• Home
  • Publications
  • Life
  • Readings

Ruohan Zhang
PhD Student
Vision, Cognition, and Action Lab
Artificial Intelligence Research Group
Department of Computer Science
The University of Texas at Austin

Contact:
Desk: GDC 3.518B
Email: zharu at utexas dot edu
  • Understanding Human Intelligence in the Era of Artificial Intelligence.
    Ruohan Zhang, Research Summary, 2020. [pdf]

    Preprints

    • Cortical Spikes use Analog Sparse Coding.
      Dana H. Ballard, Ruohan Zhang, Luc Gentet
      bioRxiv, 2020. [pdf]

    • Explanation augmented feedback in human-in-the-loop reinforcement learning.
      Lin Guan, Mudit Verma, Sihang Guo, Ruohan Zhang, Subbarao Kambhampati
      arXiv, 2020. [pdf]

    • Efficiently Guiding Imitation Learning Algorithms with Human Gaze.
      Akanksha Saran, Ruohan Zhang, Elaine Schaertl Short, Scott Niekum.
      arXiv, 2020. [pdf]

    • An Initial Attempt of Combining Visual Selective Attention with Deep Reinforcement Learning.
      Liu Yuezhang, Ruohan Zhang, Dana H Ballard.
      arXiv, 2019. [pdf]

    • Journals/Conference Proceedings

    • Human Gaze Assisted Artificial Intelligence: A Review.
      Ruohan Zhang, Akanksha Saran, Bo Liu, Yifeng Zhu, Sihang Guo, Scott Niekum, Dana Ballard, Mary Hayhoe.
      International Joint Conference on Artificial Intelligence (IJCAI) Survey Track, 2020. [pdf]

    • Parallel Neural Processing with Gamma Frequency Latencies.
      Ruohan Zhang, Dana H. Ballard
      Neural Computation, 2020. [link] [pdf]

    • The Hierarchical Evolution in Human Vision Modeling.
      Dana H. Ballard, Ruohan Zhang
      To appear in Topics in Cognitive Sciences, 2020. [pdf]

    • Atari-HEAD: Atari Human Eye-Tracking and Demonstration Dataset.
      Ruohan Zhang, Calen Walshe, Zhuode Liu, Lin Guan, Karl S. Muller, Jake A. Whritner, Luxin Zhang, Mary M Hayhoe, Dana H Ballard.
      AAAI Conference on Artificial Intelligence (AAAI), 2020. [pdf] [dataset] [poster] [talk at AAAI2020 RLG Workshop]

    • Leveraging Human Guidance for Deep Reinforcement Learning Tasks.
      Ruohan Zhang, Faraz Torabi, Lin Guan, Dana H. Ballard, Peter Stone.
      International Joint Conference on Artificial Intelligence (IJCAI) Survey Track, 2019. [pdf]

    • Modeling Sensory-Motor Decisions in Natural Behavior.
      Ruohan Zhang, Shun Zhang, Matthew H. Tong, Yuchen Cui, Constatin A. Rothkopf, Dana H. Ballard, Mary M. Hayhoe.
      PLOS Computational Biology, 2018. [link] [talk at VSS2017]

    • AGIL: Learning Attention from Human for Visuomotor Tasks.
      Ruohan Zhang, Zhuode Liu, Luxin Zhang, Jake A. Whritner, Karl S. Muller, Mary M. Hayhoe, Dana H. Ballard.
      European Conference on Computer Vision (ECCV) 2018. [link] [talk at VSS2018]

    • Model Checking For Safe Navigation Among Humans.
      Sebastian Junges, Nils Jansen, Joost-Pieter Katoen, Ufuk Topcu, Ruohan Zhang, Mary Hayhoe
      International Conference on Quantitative Evaluation of SysTem (QEST) 2018. [link]

    • Attention Guided Deep Imitation Learning.
      Ruohan Zhang*, Zhuode Liu*, Mary M. Hayhoe, Dana H. Ballard. (*equally contributed)
      Cognitive Computational Neuroscience (CCN), 2017. [pdf]

    • Fast and Precise Black and White Ball Detection for RoboCup Soccer.
      Jacob Menashe, Josh Kelle, Katie Genter, Josiah Hanna, Elad Liebman, Sanmit Narvekar, Ruohan Zhang, Peter Stone.
      RoboCup Symposium, 2017. [pdf]

    • Greedy Direction Method of Multiplier for MAP Inference of Large Output Domain.
      Xiangru Huang, Ian E.H. Yen, Ruohan Zhang, Qixing Huang, Pradeep Ravikumar and Inderjit S. Dhillon.
      Artificial Intelligence and Statistics (AISTATS), 2017. [pdf] [code]

    • UT Austin Villa: Project-Driven Research in AI and Robotics.
      Katie Genter, Patrick MacAlpine, Jacob Menashe, Josiah Hanna, Elad Liebman, Sanmit Narvekar, Ruohan Zhang, and Peter Stone.
      IEEE Intelligent Systems 31(2), 2016. [pdf]

    • Dual Decomposed Learning with Factorwise Oracle for Structural SVM of Large Output Domain.
      Ian E.H. Yen, Xiangru Huang, Kai Zhong, Ruohan Zhang, Pradeep Ravikumar, and Inderjit S. Dhillon.
      Advances in Neural Information Processing Systems (NIPS), 2016. [pdf]

    • Decision-Making Policies for Heterogeneous Autonomous Multi-Agent Systems with Safety Constraints.
      Ruohan Zhang, Yue Yu, Mahmoud El Chamie, Behçet Açikmese, and Dana H. Ballard.
      International Joint Conference on Artificial Intelligence (IJCAI), 2016. [pdf]

    • Maximum Sustainable Yield Problem for Robot Foraging and Construction System.
      Ruohan Zhang, and Zhao Song.
      International Joint Conference on Artificial Intelligence (IJCAI), 2016. [pdf]


    Symposiums/Workshops

    • Attention Guided Imitation Learning and Reinforcement Learning.(Doctoral Consortium)
      Ruohan Zhang
      Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI), 2019. [pdf]

    • Attention Guided Imitation Learning and Reinforcement Learning.(Poster)
      Ruohan Zhang
      Natural Environments Tasks and Intelligence (NETI), 2019. [pdf]

    • Learning Attention Model From Human for Visuomotor Tasks. (Abstract)
      Luxin Zhang, Ruohan Zhang, Zhuode Liu, Mary M. Hayhoe, Dana H. Ballard
      Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), 2018 [pdf]

    • Participatory Art Museum: Collecting and Modeling Crowd Opinions.(Abstract)
      Xiaoyu Zeng and Ruohan Zhang.
      Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI), 2017. [pdf]

    • Global Policy Construction in Modular Reinforcement Learning.(Abstract)
      Ruohan Zhang, Zhao Song, and Dana H. Ballard.
      Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI), 2015. [pdf]

    • Visual Attention Guided Deep Imitation Learning.
      Ruohan Zhang*, Zhuode Liu*, Luxin Zhang, Karl S. Muller, Mary M. Hayhoe, Dana H. Ballard. (* equally contributed)
      NIPS Cognitively Informed Artificial Intelligence Workshop, 2017. [pdf]

    • UT Austin Villa 2017 Team Description Paper for the Standard Platform League.
      Katie Genter, Josiah Hanna, Josh Kelle, Elad Liebman, Jacob Menashe, Sanmit Narvekar, Ruohan Zhang, and Peter Stone
      RoboCup Symposium, 2017. [pdf]

    • Modular Maximum Likelihood Inverse Reinforcement Learning.(Poster)
      Ruohan Zhang, Shun Zhang, Mattew H. Tong, Mary M. Hayhoe, and Dana H. Ballard.
      Natural Environments Tasks and Intelligence (NETI), 2016. [pdf]

    • UT Austin Villa 2016 Team Description Paper for the Standard Platform League.
      Katie Genter, Josiah Hanna, Josh Kelle, Elad Liebman, Jacob Menashe, Sanmit Narvekar, Rishi Shah, Ruohan Zhang, and Peter Stone.
      RoboCup Symposium, 2016. [pdf]

    • UT Austin Villa 2015 Team Description Paper for the Standard Platform League.
      Katie Genter, Josiah Hanna, Elad Liebman, Jacob Menashe, Sanmit Narvekar, Jivko Sinapov, Ruohan Zhang, and Peter Stone.
      RoboCup Symposium, 2015. [pdf]

Design: Ruohan Zhang