
Austin Villa@Home 2020 Team Description Paper

Yuqian Jiang Haresh Karnan Gilberto Briscoe-Martinez
Dominick Mulder Ryan Gupta Stone Tejeda Justin Hart

Luis Sentis Peter Stone

November 1, 2019

Abstract. UT Austin Villa has participated in four RoboCup@Home
competitions, performing respectably in each. What is more exciting,
however, is that we have begun a strong program of research that has
been in part inspired by our efforts in this competition. It is our inten-
tion to build a comprehensive service robot system which is used in our
laboratories, in a real-world deployment in our CS Department, and to
compete in RoboCup@Home. In this Team Description Paper, you will
find the highlights of our efforts and our plans for 2020.

1 Introduction

Using the RoboCup@Home team as a focal point for inter-department and inter-
laboratory collaboration, UT Austin Villa@Home has pursued an ambitious re-
search program towards the goal of the development of a comprehensive service
robot system. We want to enter RoboCup@Home not with a suite of different
programs for each round, but with a single program which is capable of compet-
ing and winning.

UT Austin Villa@Home is a collaborative effort between PIs and students
in the Computer Science, Mechanical Engineering and Aerospace Engineering
departments at the University of Texas at Austin. We have competed in four
RoboCup@Home events. In 2007, we took second place. In 2017, we entered into
the newly-formed Domestic Standard Platform League (DSPL) and took third
place, having received our robot only a couple of months before the competi-
tion. In 2018, the team developed a design intended to allow us to develop a
single system which would enter into all of the stages of the competition, en-
compassing knowledge representation, mapping, and architectural aspects. The
team advanced to the second stage and was able to score in difficult tasks such as
Enhanced General Purpose Service Robot (EGPSR). In 2019, we improved the
system with better perception and manipulation modules. While we were unable
to demonstrate our capabilities fully at the 2019 competition due to hardware

1



2

issues,1 the progress made leading up to the competition would set a good start-
ing for 2020 and open many research opportunities. Our efforts have resulted in
five publications [1,2,3,4,5]. Going into 2020, we plan to further improve the core
components of our system and develop more rigorous approaches to the tasks.

2 Software and Scientific Contributions

This section describes the component technologies we developed across multiple
tasks for our robot architecture, knowledge representation, semantic perception,
and object manipulation on top of the HSR software stack. To the extent pos-
sible, we built our approach in a manner consistent with our ongoing Building-
Wide Intelligence project [6]. While using a different hardware platform, many of
the objectives and capabilities are the same. Indeed we have previously designed
an underlying architecture that is common to the two platforms [5].

2.1 Robot Architecture

Our architecture is designed for service robots to handle dynamic interactions
with humans in complex environments. The three-layer architecture, as shown in
Figure 1, outlines integration of the robot’s skill components, such as perception
and manipulation, with high-level reactive and deliberative controls. The top
layer sequences and executes skills, and is reactive during execution to respond
to changes. A central knowledge base facilitates knowledge sharing from all the
components. The deliberative control layer uses the knowledge base to reason
about the environment, and can be invoked to plan for tasks that cannot be
statically decomposed. Details on implementation of these layers can be found
in our recent paper [5].

Plan Executor

Reactive 
Control

Deliberative
Control

Skills

Planner Database

Knowledge 
Representation

Pick-up Navigate to Follow

Hierarchical Finite State Machines

Interfaces
...

Fig. 1. Implementation of our robot architecture on HSR.

1 The robot we shipped to the competition did not clear customs in time, and the
replacement we were loaned had some faulty hardware.



3

2.2 Knowledge Representation and Planning

Our KR subsystem stores knowledge in a SQL database in order to allow for fast
access and easy querying. Queries can be formed using a custom C++ library.
The library can be interfaced through a simple predicate logic form which can be
then imported for planning. Core to our KR subsystem is the ability to reason
about hypothetical objects, as can be seen in our team’s qualification video. In
the video, when the person asks for a piece of fruit, the system is both able
to reason about incomplete information (the non-specificity of ”fruit”) and to
reason about a hypothetical apple that it has not yet witnessed. It is also able
to address the potential inaccuracy of this information (there is no apple), and
to report this error to the user. Details on our knowledge representation and
planning system can be found in our recent paper [2].

2.3 Perception

We employ a semantic perception module whose purpose is to process raw video
and depth data from the robot’s sensors and extract information that can be
processed by the manipulation, navigation, and knowledge reasoning modules.
The main output representations are a query-able point cloud of objects in the
environment and a partial 3D map of the world.

The main input to our semantic perception module is RGBD camera data.
Compressed RGB and depth images from the robot are streamed to an offboard
computer that runs the perceptual system. This image data is then consumed
by finding objects via the YOLO object detection network [7], and constructing
a point cloud. Next, semantic information about the world is synthesized in two
main ways: a partial 3D environmental map and object cloud. For the former,
regions of the point cloud corresponding to detected objects are fused together
over time in a probabilistic Octree representation based on Octomap [8], which
allows for the realtime construction of a partial 3D map of the world. For the
latter, point estimates of the locations of objects are stored in a KD-Tree and
wrapped with an efficient querying interface that integrates with our knowledge
representation system. The synthesized semantic information is then made avail-
able to plugins in an event-based model, where a plugin can request access to
semantic information that it wants to operate on. Plugins used include custom
RANSAC edge detectors used to detect surfaces, and bounding box fitting on
the 3D map for use in manipulation.

A significant limitation is the partial nature of the 3D environmental map.
Only a partial map is constructed due to the realtime processing constraint;
namely, full views of the world cannot be stitched together at framerate using
the Octomap technology. Alternatively, GPU-based techniques for combining
full point clouds could potentially overcome this limitation, and thus provides a
direction for future development. Benefits of having full 3D environmental maps
include the ability to directly localize objects with respect to the robot.



4

2.4 Manipulation

The purpose of our manipulation system is to enable the pick up and put down of
diverse objects of different shapes and sizes. Our manipulation stack consists of
three main components which we describe below: grasp pose generation, parallel
motion planning, and closed-loop correction.

First, our semantic perception system provides 3D bounding boxes for ob-
jects worth manipulating. Based on these bounding boxes, potential grasp poses
are computed that place the gripper on the top of the object as well as on all
sides, with multiple possible rotations of the wrist. Of these poses, invalid con-
figurations are filtered out by projecting the gripper onto the object and seeing
if there is a collision.

Once grasp poses are determined, motion plans need to be determined in
order for the robot to achieve a desired grasp pose. In order to do this quickly,
we employ a parallel motion planning architecture built on top of the Moveit
framework [9]. Our motion planning architecture is comprised of primary and
secondary nodes. The secondary nodes handle generating motion plans for each
potential grasp pose, while the primary node coordinates and handles executing
motion plans. Specifically, secondary nodes plan in parallel, and the first motion
plan found is what is executed. The rationale behind this is that different grasp
poses will require different yet unknown amounts of time for finding motion
plans. Since motion planning takes a significant amount of time, reducing this
bottleneck greatly speeds up the entire manipulation pipeline. Furthermore, the
Moveit framework can sometimes crash when trying to find plans. In our setup,
this problem is mitigated: If a secondary node dies from such a crash, then
the other secondary nodes are still present, allowing the system to continue
functioning.

Next, executing a motion plan precisely is usually not feasible. This is be-
cause, as the plan is executed, the software solely uses odometry to control its
position and the resultant drift can cause errors in how much the robot thinks it
has moved. To overcome this obstacle, we slightly modify desired grasp poses by
having the gripper be some offset away from the object. This way, after a motion
plan is generated and executed, the robot’s gripper is close to the object, but
there remains a small gap. We take advantage of this small gap by employing a
proportional controller based on object detections from the robot’s hand camera
to correct for odometry drift. This practically means that the robot shifts slightly
to align the gripper perfectly with the centroid of the object. The gap is then
closed by moving in a straight line towards the object, leading to a successful
grasp.

3 2019 Task Approaches and Results

This section provides, for the main tasks we attempted in 2019, a summary of
our approach, the challenges overcome, successes and limitations of the approach,
and directions for future improvements.



5

3.1 Storing Groceries

Fast perception and manipulation are crucial in this time-constrained task, which
has shaped our approach. First, the robot identifies and localizes the kitchen
table by exploiting two known pieces of information: the location of the pantry
cupboard and the height of the table. Namely, the robot navigates to the pantry
cupboard, and then scans around for an edge that is exactly the height of the
table. Next, as objects have been passively perceived throughout the previous
step, our semantic perception system is queried for all objects that are on the
table. Of these, a random object is chosen and pushed through our manipulation
system which causes the robot to pick up the object. Subsequently, the pantry
cupboard is localized in a similar way as the table, and we query for all objects
that are currently in the pantry. The final component of the task is deciding
where to place the grasped object in our gripper. The simplest case is when the
knowledge base knows a priori that two objects are part of the same category
(e.g. sprite and ginger ale). Otherwise, we use a word2vec [10] model fine-tuned
on a custom corpus to decide the similarity between our grasped object and the
objects in the pantry.

Our manipulation system is designed to work with a variety of object shapes
and sizes. However, increased speed and reliability can come from exploiting the
fact that most objects are quite small. Specifically, complex motion planning
could be abandoned in favor of positioning the robot’s gripper above the table
and executing a simple motion downwards until the gripper hits the table. While
not all objects can be picked up this way, many reliably can. Our qualification
video shows the robot successfully executing the above behavior.

3.2 Take out the Garbage

This task relies mainly on quick navigation and manipulation, with emphasis on
speed and accuracy. A particular challenge is precise localization near the trash
cans. As the locations of the trash cans are known beforehand, the HSR is able
to navigate to a position in the arena where it is directly facing the trash can.
Once facing the trash can, the HSR reaches out its arm and points its arm with
the hand camera facing directly downward. From there, a 2D bounding box of
the target is generated by YOLO object detection on the hand camera image.
If the lid is on the can, it will be detected and become the target for the HSR
to grab. Otherwise, the trash bag with the trash can will be detected and used
as the grab target.

The HSR uses the position of the generated 2D bounding box to align its
hand with the target. A proportional controller is used to publish a velocity
command to the robot base based on the distance between the center of the
hand camera image and the center of the bounding box. Once this distance is
within a certain tolerance, the hand is directly above the target and the velocity
command is set to zero. With the height of the trash can also known ahead of
time, the HSR can then lower its arm straight down until it is at the height of



6

Fig. 2. Sequence of actions for taking out a trash bag to the collection zone.
Ordered from top left to bottom right.

the lid handle. If the lid is already removed, the HSR will instead lower its hand
down into the trash can to grab the bag.

Figure 2 shows the sequence of states for the robot to pickup and deposit
trash. In Step 1 , the robot navigates to the trash can and places its hand
facing downward. In Step 2 and 3, the robot performs closed loop control using
proportional controller to reduce the 2D translational error between hand camera
plane and trash can lid plane. The robot then picks up the trash can lid, followed
by the trash bag in steps 4,5,6 and 7. In step 8, the robot navigates to the
collection zone, navigating through the arena avoiding obstacles along the way.
Finally in step 9, the robot deposits the trash bag. We noticed that in step 8, the
trash bag sometimes blocks the HSR’s LIDAR and hence the navigation stack
is unable to charter a plan to the goal as a blocked LIDAR is equivalent to a
static obstacle infront of the robot. To solve this problem, we raise the height at
which the HSR holds the trash bag while transporting it. In Step 9, the robot
performs a bidirectional roll motion on the wrist, which helps in dropping the
bag from the gripper and placing it successfully on the ground. Our qualification
video shows the above behavior including a pick up of one of the trash lids for
extra points.



7

3.3 Serving Drinks

This task presents perception and manipulation challenges alongside HRI. First,
the robot navigates to the bar to check which drinks are available. Once this is
done, we utilize OpenPose [11] to detect and then navigate to people in the liv-
ing room that require beverages. The closest person is asked for their name and
drink order through Google Cloud’s speech-to-text service. The speech recog-
nition often misinterpreted the order or the name and to catch when a robot
misheard their order, the person’s speech was checked against a dictionary of
rhyming words (e.g. to correct Santa to Fanta). However, this method has po-
tential limitations should two drinks off the menu have similar names and im-
proved recognition would facilitate human-robot interaction in this task. The
robot proceeds to query our semantic perception system for the requested drink
and then attempts to grab it. Ideally, the drink should be delivered to the same
person that requested it, but facial recognition proved to be highly unreliable
and therefore there was failure in delivering the drink back to the same person.
Our qualification video shows the robot’s execution of the above behavior.

3.4 Restaurant

As the most dynamic task, Restaurant requires navigation, perception, and ma-
nipulation in an unseen and chaotic environment. For increased reliability, we
bypass all manipulation in this task and focus our efforts on the navigational
and human interaction challenges this task has to offer. First, the bar is detected
by asking the bartender to raise his or her hands. Next, waiting customers are
detected by employing a velocity-based hand waving gesture classifier; arms from
OpenPose skeletons are identified, and the velocity of the wrist relative to the
shoulder is checked over a few frames. This allows the robot to see which cus-
tomers are waving. Once detected, the customer must be maplessly navigated
towards.

A challenge however is determining where to move to. After all, moving to
exactly the customer’s location would be equivalent to running them over, which
would lead to immediate disqualification. Instead, just like a normal waiter, the
robot should move close to the customer, such as right beside their table. Though,
since we are in a previously unseen area, the robot has no knowledge of where
tables are or what areas would be appropriate to move to. To that end, the
robot looks at its local obstacle map, and finds the ”island” the the customer is
on. By island we mean an occupied region surrounded by free space. Generally,
the customer, the chairs they are sitting on, and their table, will be an island
surrounded by free space that the robot can move to. The shortest path to the
customer is planned, and the farthest point on that path which does not collide
with the island is where the robot moves to.

4 Conclusion

UT Austin Villa@Home has been a strong competitor and has a tradition of
synergistic research our RoboCup@Home team and our other research efforts.



8

RoboCup@Home has become a driving force in robotics research at UT Austin.
We look forward to seeing everyone in Bordeaux this summer.

References

1. Rishi Shah, Yuqian Jiang, Haresh Karnan, Gilberto Briscoe-Martinez, Dominick
Mulder, Ryan Gupta, Rachel Schlossman, Marika Murphy, Justin Hart, Luis Sen-
tis, and Peter Stone. Solving service robot tasks: Ut austin villa@home 2019 team
report. In AAAI Fall Symposium on Artificial Intelligence and Human-Robot In-
teraction for Service Robots in Human Environments (AI-HRI 2019), November
2019.

2. Yuqian Jiang, Nick Walker, Justin Hart, and Peter Stone. Open-world reasoning for
service robots. In Proceedings of the 29th International Conference on Automated
Planning and Scheduling (ICAPS 2019), July 2019.

3. Justin W. Hart, Rishi Shah, Sean Kirmani, Nick Walker, Kathryn Baldauf, Nathan
John, and Peter Stone. Prism: Pose registration for integrated semantic map-
ping. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), October 2018.

4. Justin Hart, Harel Yedidsion, Yuqian Jiang, Nick Walker, Rishi Shah, Jesse
Thomason, Aishwarya Padmakumar, Rolando Fernandez, Jivko Sinapov, Ray-
mond Mooney, and Peter Stone. Interaction and autonomy in robocup@home
and building-wide intelligence. In Proceedings of the AAAI Fall Symposium on
Artificial Intelligence and Human-Robot Interaction (AI-HRI), October 2018.

5. Yuqian Jiang, Nick Walker, Minkyu Kim, Nicolas Brissonneau, Daniel S Brown,
Justin W Hart, Scott Niekum, Luis Sentis, and Peter Stone. Laair: A layered
architecture for autonomous interactive robots. In Proceedings of the AAAI Fall
Symposium on Reasoning and Learning in Real-World Systems for Long-Term Au-
tonomy (LTA), October 2018.

6. Piyush Khandelwal, Shiqi Zhang, Jivko Sinapov, Matteo Leonetti, Jesse Thoma-
son, Fangkai Yang, Ilaria Gori, Maxwell Svetlik, Priyanka Khante, Vladimir Lifs-
chitz, et al. BWIBots: A platform for bridging the gap between AI and human–
robot interaction research. The International Journal of Robotics Research, 36(5-
7):635–659, 2017.

7. Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. arXiv preprint
arXiv:1612.08242, 2016.

8. Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. OctoMap: An efficient probabilistic 3D mapping framework based on
octrees. Autonomous Robots, 2013. Software available at http://octomap.github.
com.

9. David Coleman, Ioan Sucan, Sachin Chitta, and Nikolaus Correll. Reducing the
barrier to entry of complex robotic software: a moveit! case study. arXiv preprint
arXiv:1404.3785, 2014.

10. Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In Ad-
vances in neural information processing systems, pages 3111–3119, 2013.

11. Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. OpenPose:
realtime multi-person 2D pose estimation using Part Affinity Fields. In arXiv
preprint arXiv:1812.08008, 2018.

http://octomap.github.com
http://octomap.github.com


Austin Villa@Home 2020 Team Description Paper

HSR Software and External Devices [DSPL]

Fig. 3. HSR

We use a standard Human Support Robot (HSR) from
Toyota. No modifications have been applied.

Robot’s Software Description

We are using the following 3rd party software:

– Object recognition: YOLO
– People and activity recognition: OpenPose
– Manipulation: MoveIt
– Planning and reasoning: Clingo (answer set solver)

External Devices

We are using the following external devices:

– Alienware 17 Laptop (Backpack)
– MSI Laptop (Backpack)

Cloud Services

We are using the following cloud services:

– Speech recognition: Google Cloud Speech API

Robot software and hardware specification sheet


	Introduction
	Software and Scientific Contributions
	Robot Architecture
	Knowledge Representation and Planning
	Perception
	Manipulation

	2019 Task Approaches and Results
	Storing Groceries
	Take out the Garbage
	Serving Drinks
	Restaurant

	Conclusion

