thesetermsaslong
asthe errorsarenot highly correlated(which shouldbe guaranteed
by satisfyingthetomographicconstraints).

Thefirst threecolumnsof thetablespecifythealgorithmby its ini-
tial conditions,whethertheLSE methodis applied,andif it is, what
weightsareused. The quality metricsabove arepresentedboth for
theerrorsin theestimatedtraffic matrix, andtheestimatedcorelink
traffic, andarebasedon our entiresetof datafor June2002(though
therearemissingdaysin this datasetthedatasetstill containsover
500onehourintervalsof data).

TheRMSEresultsarequotedin Mbpsandthesemayall seemrela-
tively smallin comparisonto thescaleof thenetwork – thebackbone
consistsprimarily of reasonablywell utilizedOC48andOC192links
(2.5 and10 Gbpsrespectively), but in particularnote their relative
valuesfor comparison.The link errorsarenot as interestingasthe
traffic matrixerrorsin somerespects,becausetherearemany possible
(incorrect)solutionswhichcanproducethecorrectcounts.However,
it is importantfrom a practicalstandpointto get theseat leastap-
proximatelycorrect,andtheresultsshow thatwithouta tomographic
component,thelink traffic estimatesmaybequiteinaccurate.Whena
tomographiccomponentis usedtheerrorsin thelink loadsareof the
samemagnitudeasthetargetederrorlevel usedin theIPFcomponent
of thealgorithm,asrequired.

The resultsuniformly show2 that (a) the simplegravity model is
better than the raw least-squaresalgorithm, and that (b) using the
least-squareswith agravity modelinitial conditionprovidesadefinite
improvement,not just in theestimatedlink rates(which is what the
methoddirectly improves), but also in the traffic matrix estimates.
Furtherthegeneralizedgravity modelis betterthanthesimplegravity
model. However the bestresultcomesfrom tomogravity, usingthe
generalizedgravity model with the weightedleast-squaresmethod
usingsquareroot weights(thoughtheimprovementover usingother

D Otherperformancemetricsinvestigateduniformly supportthecon-
clusiondrawn from Table1.

weightingsis small).
Thestatisticsaboveappearto favor usingthesquarerootweighting

schemepresentedabove. We investigatefurther to seewhetherthis
is really thecase.In Figure8 we vary � in computingtheRMSRE
andshow theRMSREfor thethreeweightingsconsidered,compared
with thevolumeof traffic in thematrixelementsabove thethreshold.
Theresultsshow thatnooneschemeis aclearwinner, but thesquare
root schemeseemsto win overall. We have investigatedsomeother
weightingschemesbut havenot foundasuperiorone.
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Figure 8: The RMSRE for varying thr esholdfor the June 2002
data. The x-axis shows the proportion of the network traffic
falling above the thr eshold, and the y-axis shows the RMSRE
for the varying thr eshold. The resultsshow that the RMSRE is
smaller for the larger matrix elements.

The plot alsoprovidesanotherview into the performanceof the
algorithm,asthethresholdusedis varied.For instance,Figure8 also
demonstratesthattheresultsarebetterfor thelargermatrix elements
(asthethresholdincreasesthevolumeof thethresholdedmatrix ele-
mentsdecreases,andtheperformanceimproves).TheRMSREactu-
ally dropsbelow 5%for thetop20%of traffic. Thisis averydesirable
result,but we canalsoseethat a very large proportionof the traffic
(over90%)hasaRMSRElessthan20%.

Figure1 shows thedistribution of errorsfor thegeneralizedgrav-
ity modelwith square-rootweightedleastsquares,andthe particu-
larly noteworthy point to take away from this plot is that morethan
30% of the estimatedmatrix elementshave a negligible error (less
than0.5%). Theplot alsoshows the5th and95thpercentilesof the
distribution that lie within ! 23%. Furthermore,the plot shows that
the resultsarenot biasedin onedirectionor the other. Thus,when
we aggregatetheseresultsto higherlevels, for instancePoPto PoP
traffic matrices,theerrorsshouldnot addto make thingsworse.We
examinewhetherthis is thecasein thefollowing figure.

Figure9 shows thepercentageof traffic (over thewholedataset)
for which themagnitudeof the relative errorbelow somevalue(for
thegeneralizedgravity modelwith square-rootweightedleastsquares).
Onceagainweseegoodresults:morethan30%of thetraffic hasneg-
ligible relative error, andnearly70%hasanerror lessthan10%for
the BR to BR traffic matrix. Further, aswe have notedearlier, it is
possibleto derivePoPto PoPtraffic matricesdirectly from theBR to
BR traffic matrices.The dashedline in Figure9 shows the equiva-
lentcurvefor suchmatrices,showing thattheperformanceis actually
slightly betterover themajorityof thedistribution for thePoPto PoP
matrices.In fact, theRMSE for thePoPto PoPmatrix is 10 Mbps,
while theRMSREis 11%.

Another methodto assessthe quality of the resultsis to look at
thepredictionour estimatedtraffic matrix would make of properties
of the network. A simpleexampleis presentedin Figure10, which
shows thepercentageof traffic in thelargest� matrixelements.The
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Figure 9: The percentageof traffic where the magnitude of the
relative error below somevalue (x-axis) for the June 2002data.
The solid line shows the curve for the backbonerouter to back-
bonerouter matrix, and the dashedline shows the curve for the
PoP to PoP traffic matrix. Note that for nearly 30% of the traffic
the error is negligible.

plot shows how skewedthetraffic matrix is, andhow importantit is
to estimatethe largestmatrix elementscorrectly. The figure shows
theactualdistribution, andtheestimateddistribution – they arehard
to distinguishbecausethereis almostnodiscernibledifference.
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Figure 10: The percentageof traffic in the largest � matrix ele-
ments for the real traffic matrix (solid) and the estimatedtraffic
matrix (dashed).

Finally, considerwhathappensto theestimatesovertime. Wewant
to beableto answerquestionsaboutthevariability of thetraffic, or to
detecttrendsor changesin thetraffic matrix. It is thereforedesirable
for theresultsto remainstable– thatis, for theerrorsin theestimated
traffic matrix to remainapproximatelyconstantover time,evenasthe
traffic matrix itself changes.Figure 11 shows two comparisonsof
elementsof the traffic matrix over time, with their predictedvalues
(notethegapsarewhereourarchive is missingdata).Thefirst shows
a casewheretheerror is very small. Thetwo curves(theactualand
estimatedmatrix elements)arealmostindiscernible,eventhoughwe
canseecleardiurnal variationin the traffic, anda profounddrop in
thetraffic at onepoint wherethenetwork topologychangeddramat-
ically. The estimatestrack the traffic matrix perfectly. The second
plot showstheresultsfor acasethatis notsoaccurate,but onceagain
we seethat theestimatedvaluefollows thevariationof thetrueflow
smoothly. Thusevenwherethereareerrorsin the traffic matrix, the
resultscanstill be usedfor a rangeof operationaltaskssuchasde-
tectingtraffic changes.
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Figure 11: Comparison for two matrix elementsover time. In
the first caseweseethat the estimatedvalue tracks the true value
almostexactly, while in the secondcasealthough there is an error
in the estimate,the error changesonly slowly over time. Gapsin
the data indicate missingdata in our archive.

4.4 Robustness
In this section,we evaluatethe impactof measurementerrorsand

inconsistencieson theperformanceof thetomogravity methodby in-
ducinganerrorterm � to thetomography constraints:

���º�B��» � < (8)

All thenumericalresultspresentedherearefor thetomogravity method
usingthegeneralizedgravity modelwith theweightedleast-squares
methodusing squareroot weights. The error term � is formed by
multiplying the � with awhitenoiseterm.Specifically,

� ���C¼ �q( � *,½�-3* (9)

where ¼ is element-by-elementvectormultiplication,and �q( � *,½�- is
a vectorwith randomentriesdrawn from a normaldistribution with
mean0 and standarddeviation ½ . To ensurethe non-negativity of� ��� , wecapthenormaldistribution at1.

traffic matrixerrors corelink errors
NoiseLevel RMSE RMSRE RMSE RMSRE
noisefree 15Mbps 12% 4 Mbps 1%½ � � < � � 15Mbps 13% 6 Mbps 1%½ � � < � " 16Mbps 14% 10Mbps 2%½ � � < ��¾ 19Mbps 17% 18Mbps 4%

Table2: Performanceof the tomogravity methodunder differ ent
noise levels (0%, 1%, 2% and 4%) over 507 individual hourly
data setsfr om June2002.

Table2 summarizesthe performanceof the tomogravity method
underdifferent levels of noise(0%, 1%, 2% and4%)3. The results
show thatwhile theinducednoisemakestheestimatedtraffic matrix
lessaccurate(asonewould expect),the overall performancedegra-
dationis small– theadditionalestimationerrorson bothmatrix ele-
mentsandlink observablesareof thesamesize,or smallerthanthe
introducederrorsontheobservables.Similarbehavior is alsoevident
in Figure12, wherewe vary the threshold� in computingtheRM-
SREandshow theRMSREcomparedwith thevolumeof traffic in the
matrix elementsabove thethreshold.While a moredetailedstudyof
robustnessmustthoroughlyinvestigatethetypesof measurementer-
rorsseenin practice,theseresultsshow thatthetomogravity method
is robustto measurementerrorson theobservables.¿ � is chosento capturethetop75%traffic, asin Table1.
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Figure 12: The RMSRE for varying thr esholdfor the June 2002
data. The x-axisshows the proportion of the network traffic cap-
tur ed by the matrix elementsthat fall above the thr eshold,and
the y-axis shows the RMSRE for the varying thr eshold. The re-
sults show the overall performance degradation due to induced
noiseis small.

5. CONCLUSION
We have presenteda simple, fastandpracticalmethodcalledto-

mogravity for computingrouterto routertraffic matricesin large IP
networks,basedon widely availablelink measurements.The tomo-
gravity methodcombinesthebestfeaturesof gravity modelsandto-
mographictechniques.Themethodscalesto handlenetworks larger
than any previously attemptedusing alternative methods,and it is
very fast (taking lessthan5 secondsfor a large network). Further-
more,thisrouterto routertraffic matrixmaybeusedto directlyderive
anevenmoreaccuratePoPto PoPtraffic matrix.

We have validatedthemethodon thea largecommercialIP back-
bonenetwork, wheredirectmeasurementsof the traffic matrix were
available for June2002. The resultsshow remarkableaccuracy for
the larger elementsin the traffic matrix: the estimatestypically fall
within a few percentof true values. Theselarger valuesdominate
network andtraffic engineeringapplications.However, theaccuracy
over all the matrix elementsis still reasonable,andTomogravity is
now beingusedfor a variety of capacityplanningandmanagement
tasksin this network.

Thereareseveralavenuesfor further improvements.In particular,
we would like to be ableto includeadditionalconstraintsin the so-
lution. For instance,if onehaspartial flow level dataavailable,this
couldprovide additionalconstraints.Anotheravenueof exploration
is theuseof alternativestartingpointssuchasthatproposedin [7].
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APPENDIX

A. MATLAB SOURCECODE
% weighted least-squares estimate of the TM
% Input:
% A matrix A in constraints x=A*t
% x vector x in constraints x=A*t
% tg initial gravity model solution
% w weight vector
% Output:
% t estimated traffic matrix (as a vector)
% that minimizes |(t-tg)./w|
% among all t’s that minimize |A*t-x|
function [t] = wlse(A,x,tg,w)

% equivalently transform x=A*t into
% xw=Aw*tw, where tw=(t-tg)./w
xw = x - A*tg;
[r, c] = size(A);
Aw = A .* repmat(w’, r, 1);
% solve tw=Aw*tw by computing the pseudo-
% inverse of matrix Aw (through svd)
tw = pinv(full(Aw)) * xw;
% transform tw back to t
t = tg + w .* tw;


