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ABSTRACT

A matrix giving the traffic volumesbetweenorigin and destination
in a network hastremendouslypotentialutility for network capacity
planningandmanagementUnfortunately traffic matricesaregener
ally unavailablein large operationalP networks. On the otherhand,
link load measurementarereadily availablein IP networks. In this
paper we proposea nev methodfor practicaland rapid inference
of traffic matricesin IP networksfrom link load measurementsug-
mentedby readily availablenetwork androuting configurationinfor-
mation. We apply andvalidatethe methodby computingbackbone-
routerto backbone-routeraffic matriceson alarge operationatier-1
IP network — a probleman orderof magnituddargerthanary other
comparablemethodhastackled. The resultsshav that the method
is remarkablyfastandaccuratedeliveringthetraffic matrixin under
five seconds.

Categoriesand Subject Descriptors

e resourcadtilization at network nodesandlinks, (e.g.link loads);

e end-to-endpberformancemetricsfor specifictransactionssuchas
oneway delaystatisticsfor pacletsexchangetetweermeasure-
mentsenersatthe network edge;

e statusandconfigurationof network topologyandrouting.

Thoughthesemeasurementsay revealtraffic anomaliesor conges-
tion problemsthey do notin generalreveal potentialsolutions. For
instancelink loadmeasurementmayrevealcongestioronalink, but
shedlittle light onits causewhichin generakequiresunderstanding
thetraffic matrix.

The principal contribution of this paperis a simple, efficient, and
accuratemethodfor computingtraffic matrix estimatesfor IP net-
works,from widely availabledata:link loadandnetwork routingand
configurationdata. The methoddraws onideasfrom “gravity model-
ing” [2, 3,4,5, 6, 7] and“tomographicmethods[8, 9, 10,11,12]. It
alsomakesuseof network configurationdatato dramaticallyreduce
computationatompleity.

C.2.3[Computer-CommunicationsNetworks]: Network Operations— e have validatedthe methodagainst direct traffic matrix mea-

networkmonitoring

General Terms
measuremenperformance
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1. INTRODUCTION

A fundamentabbstacleto developingsoundmethodsor network
andtraffic engineeringn operationalP networkstodayis theinabil-
ity of network operatorso measurehetraffic matrix. A traffic matrix
provides,for every ingresspoint i into the network andegresspoint
j out of the network, the volume of traffic T; ; from i to j over a
giventime intenal. Takentogetherwith network topology routing
andfault data,the traffic matrix can provide a greatdeal of helpin
the diagnosiandmanagementf network congestiori1]. Onlonger
time scalestraffic matricesarecritical inputsto network design,ca-
pacity planningandbusinesglanning.

Unfortunatelytodaysproductionsystemgor IP network measure-
mentdo not provide the inputsneededor direct computationof IP
traffic matrices.Insteadthesesystemgatherdataon:
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surementgrom detailedflow level dataon an operationattier-1 IP
network, andtheresultsshav very goodaccurag. It alsohastheap-
pealingcharacteristithatadditionalinformation,sayfrom flow level
traces,may be includedin a straightforward manner The method
is very fast, taking lessthan 5 secondson a 336 MHz Ultrasparc-
Il processoto computea backbone-routeto backbone-routetraffic
matrix on the tier-1 IP network. The method,andits gravity model
prior have beenusedin thatnetwork since2001for a variety of tasks
rangingfrom traffic engineeringo router/link failure analysisto ca-
pacity planning,with considerableuccess.

At their simplest gravity modelsarebasedon the assumptiorof a
simpleproportionalityrelationshig2, 4]:

Tiﬂ' X Tl"* . T*yj (1)

whereT;,. andT. ; denotethetotal traffic enteringthe network at ¢
andexiting at j, quantitiesghatcanbe obtainedoy summinglink load
dataat the network edge. (SeeSection3.1.) The gravity modelas-
sumeghatthetraffic componenfrom or to agivensitedepend®nly
thetotal traffic enteringor leaving that site. By appropriatenormal-
ization,thegravity modelsolutionis guaranteedtb be consistentvith
measuredink loadsatthe network edge but notnecessarilysoin the
interior links. Alternatively, tomographiomethodsare basedon the
systemof linearequations:

x = At (2)

wheret is the traffic matrix (written asa columnvector), x repre-
sentdink loads,and A the network routing matrix — seeSection3.2
for details.In essencegquation(2) stateghatthetraffic matrix must
be consistentvith network routingandmeasuredink loadsthrough-
out the network, not just at the edge. However, this matrix equality
is highly underconstrainedand so allows mary solutions. Tomo-
graphicmethodsdiffer in how a single “best” solutionis identified



from the possibilities. The majority of existing statisticaltomog-
raphy approachegcommonlyreferredto as“network tomograply”
methods)use modelsof the higher order statisticsof the link load
datato createadditionalconstraints.In contrast,optimization-based
tomograply approachege.g. linearor quadratiqgorogrammingpften
attemptto find a solutionthatoptimizesan objectie function.

The methodintroducedin this paperrefinesand combinesboth
gravity andtomographianethods:

1. We solwe the gravity model using edgelink load data. Ad-
ditional informationon routing betweenpoints of ingressand
egresdor traffic flows canbeincorporatedo obtainsignificant
improvements.In the numericalresultspresentedhere,we in-
corporaténformationto modeltraffic exchangedvith peemet-
works(Section3.1.2).

. As thefinal estimateof the traffic matrix, we apply quadratic
programmingto determinethe solutionin the spaceof those
admittedby the tomograply modelclosestto the solutionob-
tainedby thegravity model. This steputilizesall availablelink
load data,and doesnot require(higherorder) statisticsor ad-
ditional traffic modelingassumptionsThe key computational
challengeis to computethe pseudo-imerseof the routing ma-
trix A, which hashigh dimensionality To overcomethis chal-
lenge,we apply network configurationandrouting datato dra-
matically decreasehe problemdimension. Iterative propor
tionalfitting is usedto ensurethe non-neativity of theresults

We termthis methodfor computinglP traffic matricesthetomayrav-
ity method for wantof a bettername.
The validation of the tomograity methodis basedon a set of

35

I I
~23%, +22%

N w
al =]
T T

% of flows
N
o

-
3
T

101

-50

0 50 100
relative error (%)

Figure 1: Relative errors of traffic matrix estimatescompared to
dir ectestimatesof the traffic matrix (from flow level data) for the
largestcomponentsof the traffic matrix (representingover 75%
of the network traffic). Note that a significant proportion of the
flows (more than 30%) have a negligible error. The two vertical
dashedlines show the 5th and 95th percentilesof the distrib ution,
showing that theselie within +23%.

1.1 RelatedWork

Tomographianethodshave beenwidely andsuccessfullyapplied,
for example,in ComputerAided Tomograply (CAT) scans,usedin
medicalimaging. Thesemethodsdiffer in how they dealwith the

hourly traffic matricesderived from direct flow level measurementsunderdeterminationof the systemof tomographicconstraintequa-

usingthemethodologydescribedn [13]. Theseraffic matricescover
over 2/3 of atier-1 IP backbonenetwork (including all the peering

tions. Optimization-basedomograply approachesypically find a
solution that optimizesan objective function, whereasnetwork to-

traffic) over June2002. Obtainingdirect flow level measurement mograply approachesftenusethe higherorderstatisticsof the link

acrosdarge IP networkstodayis a far moretaxingandcomplex task
thanlink androuter configurationmeasurementglueto limited and
inconsistentoutersupportfor flow level measuremertapabilities.

Figurel providesanindicationof theaccurag of themethod.The
methodis remarkablyaccuratefor the all but the smallestentriesin
thetraffic matrix. We notethatthe largervaluesin thetraffic matrix
dominatenetwork andtraffic engineeringapplicationsg[14, 15, 13].
Themajority of thetraffic lieswithin +23%relative error, andamore
than30% of thematrix elementshave negligible error.

A moredetailedexaminationof thedatawill shav thattherelative
errorsarelargestfor the smallestmatrix elementswhich fortunately
do not have large absoluteerrorsin generalandarethusunlikely to
matterin applications. The matrix elementsof mostimportance—
the largestvalues— arethe mostaccurate.Further all of the errors
werefoundto be well-behaed, thatis nonehave overly large abso-
lute errors,andthey vary smoothlyover time, meaningtheir impact
on operationataskswill not be dramatic,evenwherethe errorsare
largest.

Evenmoreimportantlyfrom anoperationgperspectie, predictions
basedntheestimatedraffic matrixareremarkablyaccurateFor in-
stancetherelative accurag of computedink loadsbasedon thees-
timatedtraffic matrix arewithin a few percentof thereallink loads.
The methodinsuresthis will bethe case but interestingly otherre-
sultssuchasthe distribution functionsfor the sizesof traffic matrix
elementsasedon real and estimateddataare almostindistinguish-
ableaswell.

The paperis organizedasfollows: we startin Section2 with basic
network conceptsandterminology andthe featuresof the datawe
have available. This is followed by a detaileddescriptionof the to-
mogravity methodin Section3. Thenext section(Sectiord) presents
our validation resultsof the method,basedon real network traffic
matrices.Finally we concludethe paperin Section5.

loaddatato createadditionalconstraints.

Vardi[8] first puttheideasof network tomograply into practicefor
computingtraffic matricesn communicationsietworks, with subse-
quentcontritutionsby TebaldiandWest[9], andby Caoetal. [10].
Thereis a dual of this problemalsoreferredto as network tomog-
raphy in which link performancemetricsare determinedrom path
measurementd 1, 12], but this doesnotdirectly concernushere.

Network tomograply, in somesense comprisesdeterminingthe
solutiont to equation(2), or at leastthe parameter®f somemodel
of t, from measurementsf x. As notedabove, this systemis highly
underconstrainedandsothe challenges to choosethe “best” solu-
tion from the spaceof possibilities. The typical approachhasbeen
to useadditionalmodelingassumptiorio derive constraintsrom the
higherorderstatisticsof the traffic. For instance Vardi[8], adopted
aPoissoniammodelin which the X; areindependenPoissoniaman-
domvariablesof meanz;. He obseredthatthenthe z; arePoisso-
nianrandomvariableswith covarianceCov (x;, ;) = >, Bijktk
whereB;; . = A Ar;. Thus,the equationsx = At aresupple-
mentedwith the equationsz = Bt wherez;; denotegshe measured
covarianceof thetraffic rateacrosdinks i andj. We canwrite these

(2)-(8)

Vardi establishedhat underrealistic conditionson the matrix B,
thePoissorratest areidentifiable,in the sensehattwo differentsets
of ratest cannotgive rise to the sameasymptoticdistributions of x
andz for large numbersof probes. Caoet al. adopteda Gaussian
modelin which the varianceof the ¢; hasa specifiedpower-law de-
pendencen the mean.The meanratesof this modelareidentifiable
underthe sameconditionson B.

A
B

X
z

®)



Directly solving (3) for finitely mary measurements problem-
atic. Dueto statisticalvariability of the x andz, the equationsare
generallyinconsistentwhile someof the z; maybe negative. To cir-
cumwent theseproblems,Vardi employed an iterative approachthat
usesthe EM algorithm[16] to find approximatesolutions.In the ap-
proachof Caoetal.,amodifiedEM algorithmis useddirectly to find
maximallikelihoodparameterin the Gaussiaimodel. Cornvergence
is hastenedy using second-ordemethods. Even with suchmeth-
ods, the compleity of the network tomograply approachegrows
asO(R?), whereR is the numberof regions, althougha reduction
to O(R?) is claimedfor topologiesin which theingress-gresspairs
canbepartitionedover mostly disjointregions[17].

FurthermoreMedinaet al. [7] shavs that the basicassumptions

underlyingthe statisticaimodels(Poissoror Gaussianarenot justi-
fied, andthatthe methodsabove may performbadly whentheir un-
derlyingassumptionareviolated. Thepaperconcluded7] thatnone
of the prior methodsfor computingtraffic matriceswas satishctory
for evena PoPto PoPtraffic matrix on a large network, let alonea
BR to BR matrix.

An alternatve thatis well known in socialsciencegor modeling
commodityexchangess the gravity model(See for example[5, 6]).
In network applicationsgravity modelshave beenusedio modelmo-
bility in wirelessnetworks[3], andthevolumeof telephonecallsin a
network [4]. Recentlyvariantsof gravity modelshave beenproposed
for computinglP network traffic matriceq18, 7, 2]. For instance[7]
proposesan approachbasedon using the choice modelsto model
PoPfanouts which canbe viewed asa variantof the gravity model
approachThepaperalsosuggestsisingtheir methodto generatepri-
orsto sene asinputsto statisticaltomograply techniquesput does
not testthis idea. An alternatve generalizatiorof the gravity model
(detailedbelow) that explicitly modelsinter-peerrouting was used
by the authorsof this currentpaperin capacityplanningexercisesn
2001for anoperational P network.

As notedabove, gravity modelsaretypically basedon edgedata,
andassuchdo notguaranteeonsisteng with theobseredlink loads
ontheinteriorof thenetwork. Of coursejn theirfull generalitygrav-
ity modelscanindeedncludesuchinformationthroughtheuseof the
R x R friction matrixfor R ingress/gresspoints(seeSection3.1for
details). But the inferenceof the completefriction matrix is a prob-
lem of the samecompleity asinferenceof the traffic matrix itself.
We preferto solve thelatter problemdirectly.

Gravity models(basedn edgedata)areO(R?) compleity in the
worst case for R ingress/gresspoints (aswe needto computeR?
elementsn thetraffic matrix), but the numberof computationss ac-
tually rathersmallperterm,andsothesemethodsarefaston eventhe
largestnetwork sizes.Hencegravity modelsarequite appealingbut
we shalldemonstratéhe modelof [2] canbe significantlyimproved
by incorporatingnformationfrom theinternallink measurements.

2. BACKGROUND
2.1 Network

An IP network is madeup of IP routersandIP adjacenciebetween
thoserouters,within a single autonomousystemor administratve
domain. It is naturalto think of the network asa setof nodesand
links, associatedvith the routersand adjacenciesasillustratedin
Figure2. We referto nodesandlinks thatarewholly internalto the
network ashadkbonenodesandlinks, andreferto the othersasedge
nodesandlinks.

In addition, it is helpful for IP networks managedy InternetSer
vice Providers (ISPs)to further classifythe edge. As shawvn in the
figure,in generalthe network will connecto otherautonomousys-
temsandcustomerwia edgelinks. We catgorizethe edgelinks into
accessinks, connectingcustomersandpeeringlinks, which connect
other(non-customerautonomousystems.A significantfraction of
the traffic in anISPis inter-domainandis exchangedetweencus-

Peers

Peering Links

IP Network Backbone

Access Links

Customers

Figure 2: IP network componentsand terminology

tomersandpeernetworks. Traffic to peernetworksis todaylargely
focusedon dedicatedpeeringlinks, asillustratedin Figure2. Un-
derthetypical routingpoliciesimplementedy large ISPs, very little
traffic will transitthe backbonefrom one peernetwork to another
Transittraffic betweerpeersmayreflectatemporarystepin network
consolidatiorfollowing an ISP memgeror acquisition but shouldnot
occurundernormaloperatingcircumstances.

In large IP networks, distributedroutingprotocolsareusedto build
theforwardingtableswithin eachrouter It is possibleto predictthe
resultsof thesedistributed computationsfrom datagatheredfrom
router configurationfiles. (The resultsprovided hereare basedon
router configurationfiles downloadedoncedaily). In our investiga-
tion, we employ a routing simulatorsuchasin [19] that makesuse
of staticallyconfiguredBorderGatavay Protocol(BGP)andInterior
Gatavay Protocol(IGP) topologyinformationgleanedrom the con-
figurationfiles. In operationalP networks, this informationis quite
stableon thetime scaleof interest.

2.2 Traffic Data

In IP networks today link load measurementare readily avail-
ablevia the SimpleNetwork ManagemenProtocol(SNMP). SNMP
is uniquein thatit is supportedy essentiallyevery device in an IP
network. The SNMP datathatis availableon a device is definedin
a abstractdatastructureknowvn asa Managementnformation Base
(MIB). An SNMPpoller periodicallyrequestsheappropriateSNMP
MIB datafrom a router (or otherdevice). Sinceevery routermain-
tainsacyclic counterof thenumberof bytestransmittecandreceved
on eachof its interfaces we canobtainbasictraffic statisticsfor the
entire network with little additionalinfrastructuresupport— all we
needis an SNMP poller thatperiodicallyrecordsthesecounters.

Thepropertieof datagatheredria SNMP areimportantfor imple-
mentationof a usefulalgorithm— SNMP datahasmary limitations.
Datamay be lost in transit (SNMP usesunreliable UDP transport;
copying to our researcharchive may introduceloss). Datamay be
incorrect(through poor router vendorimplementations).The sam-
pling interval is coarse(in our case5 minutes). Many of thetypical
problemsin SNMP datamay be removed with minimal artifactsus-
ing simple techniques. For instance,using hourly traffic averages
(with five minutedatapolls) mitigatesthe effect of missingdatasub-
stantially Slightly moresophisticateanethodsof anomalydetection
andinterpolationproduceevenbetterresults but we shallusesimple
hourly datafor the purposef this study ashourly (or longer)data
arecommonlydealtwith by mary ISPs(with five minuteor finer data
keptfor brief periodsfor trouble-shootingandalarming).

We useflow level datain this paperfor validation purposes.This
datais collectedat the routerwhich aggreatestraffic by IP source
anddestinatioraddressand TCP port numbers.This level of granu-
larity is sufficient to obtainarealtraffic matrix[13], andin thefuture
suchmeasurementay provide direct traffic matrix measurements,
but at presentimitationsin vendorimplementationgrevent collec-
tion of this datafrom the entirenetwork.



2.3 Terminology

For the purposeof computingtraffic matriceswithoutlossof gen-
erality, we assumehatall accesandpeeringlinks terminateat Edge
Routes (ERs),andthatall remainingroutersare BadkboneRoutes
(BRs) that only terminatebackbonelinks. (We can always insert
dummyERsto force the assumptiorto be true.) Figure 3 provides
a simplified network topologyto illustratethe terminologyWe make
afurtherdistinctionthatlinks betweerBRs arecore links, andlinks
betweerER andBR arenon-cordinks.

non-core backbone link

edge link

Figure 3: A simplified network topology to illustrate the termi-
nology usedhere. Edge Routers (ERs) are showvn shaded,while
BackboneRouters (BRs) are unshaded.

Giventwo ERs E; and E;, thetraffic betweentheseedgerouters
17 is definedasthe total amountof traffic thatis entersthe network
at E; andexits at £, with T¥ = {T}F} the associatednatrix. We
mayalsodefinetraffic matricesbetweerBRsTZ in asimilarmanner
wherethe elementgeferto traffic enteringandleaving the core. We
will oftenreferto a vectorform of the traffic matrix t in which the
indicesof thevectorreferto source/destinatiopairs.

Theremaybe morethanoneroutebetweertwo routersevenusing
only shortespaths.We assumehattraffic will be evenly distributed
acrossall suchroutes(thoughour methodcan be easily adaptedo
handleunevendistributions).

Onecould computetraffic matriceswith differentlevels of aggre-
gation at the sourceand destinationendpoints,for instance,at the
level of PoPto PoR or routerto routet, or link to link [20]. In this pa-
per, we areprimarily interestedn computingrouterto routertraffic
matrices,which areappropriatefor a numberof network andtraffic
engineeringapplications,and can be usedto constructmore highly
aggrejatedtraffic matrices(e.g. PoPto PoP)usingroutinginforma-
tion [20].

3. SOLUTION

In this sectionwe provide our method,termedtomagravity, for
computingthe traffic matrix from link data. As its nameindicates,
themethodconsistf two basicsteps- a gravity modelingstep,and
atomayraphicestimationstep:

1. In the gravity modelingstep,aninitial solutionis obtainedby
solving a gravity modelusing edgelink load data. We also
incorporatestaticlSProuting policy informationandexplicitly
modelthetraffic exchangedvith peernetworks.

2. In the tomographicestimationstep, the initial solutionis re-
finedby applyingquadratigorogrammingo find asolutionthat
minimizesthedistancedo theinitial solution(in weightedeast-
squaresenseubjectto the tomographiaconstraints.We also
apply knowledgeof the network routing andtopology config-
urationto significantlyreducethe problemsize. Iterative Pro-

portional Fitting (IPF) is usedto ensurenon-neativity of the
results.

Below we discusseachstepin a separatesubsectionfollowed by a
brief summaryof the completealgorithm.

3.1 Gravity Modeling

Oneof thesimplestapproache® computingatraffic matrixis the
gravity model[2, 3, 4, 5, 6]. Gravity models takingtheir namefrom
Newton’s law of gravitation, arecommonlyusedby socialscientists
to modelthe movementof people goodsor informationbetweerge-
ographicareads, 6]. In Newton’s law of gravitation theforceis pro-
portionalto the productof the masse®f the two objectsdivided by
thedistancesquared Similarly, in gravity modelsfor cities,therela-
tive strengthof the interactionbetweentwo cities might be modeled
asproportionalto the productof the populations A generaformula-
tion of agravity modelis givenby thefollowing equation:
R; - Aj

4
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whereX;; is the matrix elementrepresentinghe force from i to j;
R; representsherepulsivefactorsthatareassociatedvith “leaving”
from i; A; representshe attractive factorsthat are associatedvith
“going” to j; and f;; is afriction factorfrom i to j.

In our contet, we cannaturallyinterpretX;; asthetraffic volume
thatentersthe network atlocation: andexits atlocationj, therepul-
sionfactorR; asthetraffic volumeenteringthenetwork atlocationz,
andtheattractvity factor A; asthetraffic volumeexiting atlocation
J. Thefriction matrix (f;;) encodeshelocality informationspecific
to differentsource-destinatiopairs. Theinferenceof all R x R fric-
tion factorsis anequivalentproblemof the samesizeastheinference
of the traffic matrix itself. Accordingly, it is necessaryo approxi-
matethe actualfriction matrix usingmodelswith fewer parameters.
In this paperwe shallassume commonconstanfor thefriction fac-
tors,whichis arguablythesimplestamongall possibleapproximation
schemes.The resultinggravity model simply statesthat the traffic
exchangedetweerlocationsis proportionalto the volumesentering
andexiting atthoselocations.Our resultsshav that,remarkablythis
gravity modelwhencombinedwith detailedknowledgeof ISP rout-
ing policies,is ableto matchthe actuallnternetdatavery well. One
possibleexplanationfor thisis thatgeographidocality is notamajor
factorin today’s Internet,as comparedo ISP routing policies. As
long asthegravity modelcaptureghe essencef theroutingpolicies,
it becomewery accurateandthe choiceof thefriction factorsis less
critical.

Note thatwe do not expectour gravity modelto accuratelymodel
the traffic betweenall source-destinatiopairs. In fact, one would
naturallyexpectcertainpairsof locationsto standout from the over-
all distribution, simply dueto their specificcharacteristicge.g. going
throughtransoceanitinks). A key insightof thetomograity method
is thatwe only needthe gravity modelto capturethe overall distribu-
tion; we expectthetomographiestimatiorstepto correctmostof the
violationsin the assumptionsinderlyingthe gravity modelandthus
significantlyimproving the overall accurag. It is certainlypossible
to furtherimprove themethodby usingmoreaccurateyravity models
with additionalparametersHowever, aswe shaw laterin Sectior4.3,
thetomograity methodin its currentsimpleform is alreadyremark-
ably accurate The mamgin for improvementmay belimited.

Anotherimportantissueconcerninghe gravity modelis thelevel
of aggreation. Intuitively, we needthe aggreationlevel to be suffi-
ciently high sothatthetraffic exchangedetweendifferentlocations
is notsensitve to the detailedcompositionof thetraffic. Ontheother
hand,whenthe aggreation level is too high (e.g. PoPto PoP),ISP
routing policies operatingat a more granularlevel may have a pro-
found impactand canintroduceserioussystematiaistortionto the
overall traffic pattern.In our tomograity method,we apply gravity
modelsatthelink to link level, which is thefinestlevel of resolution

Xij =



obtainablewith SNMP data. We caneasilyuserouting information
to obtainmorehighly aggreatedtraffic matriceq20].

We formally presentwo (link to link) gravity modelsbelow. The
first oneis quite simpleandis primarily usedto provide insightinto
the approach.The secondapproactincorporatesnorerealisticrout-
ing assumptionsandits performancés therebymuchimprovedover
the simplemodel.

3.1.1 A SimpleGravity Model

In this very simplegravity model,we aim to estimatethe amount
of traffic betweenedgelinks. Denotethe edgelinks by i1, Iz, ...
We estimatethe volume of traffic 7'(1;,1;) that entersthe network
at edgelink ; and exits at edgelink 1. Let 7i2,(I;) denotethe
total traffic thatentersthe network via edgelink I;, andT}55% (1;) the
correspondingjuantityfor traffic thatexits the network via edgelink
l;. Thegravity modelcanthenbe computedoy eitherof

in T (1)
T lz,l = Tin lrL = out/] \’
()= Tl 5 o )
Ty = ) o)

~ in /7 Llink
Zleink(Zk) "

Thefirst equationstatesthatthe traffic matrix elementsr’(;, ;) are
the productof the traffic enteringthe network via edgelink I; and
the proportionof the total traffic leaving the network via edgelink
l;, while the seconds reversedandis identicalundertraffic conser
vation— thatis, the assumptiorthatthe interior network is neithera
source,nor sink of traffic. While this assumptioris violated (e.qg.,
protocolsrunningin the network interior act sourcesandsinks,and
paclet dropsact as sinks) the volumesinvolved are insignificantin
thenetwork consideredMost notablythe actualresultsfrom thetwo
equationsarealmostidentical.

3.1.2 GeneanlizedGravity Model

It is possibleo generalizehesimplegravity modelof Section3.1.1
to take into accounta wide rangeof additionalinformationprovided
by link classificationandrouting policy. In this Section,we will in-
corporatenew informationto modellarge ISP routing policies.

Typically, in large North-AmericanlSPs,the majority of traffic is
exchangedetweemetwork customerandnetwork peers.The pat-
ternsandhandlingof customerand peertraffic are qualitatively dif-
ferent,andthis hasalargeimpacton thetraffic matrix. Furthermore,
this peeringtraffic hasa largeimpacton every aspecbf network de-
signandengineeringand so estimatingthe associatedraffic matri-
cesis very important. In this Section,we adaptthe gravity modelto
specificallydifferentiatebetweercustomerandpeeringtraffic.

We assumehatthe network hasa setof peerdabeledP,, Ps, .. .,
andexchangegraffic with peerP; over a setof edgelinks dedicated
tothispeer Thisis commonlytermedprivate peeringandis thedom-
inantmodeof peeringfor large IP backbonedoday We alsohave a
setof customercceséinks, labeleda, as, . . ., andasetof peerinks
labeledp:, p2, . . .. We denotethe setof edgelinks carryingtraffic to
peer P; by P;, andthe setof all peerlinks by P. We denotethe
setof all customeraccesdinks by .4. SNMP measurementgrovide
volumesof traffic on all edgelinks, j: 7;%:°"*(j), wherethe super
scriptsin (ouf) denotedraffic into (out of) the backbone.The traffic
entering or exiting the network to peerp;, is

Theer(Pi) = Z Tk (P),
PEP;

wherez = in or out.

We will develop the equationgor a gravity modelunderthe fol-
lowing additionalassumptionswhich reflectdominantinternetand
ISProutingpolicies:

e Transit peer (peeringlink to peeringlink) traffic. We assume
thatthevolumeof traffic thattransitsacrosgshebackbondrom
onepeernetwork to anotheris negligible.

e Outbound (accesdink to peeringlink) traffic. We apply the
proportionalityassumptiorunderlyinggravity modelingon a
peerby-peerbasis:thatis, thetraffic exiting to a specificpeer
comesfrom eachaccesdink in proportionto thetraffic onthat
accesdink. We assumethat all of the traffic from a single
accesdink to the given peerexits the network on the same
peeringlink (determinedby the IGP andBGP routing config-
uration). We denotethe exit peeringlink for traffic from ac-
cesslink a; to peerP; by X (as, P;). This may be derived
from routing configurationinformation(See[13, 15].) Theas-
sumptionis typically truein practice gxceptfor examplewhen
short-termload balancings performed.In suchsituationsour
methodcould be supplementedvith availablestatisticson the
affected prefixes, thoughour experienceis that the impactis
smallanddoesnotaffecttheaccurag of thetraffic matrixcom-
putations.

e Inbound (peeringlink to accesdink) traffic. A network opera-
tor haslittle controlovertheinjectionof traffic into its network
from peernetworks. Accordingly we assumehat the traffic
enteringfrom a given peeringlink is split amongsthe access
links in proportionto their outboundtraffic.

e Internal (accesdink to accesdink) traffic. We assumethat
the fraction of internaltraffic from a givenaccessink a; to a
secondaccessink a; is proportionalo thetotaltraffic entering
thenetwork ata;, andcomputethetraffic betweerthelinks by
normalization.

Undertheseassumptiontheoutboundraffic fromaccess$ink a; €
A to peeringlink p,, € P; is

Tlii!:]k (a» ) out i
ZakeA Tllil?]k(ak? Tpeer(P])a

if Pm = X(aiﬂ P])-
0, otherwise

Toutbound (ai ; pm) -

Theinboundtraffic from peeringlink p; to accesdink a; is
i ﬂguﬁ(aj)
Tinbound (i a5) = Diink (D) = .
P e Tk o)
Theinternaltraffic from accesdink a; to accessink a; is

Tllllrj1k(a'l) out

Tinternal (ai, aj) = Z Tin (ak) Tinternal (aj)'
ap €A ~link

where

T‘i?jltl(';rnal ((lj )

T‘l?rlllli (a]) - Z ﬂnbound (pk 5 aj)

prEP
_ o) (1o Zweer Tink(P0)
Y > ca Lomk(ar)

The compleity of the algorithmis O(N?) in the numberof edge
links beingconsideredput thenumberof operationpertermis small.
Computationof the generalizedyravity modelfor the completenet-
work in question(of the orderof 1000routers)took lessthan3 sec-
onds(on a 336 MHz Ultrasparc-llprocessor) Despitethe speedand
simplicity of gravity modelssuchasthatexpresse@bove, themodels
have the significantdravback of not guaranteeingonsisteng with
theinternallink measurements the network. Remedyinghis leads
usto thetomographianethodsliscusseahext.



3.2 Tomography

Network tomograply, asmentionecearlier is theproblemof deter
mining the end-to-endraffic matrix from link loads. Thelink traffic
is the sumof the traffic matrix elementshat are routedacrossthat
link, andsowe mayseeour problemasfollows. We have a setof ob-
senablesx = (1, 22,...,21)7, thetraffic (asmeasuredn paclets
or bytes)thattraverseghe L links of thenetwork duringsomeperiod,
which derive from thetraffic matrix following equation(2) wheret is
thetraffic matrix, written asa columnvectort = (t1,t2,...,tn)%,
wherethe M traffic matrix elementst,., arethe traffic betweerthe
rth source/destinatiopair, and A = {A;,} isthe L x M routing
matrixwhere

Air:{

whereF;, is thefractionof traffic from source/destinatiopair r that
traverseslink i. In someformulationsof the problem, an additive
term e appearn the right handside of equation(2) to modelmea-
suremenerror.

We needto solve the inverseproblemto obtaint. For general
topologiesandroutingtherearetypically mary moreunknovnsthan
constraintsandso equation(2) is highly underconstrainecanddoes
not have a uniquesolution. In orderto infer t it is usefulto adopt
a traffic modelof somekind — in the previous work on network to-
mograply the model allows the addition of higherorder statistical
constraintsOur approachis notto incorporateadditionalconstraints,
but ratherto usethe gravity modelto obtainaninitial estimateof the
solution,which needgo berefinedto satisfythe constraintsThede-
tails arepresentedbelaw, but first it is importantto reducethe sizeof
the problemto make computatiorof the solutionmoremanageable.

Fi'r-,
0,

if traffic for r traversedink 2
otherwise

®)

3.2.1 Reducinghe ComputationalCompleity

One of the main problemswith practicalapplicationof ary to-
mographictechniqueis the size of the routing matrix. The chosen
datasamplesn the study cover on the orderof a thousandouters,
which would leadto an intractablylarge problem(with millions of
unknawvns). Oneapproachis to dealonly with smallerproblems.For
example,[7] examinesPoPto PoPtraffic matrices.In this paperwe
focuson computingBR to BR traffic matrices,which aregenerally
much more usefulfor traffic engineeringaskssuchasload balanc-
ing, andareabsolutelynecessaryor link/routerfailure analysis.We
candirectly derive PoPto PoPtraffic matricesfrom BR to BR ma-
tricesusingrouting information. However, evenif we only consider
backboneouterstheremay be of the orderof onehundred leading
to a problemwith over ten thousandunknawvns, which is ordersof
magnitudemorethanthe availableconstraintonlink traffic volume.

In this sectionwe developtechnigueshatcansignificantlyreduce
the numberof unknavns (in our caseby afactorof 10 for the BR to
BR traffic matrix) andthusmakingthe computatiorof traffic matrix
bothmoreaccurateandmoreefficient.

Our key obsenationis thatmary BR to BR matrix elementsare
emptyasa resultof the fact that theremay be multiple BRs within
eachPoPR andso traffic will flow only betweenthe closestof these
(asdeterminedy IGP routing). For instanceconsiderthe simplified
topology shawvn in Figure3. Heretherearetwo BRsin eachPoR
connectingeRswithin the PoPwith redundantinks. Givenshortest
pathrouting (andequallink weightson backbondinks), onecansee
that all of the traffic from PoPB, to PoPC will traversethe route
throughBRs2 and3, while therewill benotraffic enteringthe back-
bonenodesatBR 1 anddepartingatBR 4. While thisis avery simple
example,in operationalP networks, the setof pathsconsistentvith
IP routingwill typically be significantlylessthanthe setof all paths
betweerrouterpairs.

Considerthe BR to BR traffic matrix, anddenotethetraffic matrix
from BR B; to B; by Tﬁ. We usethefollowing simplealgorithmfor
removing all theemptydemands:

1 Initially markall elementof the BR to BR traffic matrixasempty
2 Foreachpairof ERssimulatethelGP asin [19] to find theshortest
pathsbetweerthe sourceanddestinatiorrouter;

For eachpath,let B; and B; beits first andlastBRsrespectrely,
andmarkT;; asnotempty;

Remove all T,L-Jf- thatremainempty This stepis equialentto re-
moving elementdrom t thatwill bezerobecauséhecorrespond-
ing routeis notused(unlessfailuresoccur).

We canexploit thetopolagical equivalencef ERsto avoid having
to run IGP simulationsfor all possiblepairs of routers,which can
be prohibitive dueto their large number We considertwo ERsto
be topolagically equivalentif they connectto the same(non-empty)
setof BRs andthe IGP weightson the correspondindinks arethe
samé. We groupsuchequivalentedgerouterstogetherandconsider
themasa single Edge RouterEquivalenceClass(EREC). The key
obsenationis thattheroutesbetweerthecomponenERsof thesame
pair of ERECswill be the sameexceptfor the first and last links.
Consequentlywe only needto run onelGP simulationfor eachpair
of ERECs.We foundthatcomputingrouteson this basisreduceghe
computationaburdenby at leasta factorof 20.

After eliminating all the empty demandswe are able to reduce
the numberof unknavns by a factorof 10, therebyturning a highly
underconstrainegbrobleminto amoderatelyunderconstrainegbrob-
lem, while makingthe computatiorordersof magnitudefaster

The routing matrix is requiredfor all methodsexceptthe simple
gravity model. Thetime takenin computingthe routing matrix dom-
inatesall otheralgorithmswe use takingtwo to threeminutes.How-
ever, notethatthis costcan often be amortizedover multiple traffic
matrix computationdecauseave only needto recomputeherouting
matrix whenthe network topologychangesThe algorithmto reduce
the problemsize canbe performedaspart of computingthe routing
matrix, with a computationatostthatis a very small maiginal cost
ontop of computingthe routingmatrix itself.

3.2.2 Quadmtic Programming

Fromthe (link to link) gravity model,we caneasilyobtainanes-
timate of the BR to BR traffic matrix (T®) usingrouting informa-
tion [20]. Thelink to link traffic matrix elementsareroutedacross
thebackboneandwe thencomputethetraffic volumesbetweereach
pair of backboneouters(notethatwe loosethe distinctionbetween
peeringand accesgraffic in this step). We term the resultingesti-
mateasthe gravity modelsolution (denotedast,). We thenrefine
the gravity modelsolutionby usinga least-squarsolutionthat min-
imizesthe Euclideandistanceto the gravity model solution subject
to the tomographicconstraints.More specifically we would like to
solwve thefollowing quadratigprogram

min |t —tg |l
s.t. || At — x| is minimized
where|| . || is the L2 normof avector(i.e., the Euclideandistanceo

theorigin).

We alsoinvesticate weightedleast-squaresolutionsin which the
projectiononto the subspacés not orthogonal,but ratherweighted
by afunctionof thesizeof theestimatedraffic matrix elementst,).
Thatis, we use|| (t — ty)/w || asthe objective function to mini-
mizein the above quadraticprogram,wherew is the weightvector
and/ is theelement-by-elementectordivision. We investicatethree
weightingschemesn this paper;theweightfor eachtermof thetraf-
fic matrixis either: constantjinearly proportionatlto thetermsin the
gravity modeltraffic matrix, or proportionatlto the squareroot of the
gravity model.

Theremay be a multiple layer hierarcly of ERswithin a PoR and
lowerlayerERspasdraffic to BRsonly throughthehigherlayerERs.
We mayremove thelower layerof ERsfrom consideratioraswe see
their (network impacting)traffic atthehigherlayer



Figure 4 illustratesthe approachin a simple casewith two un-
knowns (unknawn traffic alongtwo routes),andone constraint(one
known link load). The constraint(s)specify a sub-spacef the pa-
rameterspace(in this casejust a line), while the gravity modelis
one particularsolution. The simple least-squarespproachis just
anorthogonalprojectionof the gravity modelsolutiononto the con-
straintsub-spaceTheweightedleast-squaresolutiongivesdifferent
weightsto differentunknavnsin thesolution.

least-squares solution

\‘\ /Neighted least squares

gravity
model

“~._constraint
“~_ subspace

Figure 4: An illustration of the least-squase solution. The point
shows the gravity model solution, and the dashedline shows the
subspacespecified by a single constraint equation. The least-
square solution is simply the point which satisfiesthe equation
which is closestto the gravity modelsolution. The weightedleast-
squaressolution givesdiffer ent weight to differ ent unknowns.

Notethatthetomographiconstraintsnaybeill-poseddueto pos-
sible dependencamongdifferentlink constraints.Furthermorethe
constraintamay not be satisfiabledueto error andnoisein the link
load dataor possiblerouting changeghat are not capturedby the
topology data. The standardtechniquefor dealing with ill-posed
guadraticprogramsis to use SingularValue Decomposition(SVD)
of theroutingmatrix A to computeits pseudo-imerse.Theresulting
solutionis the closestto the initial solutiont, amongall solutions
that minimize the discrepang against the tomographicconstraints
(I At — z ||). Routinesto computethe pseudo-inerseareavailable
in mary numericalcomputingpackagegfor instancesee[21]). We
have implementedur methodin Matlab,andthe actualalgorithmis
sosimplethatit only takes6 linesof code(seethe Appendix).

The worst casecompleity of the above algorithmis linearin the
numberof unknawvns (elementf the traffic matrix), and quadratic
in the numberof constraintshowever, in practicethe compleity of
singularvaluedecompositiormethodss generallylessthanthis. For
instancethe SVD usedin LAPACK [21], andthenceMatlab (which
usestheseroutines)are usually betterthanthis compleity estimate
wouldindicate.In reality, thealgorithmis very fast,with thecompu-
tationtimeson a 336 MHz Ultrasparc-1lprocessofrunning Solaris
7) all significantlyunder2 seconds.

One additionallocus of compleity is that the least-squarealgo-
rithm mayresultin negative valueswhicharewithoutphysicalmean-
ing. Onecanavoid this by viewing the problemasa constrainedp-
timization problem. However, a simpleiterative procedureprovides
afastandeffective alternatve. Specifically we uselterative Propor
tional Fitting (IPF) assuggestedh [10] to ensurenon-n@ativity. We
do not modelhigherorderstatisticsof the processandthereforethe
initial conditionwe useis notascomple asthatin [10]. For theini-
tial estimatewe simply usethe traffic matrix estimatedabove, with
zeroreplacingthe nggative elementof the matrix. IPFthenproceeds
by successiely refiningthe estimateusingthe samemethodas[10].
In practiceit only takesa few iterationsto reduceerrorsin the con-
straintequationdo the pointatwhich they arenegligible.

3.3 The CompleteAlgorithm

Below we summarizehe completetomograity method.

1 Apply thegeneralizedjyravity modelto obtainalink to link traffic
matrix.

2 Transformthe above traffic matrixinto a BR to BR traffic matrix,
anduseit asourinitial gravity modelsolution(ty).

3 Reducethe compleity of the tomograply problemby remaoving
empty BR to BR demands.Topologicalequivalenceof ERscan
be exploitedto speedup theroutecomputatiorby afactorof 20.

4 Apply singularvalue decompositiorto solve the quadraticpro-
gram and find a solution that minimizesits distanceto t, (in
weightedeast-squarsenseyubjecto thetomographiconstraints.

5 Replacenagative valueswith zero, and performIPF to obtaina
non-n@ative solutionthatsatisfieghe constraints.

4. VALID ATION

In this section we validateour methodsusingactuallnternetdata.
We first describethe basicvalidationmethodology We thenvalidate
the underlyingassumptiongor the gravity modelswe use. This is
followed by a detailedcomparisorof the quality of the resultsob-
tainedby differentmethods. Finally, we presentsomepreliminary
resultson therobustnes®f thetomograity method.

4.1 Methodology

In anidealervironment,we would lik e to validatetheresultsusing
a consistentset of real traffic matrix, topology andlink measure-
ments. Unfortunately we do not have the completesetof flow level
dataacrossthe edgeof the network (dueto problemsin the vendor
implementation®f flow collection). Furthermorethe routing data
we have availablecomesn 24 hoursnapshotsandtheflow level data
is sampleddata,with its own limitations. Thereforejt is notpossible
for usto obtaina completetraffic androuting matrix consistentvith
theactualSNMPlink measurements.

We solwve the problemof providing a consistensetof traffic, topol-
ogy andlink measuremendataasfollows. We first derive a setof
hourly (partial) traffic matricesbasedon direct flow level measure-
mentsusing the methodologydescribedn [13]. We then simulate
OSPFroutingusingthetopologyandroutinginformation. Fromthis
we may computea routing matrix A, andthenderive a setof link
measurements from equation(2). Thusthe traffic matrix t, the
routingmatrix A andthemeasuredink loadsx areall consistent.

We can then estimatet for a problemfor which we know the
“ground truth” — the real traffic matrix. This approachhasthe ad-
ditional advantagethatit isolatestheimpactsof measuremergrrors
andinconsistencieom the performancef thealgorithms(thetopic
of this paper). We cantherebystudythe impactof measuremergr-
rorsseparatelyandmorepreciselyaswe caninducetheerrors rather
thaninfering themfrom multiple (possiblyinconsistentplatasets.

Notethatwe useusederivedlink loadmeasurement®r validation
purpose®nly. In practice ourmethods applicableo directlink data
suchasonewould obtainfrom SNMR andwe have in factapplied
themdirectlyto SNMPdatafor operationatasksin capacityplanning
andnetwork management.

4.2 Gravity Models

In this section,we validatethe basicassumptionsinderlyingour
gravity models,in particularthe assumptioron constanfriction fac-
tors,whichis thesimplestpossibleapproximatiorto the R x R fric-
tion matrix.

By simple rearrangementsf the basic equationsof the gravity
model,it is clearthatwhentheestimatedriction factorsareconstant,
theactualfriction factorsareconstanif andonly if theratio between
theestimatedaindtheactualmatrix elementareconstantClearlythe
constanshouldbe 1 asthe gravity modelsmaintainthe correcttotal
traffic volumethroughappropriatenormalization.As aresult,to test
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(a) Simplegravity model all 507 hourly traffic matricesfor boththe simpleandthegeneralized
gravity model. Thisindicatesthattheinterceptis indeedcloseto 0.
Theseresultsshav that the generalizedgravity modelis signifi-
cantlymoreaccuratehanthe simplegravity model,which highlights
R theimportanceof explicitly takinginto accountiSP routing policies
@ I in gravity modeling. Moreover, despiteits simplistic assumptions
é o Pl aboutthetraffic (i.e. proportionality andconstanfriction factor),the
g e L7 modelcancapturetheoverall distribution of thematrix elementsery
x 8 I well. As aresult,the resultingestimatecan provide a good starting
E P o - pointfor thetomographiestimationstep.
o L ’ oo/ e o
g Co o 4.3 Performance
G 6;@9@; L2 o The main methodof validationwe useis to directly comparethe
o gPlatss estimatedraffic matrix elementsith thetruetraffic matrix. Figure7
<§é ° o providesa comparisorof methodsfor computingthe gravity matrix
0% e
for onehourchoserrandomlyfrom June2002. In eachcasewe plot
e " the true value of the elementsof the traffic matrix versusthe esti-
real matrix elements d H :
(b) Generalizedyravity model matedva_lue. (The ex_actvaluesof traffic on the network in question
are considerecproprietaryso the scalesare not presentbut are not

) ) ) . neededor thecomparisorio bevalid.) Thesoliddiagonaline shavs
Figure5: A comparisonof the realtraffic matrix elementsto the gqualityandthe dasheddiagonallines shav +20%. For a base-line
traffic matrix elementsestimatedby the gravity model. The solid  comparisorwe first shav in Figure7 (a) the least-squarsolutionto
diagonalline shows equality, while the dashedlines shov £20%.  equation(2), to demonstratéhatadirectsolutionof theequationdoes

not producea goodresult. Figure7 (b) shaws the resultof the sim-
Figure5 illustratesthetwo link to link gravity modelsfor onehour ple gravity model, which are also fairly inaccurateoverall, though
chosenrandomly from June2002. In eachcasewe plot the true betterthanthe pure leastsquaresapproach.Figure 7 (c) shows the
valueof the elementof thetraffic matrix versusheestimatedralue. generalizedyravity model,andwe canseea dramaticimprovement
Clearly, the closerthe points clusteraroundthe diagonal,the more over the previous algorithms,thoughit is still not perfect. Finally,
accuratehe model. It appearghatthe generalizedyravity modelis Figure 7 (d) shavs the resultswith the generalizedgravity model,
moreaccuratehanthe simplemodel. andtheleast-squaresolution(usingsquareroot weights). This final
To quantify the linear associatiorbetweenthe real and the esti- solutionappearsemarkablygood.
matedmatrix elements,we computethe correlationcoeficient for To quantifythe quality of theresults,it might seemidealto estab-
eachhourlytraffic matrix, alongwith theleast-squareegressiorline. lish a directlink to traffic andnetwork engineeringapplications for
We needto verify two facts: ) the correlationcoeficientis closeto instancefor capacityplanning. However, theseinvolve complex al-
1 (sothatthe pointsarecloselycenteredaroundthe regressioriine), gorithmsin their own right, andso we shall attemptto presensome
andiq) theinterceptof theregressiorine is closeto 0. simple metricsfor the quality of the resultswhich have somelink-
Figure6 shavs the distribution of the correlationcoeficientsover ageto the engineeringequirementsThe requirementgdravn from
theentireJune2002datasetFor the simplegravity model,thecorre- extensve corversationwith engineersdoing capacityplanningand
lation coeficient typically lies between0.65and0.8, which aresig- network design)canbe approximatelystatedthus: we requirerea-
nificant,but notaslargeaswe wouldlike. In contrastthecorrelation sonablerelative accurag for thelargerelementf thetraffic matrix,
coeficientsfor the generalizedyravity modelareconsistentlyabose andnot too large absoluteerrorsfor all matrix elements.How large
0.9,indicatingvery stronglinearassociation. is areasonablerror?In light of theothersourcef errorin Internet
We next computethe 95% confidencanterval for the interceptof planning,and accurag measuredn a few ten’s of percentis quite
theregressioniine undertheassumptiorthattheregressiorresiduals tolerable gspeciallyif theerrorsfor thelargerflows aresmaller This
is Gaussian.We find that the 95% confidenceinterval covers0 on is furtherbacked up by work suchasthatin [22], which shovedthat
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Table 1: Performance of the various algorithms over 507 individual hourly data setsfrom June 2002. The RMSRESs are computed
on the largestmatrix elementscomprising 75% of the network traffic, and the RMSE is computedon all the traffic matrix elements

Algorithm traffic matrix errors corelink errors
initial solution  LSE weights| RMSE(Mbps) RMSRE | RMSE(Mbps) RMSRE
Raw yes N/A 89 65% 174 37%
SimpleGravity no N/A 85 62% 260 54%
SimpleGravity yes const 27 22% 9 2%
SimpleGravity  yes linear 28 24% 4 1%
SimpleGravity yes root 25 21% 4 1%
GeneralGravity no N/A 40 31% 117 24%
GeneralGravity yes const 16 13% 4 1%
GeneralGravity yes linear 16 13% 4 1%
GeneralGravity yes  root 15 12% 4 1%

for the month.




atleastonenetworkingtask(routingoptimization)couldstill provide weightingsis small).
substantiatapacityimprovementsevenwhenthe errorsin theinput ~ Thestatisticsabore appeato favor usingthesquareootweighting
traffic matricesweresignificantlylargerthanthosereportechere. schemepresentedabore. We investicate further to seewhetherthis
It seemghatasinglemetricis unlikely to coverthis adequatelyso is really the case.In Figure8 we vary T' in computingthe RMSRE
we shallpresenseveral. Two shovn herearetheRootMeanSquared andshov theRMSREfor thethreeweightingsconsideredgompared
Error (RMSE),andtheRootMeanSquaredRelative Error (RMSRE), with thevolumeof traffic in thematrix elementsabove thethreshold.

definedbelow. Theresultsshav thatno oneschemes a clearwinner, but thesquare
A root schemeseemdo win overall. We have investigatedsomeother
1 X . ) weightingscheme$ut have notfounda superiorone.
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TheRMSEgivesanoverallmetricfor theerrorsin the estimatesand

the RMSREgivesarelative measurebut notethattherelative errors
for small matrix elementsare not really importantfor engineering,
andsowewhencomputingthe RMSREwetake only matrixelements
greaterthan somethresholdT" (and thereforewhen computingthe

meannormalizedby the numberof matrix elementgyreaterthan T, ) 2
namelyNr =30, 1), f PP ]

We computethesemetricsnot just to comparethe errorsin the =
traffic matriceshemseles,but alsoto compareheobsenables.That 0= :
is we usethe estimatedraffic matrix to predictthelink loadson core 0 20
links, andcomparewith therealload on thesdinks.

Tablel summarizesheresultsfor thedifferentpossiblealgorithms Figure 8: The RMSRE for varying thresholdfor the June 2002
— in theseresults1" is chosenso that 75% of the traffic is capture yaia  The x-axis shows the proportion of the network traffic
by the RMSRE. Note that this truncationremores elementsof the falling above the threshold, and the y-axis shows the RMSRE
traffic matrix whosemagnitudeis at most5% of the capacityof the ¢, the varying thr eshold. 'I:he resultsshaw that the RMSRE is
smallestlink the the backbonenetwork being considered. Hence, smaller for the larger matrix elements.

evenquitelargerelative errorscanbetoleratedn thesetermsaslong

RMSRE for top % of traffic
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asthe errorsarenot highly correlated(which shouldbe guaranteed 1 he plot alsoprovides anotherview into the performanceof the

by satisfyingthetomographicconstraints).

Thefirst threecolumnsof thetablespecifythealgorithmby its ini-
tial conditions whetherthe LSE methodis applied,andif it is, what
weightsare used. The quality metricsabove are presentedoth for
the errorsin the estimatedraffic matrix, andthe estimatectorelink
traffic, andarebasedon our entiresetof datafor June2002 (though
therearemissingdaysin this datasetthe datasetstill containsover
5000nehourintervalsof data).

TheRMSEresultsarequotedn Mbpsandthesemayall seenrela-
tively smallin comparisorio the scaleof the network —thebackbone
consistgrimarily of reasonablyvell utilized OC48andOC192links
(2.5 and 10 Gbpsrespectiely), but in particularnote their relative
valuesfor comparison.Thelink errorsare not asinterestingasthe
traffic matrixerrorsin somerespectshecaus¢herearemary possible
(incorrect)solutionswhich canproducethe correctcounts.However,
it is importantfrom a practicalstandpointto get theseat leastap-
proximatelycorrect,andtheresultsshav thatwithoutatomographic
componentthelink traffic estimatesnaybequiteinaccurateWhena
tomographiccomponents usedthe errorsin thelink loadsareof the
samemagnitudeasthetargetederrorlevel usedin thelPF component
of thealgorithm,asrequired.

The resultsuniformly shaw? that (a) the simple gravity modelis
betterthan the raw least-squareslgorithm, and that (b) using the
least-squarewith agravity modelinitial conditionprovidesadefinite
improvement,not just in the estimatedink rates(which is whatthe
methoddirectly improves), but alsoin the traffic matrix estimates.
Furtherthegeneralizedjravity modelis betterthanthesimplegravity
model. However the bestresultcomesfrom tomograity, usingthe
generalizedgravity model with the weightedleast-squaresethod
usingsquareroot weights(thoughthe improvementover usingother

20therperformancenetricsinvestigateduniformly supportthe con-
clusiondrawn from Table1.

algorithm,asthethresholdusedis varied. For instanceFigure8 also
demonstratethattheresultsarebetterfor the largermatrix elements
(asthethresholdincreaseshe volumeof the thresholdednatrix ele-
mentsdecreasesandthe performanceémproves). The RMSREactu-
ally dropsbelown 5%for thetop 20%of traffic. Thisis averydesirable
result, but we canalsoseethata very large proportionof the traffic
(over 90%)hasa RMSRElessthan20%.

Figure 1 shavs the distribution of errorsfor the generalizedyrav-
ity modelwith square-rootveightedleastsquaresandthe particu-
larly notevorthy point to take away from this plot is thatmorethan
30% of the estimatedmatrix elementshave a negligible error (less
than0.5%). The plot alsoshaws the 5th and 95th percentilesof the
distribution thatlie within £23%. Furthermorethe plot shavs that
the resultsare not biasedin onedirectionor the other Thus,when
we aggr@ate theseresultsto higherlevels, for instancePoPto PoP
traffic matricesthe errorsshouldnot addto make thingsworse. We
examinewhetherthisis the casein thefollowing figure.

Figure9 shaws the percentagef traffic (over the whole dataset)
for which the magnitudeof the relative error belov somevalue (for
thegeneralizedjravity modelwith square-rootveightedeastsquares).
Onceagainwe seegoodresults:morethan30%of thetraffic hasneg-
ligible relative error, andnearly 70% hasan error lessthan 10% for
the BR to BR traffic matrix. Further aswe have notedearlier it is
possibleto derive PoPto PoPtraffic matricedirectly from the BR to
BR traffic matrices. The dashedine in Figure 9 shaws the equia-
lentcurvefor suchmatrices shawing thattheperformancés actually
slightly betterover the majority of thedistribution for the PoPto PoP
matrices.In fact,the RMSE for the PoPto PoPmatrix is 10 Mbps,
while theRMSREis 11%.

Another methodto assesshe quality of the resultsis to look at
the predictionour estimatedraffic matrix would make of properties
of the network. A simpleexampleis presentedn Figure 10, which
shavsthepercentagef traffic in thelargest/N matrix elementsThe
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Figure 9: The percentageof traffic where the magnitude of the
relative error below somevalue (x-axis) for the June 2002 data.
The solid line shaws the curve for the backbonerouter to back-
bonerouter matrix, and the dashedline shows the curve for the
PoP to PoP traffic matrix. Note that for nearly 30% of the traffic
the error is negligible.

plot shavs how skewed the traffic matrix is, andhow importantit is
to estimatethe largestmatrix elementscorrectly The figure shavs
the actualdistribution, andthe estimatedistribution — they arehard
to distinguishbecausehereis almostno discernibledifference.
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Figure 10: The percentageof traffic in the largestN matrix ele-
mentsfor the realtraffic matrix (solid) and the estimatedtraffic
matrix (dashed).

Finally, considemwhathappenso theestimatesvertime. Wewant
to beableto answerguestionsboutthevariability of thetraffic, or to
detecttrendsor changesn thetraffic matrix. It is thereforedesirable
for theresultsto remainstable-thatis, for theerrorsin theestimated
traffic matrixto remainapproximatelyconstanbvertime, evenasthe
traffic matrix itself changes.Figure 11 shavs two comparisonof
elementsof the traffic matrix over time, with their predictedvalues
(notethe gapsarewhereour archive is missingdata). Thefirst shavs
a casewheretheerroris very small. Thetwo curves(the actualand
estimatednatrix elementsjprealmostindiscernible eventhoughwe
canseecleardiurnal variationin the traffic, anda profounddropin
thetraffic at onepoint wherethe network topologychangeddramat-
ically. The estimategrack the traffic matrix perfectly The second
plot shavstheresultsfor acasethatis notsoaccurateput onceagain
we seethatthe estimatedraluefollows the variationof the true flow
smoothly Thusevenwherethereareerrorsin thetraffic matrix, the
resultscanstill be usedfor a rangeof operationaktaskssuchasde-
tectingtraffic changes.
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Figure 11: Comparison for two matrix elementsover time. In
the first casewe seethat the estimatedvalue tracks the true value
almostexactly, while in the secondcasealthough thereis an error
in the estimate,the error changesonly slowly over time. Gapsin
the data indicate missingdata in our archive.

4.4 Robustness

In this section,we evaluatetheimpactof measuremergrrorsand
inconsistenciesn theperformancef thetomograity methodby in-
ducinganerrorterme to thetomograply constraints:

x = At +e. (8)

All thenumericakesultspresentetherearefor thetomograity method
usingthe generalizedyravity modelwith the weightedleast-squares
methodusing squareroot weights. The error term € is formed by
multiplying thex with awhite noiseterm. Specifically

e=xxN(0,0), 9)

wherex is element-by-elementectormultiplication,and N (0, o) is
a vectorwith randomentriesdravn from a normaldistribution with
mean0 and standarddeviation o. To ensurethe non-n@ativity of
X — €, we capthenormaldistributionat 1.

traffic matrix errors corelink errors
NoiseLevel RMSE RMSRE RMSE RMSRE
noisefree 15Mbps 12% | 4 Mbps 1%
o =0.01 15Mbps 13% | 6 Mbps 1%
o =0.02 16 Mbps 14% | 10 Mbps 2%
o =0.04 19Mbps 17% | 18 Mbps 4%

Table 2: Performanceof the tomogravity method under differ ent
noise levels (0%, 1%, 2% and 4%) over 507 individual hourly
data setsfrom June 2002.

Table 2 summarizeghe performanceof the tomograity method
underdifferentlevels of noise (0%, 1%, 2% and 4%)3. Theresults
shav thatwhile theinducednoisemakesthe estimatedraffic matrix
lessaccuratgasonewould expect),the overall performancedegra-
dationis small— the additionalestimationerrorson both matrix ele-
mentsandlink obsenablesare of the samesize,or smallerthanthe
introducederrorsontheobsenables.Similarbehaior is alsoevident
in Figure 12, wherewe vary the thresholdl” in computingthe RM-
SREandshav theRMSREcomparedvith thevolumeof traffic in the
matrix elementsabove the threshold . While a moredetailedstudyof
robustnessnustthoroughlyinvestigatethe typesof measuremergr
rorsseenin practice theseresultsshawv thatthetomograity method
is robustto measuremergrrorson the obsenables.

3T is choserto capturethe top 75%traffic, asin Tablel.
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sults shaw the overall performance degradation due to induced
noiseis small.

5. CONCLUSION

We have presenteda simple, fastand practicalmethodcalled to-
mogravity for computingrouterto routertraffic matricesin large IP
networks, basedon widely availablelink measurementsThe tomo-
gravity methodcombineghe bestfeaturesof gravity modelsandto-
mographictechniquesThe methodscaleso handlenetworks larger
than ary previously attemptedusing alternatve methods,andit is
very fast(taking lessthan’5 seconddor a large network). Further
more,thisrouterto routertraffic matrixmaybeusedto directly derive
anevenmoreaccuratePoPto PoPtraffic matrix.

We have validatedthe methodon the a large commerciallP back-
bonenetwork, wheredirect measurementsf the traffic matrix were
available for June2002. The resultsshav remarkableaccurag for
the larger elementsn the traffic matrix: the estimatedypically fall
within a few percentof true values. Theselarger valuesdominate
network andtraffic engineeringapplications.However, the accurag
over all the matrix elementss still reasonableand Tomograity is
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Thereareseveralavenuedor furtherimprovements.In particular
we would like to be ableto include additionalconstraintsn the so-
lution. For instancejf onehaspartial flow level dataavailable,this
could provide additionalconstraints.Anotheravenueof exploration
is the useof alternatve startingpointssuchasthatproposedn [7].
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APPENDIX
A. MATLAB SOURCECODE

% wei ght ed | east-squares estimate of the T™M

% | nput :

% A  matrix Ain constraints x=A*t

% X vector X in constraints x=A*t

% tg initial gravity nodel solution

% w  wei ght vector

% Qut put :

% t estimated traffic matrix (as a vector)

% that mnimzes |(t-tg)./w
% among all t’'s that nminimze | A*t-x|
function [t] = Wse(A Xx,tg,w
% equi val ently transform x=A*t
% xw=Aw*tw, where tw=(t-tg)./w
XW = X - A*tgQ;
[r, c] = size(A;
Aw = A .* repmat(w, r, 1);
% sol ve tw=Aw*tw by conputing the pseudo-
% inverse of matrix Aw (through svd)
tw = pinv(full (AW)) * xw
%transformtw back to t
t =tg +w.* tw

into



