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ABSTRACT
Hierarchies are powerful tools for decomposing complex con-
trol tasks into manageable subtasks. Several hierarchical
approaches have been proposed for creating agents that can
execute these tasks. Layered learning is such a hierarchical
paradigm that relies on learning the various subtasks nec-
essary for achieving the complete high-level goal. Layered
learning prescribes training low-level behaviors (those closer
to the environmental inputs) prior to high-level behaviors.
In past implementations these lower-level behaviors were al-
ways frozen before advancing to the next layer. In this pa-
per, we hypothesize that there are situations where layered
learning would work better were the lower layers allowed to
keep learning concurrently with the training of subsequent
layers, an approach we call concurrent layered learning. We
identify a situation where concurrent layered learning is ben-
eficial and present detailed empirical results verifying our
hypothesis. In particular, we use neuro-evolution to concur-
rently learn two layers of a layered learning approach to a
simulated robotic soccer keepaway task. The main contri-
bution of this paper is evidence that there exist situations
where concurrent layered learning outperforms traditional
layered learning. Thus, we establish that, when using lay-
ered learning, the concurrent training of layers can be an
effective option.
Categories and subject descriptors: I.2.6 [Artificial In-
telligence]: Learning—Connectionism and neural nets; I.2.8
[Artificial Intelligence]: Robotics—Autonomous vehicles.
General Terms: Algorithms, Experimentation.
Keywords: evolution, adaptation, learning.

1. INTRODUCTION
Hierarchies are powerful tools for decomposing complex

control tasks into manageable subtasks. As a case in point,
mammalian biology is a composition of hierarchically or-
ganized components, each able to perform specialized sub-
tasks. These components span many levels of behavior rang-
ing from individual cells to complex organs, and culminat-
ing in the complete organism. Even at the purely behavioral
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level, organisms have distinct subsystems, including reflexes,
the visual system, etc. It is difficult to imagine a monolithic
entity that would be capable of the range and complexity of
behaviors that mammals exhibit.

Similarly, hierarchical approaches have been proposed to
help create agents for complex control tasks (e.g. [2, 4]).
Layered learning [19, 20] is such a hierarchical paradigm
that relies on learning the various subtasks necessary for
achieving the complete high-level goal. Layered learning is
a bottom-up paradigm by which low-level behaviors (those
closer to the environmental inputs) are trained prior to high-
level behaviors.

The original implementation of layered learning [15] con-
sisted of three learned layers. Lower-level behaviors were
always trained and then frozen before advancing to the next
layer. Once a subtask was learned, it was not allowed to
change while subsequent subtasks were learned. This ap-
proach can aid learning by reducing the space of possible so-
lutions we must search at a given time. However, it can also
be restrictive. In our analogy to mammalian biology, that
restriction is akin to requiring that cells completely evolve
and remain fixed prior to evolving organs, which in turn
must remain unchanged as high-level behaviors develop.

In this paper, we hypothesize that there are situations in
which layered learning would work better were the lower lay-
ers allowed to keep learning concurrently with the training of
subsequent layers. We identify such a situation and present
detailed empirical results verifying our hypothesis. We re-
fer to such concurrent training within the layered learning
paradigm as concurrent layered learning.

Concurrent layered learning is consistent with the existing
layered learning formalism. The main contribution of this
paper is to establish that, when using layered learning, the
concurrent training of layers can be an effective option.

The remainder of this paper is organized as follows. Sec-
tion 2 explains layered learning as well as the substrate sys-
tems with which our implementation of layered learning is
built, namely neuro-evolution and the robotic soccer keep-
away testbed. Section 3 details our approach to applying
traditional layered learning (without concurrent training)
to the keepaway task and Section 4 shows how we modify
this approach to use concurrent layered learning. Section 5
presents the results of our experiments verifying the advan-
tage of the concurrent approach. Section 6 discusses our
results and relates them to other research and Section 7
concludes.



2. BACKGROUND AND METHOD
Our particular implementation of layered learning uses the

neuro-evolution ML algorithm [14] as the substrate learning
approach. Our experiments are all conducted within a keep-
away subtask of simulated robotic soccer. In the remainder
of this section, we provide background on layered learning,
neuro-evolution, and keepaway. We also introduce the tools
necessary for implementing concurrent layered learning and
mention some essential previous research. We discuss addi-
tional related work in Section 6.

2.1 Layered Learning
Table 1 summarizes the principles of the layered learning

paradigm which are described in detail in this section1.

1. A mapping directly from inputs to outputs is not
tractably learnable.

2. A bottom-up, hierarchical task decomposition is given.

3. Machine learning exploits data to train and/or adapt.
Learning occurs separately at each level.

4. The output of learning in one layer feeds into the next
layer.

Table 1: The key principles of layered learning.

Principle 1
Layered learning is designed for domains that are too com-
plex for learning a mapping directly from the input to the
output representation. Instead, the layered learning ap-
proach consists of breaking a problem down into several task
layers. At each layer, a concept needs to be acquired. A ma-
chine learning (ML) algorithm abstracts and solves the local
concept-learning task.

Principle 2
Layered learning uses a bottom-up incremental approach
to hierarchical task decomposition. Starting with low-level
subtasks, the process of creating new ML subtasks contin-
ues until the high-level tasks, that deal with the full domain
complexity, are reached. The appropriate learning granular-
ity and subtasks to be learned are determined as a function
of the specific domain. The task decomposition in layered
learning is not automated. Instead, the layers are defined
by the ML opportunities in the domain.

Principle 3
Machine learning is used as a central part of layered learning
to exploit data in order to train and/or adapt the overall
system. ML is useful for training functions that are difficult
to fine-tune manually. It is useful for adaptation when the
task details are not completely known in advance or when
they may change dynamically. Like the task decomposition
itself, the choice of machine learning method depends on the
subtask.

Principle 4
The key defining characteristic of layered learning is that
each learned layer directly affects the learning at the next

1This section is adapted from [20].

layer. A learned subtask can affect the subsequent layer by:

• constructing the set of training examples;

• providing the features used for learning; and/or

• pruning the output set.

Formalism
Consider the learning task of identifying a hypothesis h from
among a class of hypotheses H which map a set of state
feature variables S to a set of outputs O such that, based on
a set of training examples, h is most likely (of the hypotheses
in H) to represent unseen examples.

When using the layered learning paradigm, the complete
learning task is decomposed into hierarchical subtask layers
{L1, L2, . . . , Ln} with each layer defined as

Li = ( ~Fi, Oi, Ti, Mi, hi)

where:

~Fi is the input vector of state features relevant for learning
subtask Li. ~Fi = <F 1

i , F 2
i , . . .>. ∀j, F

j
1 ∈ S.

Oi is the set of outputs from among which to choose for
subtask Li. On = O.

Ti is the set of training examples used for learning subtask
Li. Each element of Ti consists of a correspondence

between an input feature vector ~f ∈ ~Fi and o ∈ Oi.

Mi is the ML algorithm used at layer Li to select a hypoth-
esis mapping ~Fi 7→ Oi based on Ti.

hi is the result of running Mi on Ti. hi is a function from
~Fi to Oi.

As stated in Principle 2 of layered learning, the definitions
of the layers Li are given a priori. Principle 4 is addressed
via the following stipulation. ∀i < n, hi directly affects Li+1

in at least one of three ways:

• hi is used to construct one or more features F k
i+1.

• hi is used to construct elements of Ti+1; and/or

• hi is used to prune the output set Oi+1.

It is noted above in the definition of ~Fi that ∀j, F
j
1 ∈ S.

Since ~Fi+1 can consist of new features constructed using hi,
the more general version of the above special case is that
∀i, j, F

j
i ∈ S ∪i−1

k=1
Ok.

Layered learning was originally applied in a complex, multi-
agent learning task, namely simulated robotic soccer in the
RoboCup soccer server [10]. In this implementation [15],
the learning of each hi was completed before training layer
Li+1.

In the concurrent layered learning approach we propose,
hi is not frozen when we start to train Li+1. Hence, the af-
fect that hi has on Ti+1 is not fixed throughout the learning
of Li+1, but instead changes constantly as hi continues to
learn.



2.2 Neuro-Evolution
Our implementation of layered learning uses neuro-evolution

as its ML algorithm Mi at each layer. Neuro-evolution is a
machine learning technique that uses genetic algorithms to
train neural networks [14]. In its simplest form, it strings the
weights of a neural network together to form an individual
genome. Next, it evolves a population of such genomes by
evaluating each one in our domain and selectively reproduc-
ing the fittest individuals through crossover and mutation.

The Enforced Sub-Populations Method (ESP) [6] is a more
advanced neuro-evolution technique. Instead of evolving
complete networks, it evolves sub-populations of neurons.
ESP creates one sub-population for each hidden node of the
fully connected two-layer feed-forward networks it evolves.
Each neuron is itself a genome which records the weights
going into and coming out of the given hidden node. As
Figure 1 illustrates, ESP forms networks by selecting one
neuron from each sub-population to form the hidden layer
of a neural network, which it evaluates in the task. The
fitness is then passed back equally to all the neurons that
participated in the network. Each sub-population tends to
converge to a role that maximizes the fitness of the networks
in which it appears. ESP is more efficient than simple neuro-
evolution because it decomposes a difficult problem (find-
ing a highly fit network) into smaller subproblems (finding
highly fit neurons).

Sub−Populations A Complete NetworkNeurons

Figure 1: The Enforced Sub-Populations Method (ESP). The
population of neurons is segregated into sub-populations shown
here as clusters of grey circles. One neuron, shown in black, is
selected from each sub-population. Each neuron consists of all the
weights connecting a given hidden node to the input and output
nodes, shown as white circles. The selected neurons together form
a complete network which is then evaluated in the task.

In several benchmark sequential decision tasks, ESP out-
performed other neuro-evolution algorithms as well as sev-
eral reinforcement learning methods [6]. ESP is a promising
choice for our task because the skills required in the keep-
away game we consider are similar to those ESP has excelled
at before.

2.2.1 Coevolution
The genetic algorithm is a natural ML technique with

which to implement our modification of layered learning be-
cause it provides an elegant method for concurrent learning:
coevolution. Coevolution consists of simultaneously evolv-
ing multiple components that perform different roles but are
evaluated in a common domain. Coevolution can be com-
petitive [7, 13], in which case these roles are adversarial and
one component’s gain is another’s loss. Coevolution can
also be cooperative [12], as when the various components
share fitness scores. Multi-Agent ESP [23] is an extension
of ESP that allows multiple components to coevolve coop-
eratively. In this system, each component is evolved with a

separate, concurrent run of ESP. For each fitness evaluation,
Multi-Agent ESP forms a network from each ESP and then
evaluates these networks together in the task, all of which re-
ceive the same score when the evaluation completes. Multi-
Agent ESP has been successfully used to master multi-agent
predator-prey tasks [23].

In concurrent layered learning, before training in Li+1 be-
gins, we take the best network from Li and use it to seed
a new population. This new population continues to learn
along with a separate population learning Li+1. Hence, we
evolve the two layers cooperatively using the same method
as Multi-agent ESP, though each of our networks are not
separate agents but rather components of the same agent.
To perform a fitness evaluation, we take a network from the
first population, which was seeded from the results of Li, and
evaluate it in Ti+1 together with a network selected from the
second population, which is learning Li+1 from scratch. The
resulting score is shared by both networks.

2.2.2 Delta-Coding
To seed a population from the results of Li, we use a

technique called delta-coding [22]. When delta-coding, we
take the result of a given layer, hi, and use it to create a
new population, each member of which is a perturbation
of hi. The network that will perform task Li optimally in
Ti+1 is likely to be near hi but occasionally may be radically
different. Hence, we base the amount of perturbation on a
Cauchy distribution, such that most of the new individuals
are very similar to hi but a few are significantly different.

Delta-coding is an effective method for preventing prema-
ture convergence to a local maxima by restoring diversity
to the population. It is particularly well suited to helping
populations adjust to sudden changes in their training en-
vironment [5]. Hence, it is an excellent way to seed a new
population from the results of an earlier layer.

2.3 Keepaway
The experiments reported in this paper are all in a keep-

away subtask of robotic soccer [18]2. In keepaway, one team
of agents, the keepers, attempts to maintain possession of
the ball while the other team, the takers tries to get it, all
within a fixed region.

We implement the keepaway task within the SoccerBots
environment [1]. SoccerBots is a simulation of the dynam-
ics and dimensions of a regulation game in the RoboCup
small-size robot league [16]. Two teams of robots maneu-
ver a golf ball on a field built on a standard ping-pong ta-
ble. SoccerBots is smaller in scale and less complex than the
RoboCup simulator [10], but it runs approximately an order
of magnitude faster, making it a more convenient platform
for machine learning research.

To set up keepaway in SoccerBots, we increase the size of
the field to give the agents enough room to maneuver. To
mark the perimeter of the game, we add a large bounding
circle around the center of the field. Figure 2 shows how a
game of keepaway is initialized. We place three keepers just
inside this circle at points equidistant from each other. We
place a single taker in the center of the field and place the
ball in front of a randomly selected keeper.

After initialization, an episode of keepaway proceeds as

2The definition and implementation of the keepaway domain
in the SoccerBots environment is joint work with Nate Kohl
and Risto Miikkulainen.
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Figure 2: A game of keepaway after initialization.

follows. The keepers receive one point for every pass com-
pleted. The episode ends when the taker touches the ball
or the ball exits the bounding circle. The keepers and the
taker are permitted to go outside the bounding circle.

In this paper, we evolve a controller for the keepers, while
the taker is controlled by a fixed intercepting behavior. The
keepaway task requires complex behavior that integrates
sensory input about teammates, the opponent, and the ball.
The agents must make high-level decisions about the best
course of action and develop the precise control necessary
to implement those decisions. Hence, it forms a challenging
testbed for machine learning research.

2.4 Previous Research
In previous research, we have succeeded in learning com-

plete agents for a keepaway task in the SoccerBots environ-
ment [21]. Using neuro-evolution as the substrate learning
method, we have employed layered learning to develop a
suite of agents that perform this task.

The research presented in this paper is motivated by a
particular question that arose during the course of that re-
search. Despite our eventual success, we found that requir-
ing the lower layers to be fixed can be restrictive because
two adjacent layers are sometimes interdependent. For ex-
ample, we cannot properly train an agent to pass unless we
know how its teammates will try to receive its passes. But
how can we train an agent to receive passes before we have
a passer to kick to it? In situations like these, regardless
of how we order the two layers, the training environment of
the lower layer will be necessarily sub-optimal.

Here, we examine whether the effects of such imperfect
training environments can be mitigated or eliminated by
allowing the lower layer to continue to evolve. This question
has not previously been examined in connection with the
layered learning paradigm.

3. TRADITIONAL LAYERED LEARNING
IN KEEPAWAY

In this section we detail a “traditional” layered learning
approach to creating agents for the keepaway task. That is,
each learned layer is frozen before learning the next higher
layer. In Section 5 we experimentally compare this imple-
mentation to the concurrent layered learning implementa-
tion described in Section 4.

To control the keepers, we develop a set of three homo-
geneous agents, each of which can perform several heteroge-
neous roles. All the agents have the same set of behaviors
and the same rules governing when to use them, though they
are often using different behaviors at any given time. Unlike
soccer, where a strong team will have forwards and defend-

ers specialized for different roles, the symmetry of keepaway
lends itself towards homogeneous teams. Having identical
agents makes learning easier, since each agent learns from
the experiences of its teammates as well as its own.

Figure 3 shows a simple decision tree for controlling each
keeper in the keepaway task. If the agent is near the ball,
it kicks to the teammate that is more likely to successfully
receive a pass. If it is not near the ball, the agent tries to get
open for a pass unless a teammate announces its intention
to pass to it, in which case it tries to receive the pass by
intercepting the ball.

Near Ball?

Get OpenInterceptPass To 
Teammate #1

Passed To?

Pass To 
Teammate #2

Teammate #1 Safer?

Yes

YesYes

No

NoNo

Figure 3: A decision tree for controlling keepers in the keepaway
task. We implement the behavior at each of the leaves with layers
from the learning hierarchy. Another layer, pass evaluation, is
used to decide which teammate to pass to.

To implement this decision tree, the agents must master
four different skills. Three of these skills correspond to the
behaviors at the leaves of the tree: passing, intercepting,
and getting open. The fourth skill, pass evaluation, is the
ability to analyze the current game state and estimate the
likelihood of successfully passing to a specific receiver. We
use pass evaluation, not at a leaf of the tree, but at a branch,
when deciding which teammate to pass to.

Figure 4 shows one way that agents can master these skills
using a traditional layered learning approach. An arrow
from one layer to another indicates that the latter layer de-
pends on the former. Since a layer cannot be learned until
all the layers it depends on have been learned, we start at
the bottom, with intercept, and move up the hierarchy step
by step. Each task is learned by training feed-forward neural
networks via ESP, with sub-population sizes of 100. Each
layer is described below.

Pass Evaluate

Get Open

Pass

Intercept

Figure 4: A layered learning hierarchy for the keepaway
task. Each box represents a layer and arrows indicate
dependencies between layers. A layer cannot be learned
until all the layers it depends on have been learned.

L1 : Intercept: The goal of this task is simply to get to
the ball as quickly as possible. The obvious strategy, run-
ning directly towards the ball, is optimal only if the ball is
motionless. When the ball has velocity, an ideal intercep-
tor must anticipate where the ball is going. To train the
interceptor, we propel the ball towards the agent at various



angles and speeds. The agent is rewarded for minimizing
the time it takes to touch the ball. The networks have four
inputs: two for the ball’s current position and two for the
ball’s current velocity. It has two hidden nodes and two
outputs: one controls the agent’s heading and the other its
speed. In all of our experiments, the taker continually uses
the trained intercept behavior.

L2 : Pass: In this task, we want the agent to kick the
ball away at a specified angle. Passing is complicated by the
fact that an agent cannot directly specify what direction it
wants the ball to go. Instead, the angle of the kick depends
on the agent’s position relative to the ball. Hence, kicking
well requires a precise “wind-up” to approach the ball at the
correct speed from the correct angle. To train the passer we
again propel the ball towards the agent. We also randomly
select the angle at which we want the agent to kick the ball.
When the simulation begins, the agent employs the intercept
behavior learned in L1 until it arrives near the ball, at which
point it switches to the evolving pass behavior. The agent’s
reward is inversely proportional to the difference between
the target angle and the ball’s actual direction of travel. The
passer has three inputs: two for the ball’s current position
and one for the target angle. It has two hidden nodes and
two outputs: one controls the agent’s heading and the other
its speed3.

L3 : Pass Evaluate: The pass evaluator’s job is to ana-
lyze the current state of the game and assess the likelihood
of successfully passing to a specific receiver. Because this
layer and the one after it, get open, are the focus of this
study, we describe them formally and in more detail than
the other layers.

F̃3 = {Ballr,Ballt,Takerr,Takert,Teammater,

Teammatet} : The agent learns to evaluate passes
based on the current position of the ball, the taker,
and the teammate whose potential as a receiver it is
evaluating. Positions are represented relative to the
agent as (r, t) in polar coordinates.

O3 = {Confidence} : The agent outputs a real number be-
tween 0 and 1 indicating its confidence that a pass to
the given teammate would succeed.

T3 : Figure 5 shows the pass evaluator’s training environ-
ment. We place the ball in the center of the field and
put the pass evaluator just behind it at various angles.
We place two teammates near the edge of the bound-
ing circle on the other side of the ball at a randomly
selected angle. A single taker is placed similarly but
nearer to the ball to simulate the pressure it exerts on
the passer. The teammates and the taker use the inter-
cept behavior from L1. When training the pass evalu-
ator, we run the evolving network twice, once for each
teammate, and then pass, using L2, to the teammate
who received a higher evaluation. If the pass succeeds,
the agent is rewarded. We evaluate each network fifty
times and sum the scores.

M3 = neuro-evolution: Using ESP, we train a fully con-
nected two-layer feed-forward neural network with 6
inputs, 2 hidden nodes, and 1 output. Figure 6 shows

3The learning of L1 and L2 is joint work with Nate Kohl
and Risto Miikkulainen.

the architecture of this network. Each sub-population
contains 100 neurons.

h3 = a trained pass evaluator.
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Figure 5: A typical training scenario for the pass evaluator.
One keeper, the passer, must choose which teammate to kick to
in order to prevent the taker from getting the ball.
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Figure 6: The fully connected two-layer feed-forward network
h3 for pass evaluation.

L4 : Get Open: We use the get open behavior when
a keeper does not have a ball and is not receiving a pass.
Clearly, such an agent wants to get to a position where it
can receive a pass. However, an optimal get open behavior
will not necessarily position the agent where a pass is most
likely to succeed. Instead, it will position the agent where a
pass would be most strategically advantageous.

F̃4 = {Ballr,Ballt,Takerr,Takert,Boundaryr} : The
agent receives as input the current position of the ball
and the taker. It also knows how close it is to the
field’s bounding circle.

O4 = {Heading,Speed} : The agent maneuvers on the field
by altering its heading and its speed.

T4 : The training environment for the get open behavior
is an actual game of keepaway, described above. The
taker uses the intercept behavior evolved in L1 and
the keepers use the decision tree described in Figure 3
along with the evolved behaviors from L1, L2, and L3.
We evaluate each network in twenty games of keepaway
and sum the scores.

M4 = neuro-evolution: Using ESP, we train a fully con-
nected two-layer feed-forward neural network with 5
inputs, 2 hidden nodes, and 2 outputs. Figure 7 shows
the architecture of this network. Each sub-population
contains 100 neurons.

h4 = a trained get open behavior.

Once these four layers have been learned, we can fully
implement the decision tree shown in Figure 3. With this
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Figure 7: The fully connected two-layer feed-forward network
h4 for the get open behavior.

decision tree controlling each of the three keepers, we have
a complete keepaway team. Note that the first layer is also
used to control the taker, which continually tries to intercept
the ball.

In the implementation described in this section, each layer
Li is learned and frozen before learning layer Li+1. As such,
there is no concurrent learning of the layers.

4. CONCURRENT LAYERED LEARNING
IN KEEPAWAY

To test the potential of concurrent layered learning, we
compare the traditional layered learning implementation de-
scribed above to one in which L3, pass evaluate, is permit-
ted to coevolve with L4, get open. We train L1 through
L3 in exactly the same manner as described in Section 3.
When we begin to train L4, we use delta-coding to seed a
new population from h3 and use it to continue training L3

concurrently with the population learning L4. Both popula-
tions use episodes of the full keepaway task, T4, as training
examples.

Pass evaluation is an ideal task to try to coevolve with
its successor because it typifies a common difficulty in lay-
ered learning: the training environment Ti often does not
perfectly reflect the way hi will be used in higher layers.
In particular, the potential receivers in T3 use the inter-
cept behavior throughout the episode, but in a real game of
keepaway, like T4, those teammates will be using get open
behavior until they have been passed to, as Figure 3 shows.
We cannot easily remedy this discrepancy because when we
train L3, we do not have the get open behavior yet! h3 is
likely to be sub-optimal as a result and if we freeze it, h4

and the resulting keepaway players will be sub-optimal too.
Note that inverting the order of these two layers does not

solve this problem. If we trained get open first, we could
use it to train the pass evaluator in a more representative
scenario. However, this alternative just trades one problem
for another. The goal of the get open behavior is to move
to a location that is most strategically advantageous, which
depends in part on how the passer chooses its receiver. Thus,
if we train get open first, its training environment will be
imperfect since no pass evaluator will yet exist.

In either case, the training of the lower layer will not be
ideal. We hypothesize that concurrent layered learning, by
allowing the lower layer to adjust to its new environment,
will result in superior performance in the keepaway task.

5. EMPIRICAL RESULTS
In this section we present the results of experiments de-

signed to test this hypothesis.
Our main result is that concurrent layered learning of L3

and L4 outperforms traditional layered learning on the keep-

away task. Figure 8 depicts the average fitness of the en-
tire population for each generation as we train L4 in the
keepaway task. Recall that each individual’s fitness is the
number of passes completed over twenty keepaway episodes.
These results are averaged over seven runs, with L3 retrained
for each run. Using a t-test, we confirmed that, after gener-
ation 2, the difference between the two methods was statis-
tically significant with 95% confidence. Concurrent layered
learning significantly outperforms the traditional approach,
confirming our hypothesis that concurrent layered learning
can be advantageous.
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Figure 8: Traditional vs. Concurrent Layered Learning
(Intercepting Receivers). When learning L3, the poten-
tial receivers use the intercept behavior as described in
Section 3. These results are averaged over seven runs.

As mentioned above, one hindrance to traditional layered
learning in this case might be the discrepancy between T3,
when we train the pass evaluator, and T4, when we use it.
Since we do not have the get open behavior when we train
L3, we cannot make the potential receivers in T3 behave
exactly as they will in T4. Instead, we make the receivers
intercept in the hopes that this will approximate the scenar-
ios the pass evaluator will see in an actual keepaway game.

To verify that the superior performance of concurrent lay-
ered learning is not due just to a poorly designed training
environment for the pass evaluator, we consider another ap-
proximation of the get open behavior in T3. In this alter-
native, the receivers are stationary until the passer decides
to kick to one of them, at which point the selected receiver
switches to interception. Since a successful get open strat-
egy will likely keep the keepers away from each other at the
edges of the field, we hypothesize that this behavior provides
a more accurate environment for training the pass evaluator.

Figure 9 confirms that concurrent layered learning still
outperforms the traditional approach in this modified envi-
ronment. In fact, the divide is even greater. The differences
are statistically significant after generation 3. The results
of Figures 8 and 9 together suggest strongly that the su-
perior performance of the concurrent approach is not due
just to a poorly designed T3 but to a limitation in the tra-
ditional method. In other words, concurrently training h3

and h4 after learning h3 individually may be necessary for
achieving the best possible results. Even if it is possible to
design a training environment for L3 that will produce an h3

that is sufficient to match our best results (which we doubt),
our method avoids the laborious effort of finely tuning the
training of lower layers.

Interestingly, the traditional approach does worse in the
modified environment but the concurrent approach does bet-
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Figure 9: Traditional vs. Concurrent Layered Learning
in Keepaway (Stationary Receivers). When learning L3

the potential receivers are stationary until the passer
decides to kick to one them, at which point the selected
receiver begins to intercept. These results are averaged
over seven runs.

ter. The h3 we learn with stationary receivers, though a
weak pass evaluator, seems to be nearer in the search space
to a strong pass evaluator. Hence, this h3 provides a better
seed for a population that learns concurrently with L4.

One question that remains is whether layered learning
helps at all in this environment. Perhaps it is possible to
achieve comparable results by simply coevolving L3 from
scratch along with L4, without using h3 as a seed. In other
words, L3 and L4 could be conflated into a single layer in
which we try to coevolve the pass evaluate and get open be-
haviors in the keepaway task given only h1 and h2. Figure 10
compares such an approach with our best results from con-
current layered learning (from Figure 9). The differences are
statistically significant after generation 54. It is interesting
to note that coevolving the two layers from scratch outper-
forms traditional layered learning, suggesting that these two
layers happen to be strongly interdependent. Nonetheless,
this comparison confirms that we can get the strongest re-
sults, not by replacing layered learning with coevolution, but
by combining the two.
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Figure 10: Coevolution from Scratch vs. Concurrent
Layered Learning (Stationary Receivers). These results
are averaged over seven runs.

6. DISCUSSION AND RELATED WORK
Our results demonstrate that concurrent layered learning

can outperform traditional layered learning. In particular,

we verified that concurrent learning achieves superior results
when learning higher layers of SoccerBots keepaway agents.

We have focused here on a single instance of training
concurrency involving just two layers of a complete layered
learning implementation. While this single instance veri-
fies that concurrent layered learning can be useful, we are
not claiming that it should be used in all cases. Indeed,
there may be instances in which traditional layered learning
performs just as well as, or even outperforms, concurrent
layered learning due to its more aggressive use of hierarchy.
Nonetheless, our experience with traditional layered learn-
ing, including training the lower layers of the task described
in this paper, suggests that there are also many instances in
which it is not possible to create a perfect training environ-
ment for the lower layers.

For example, when training layers L1 through L3, we re-
peatedly found that our initial training environment in Li

was not sufficiently representative of the range of behaviors
that were needed in Li+1. In all of these cases, concurrent
layered learning remedied the situation though we were able
to achieve results that were equally good by finding a more
clever training environment for Li and retraining it prior to
training Li+1. Although concurrent layered learning does
not provide a performance boost in those cases, it certainly
would have saved us manual effort, which is one of the pri-
mary reasons for using machine learning.

Robotic soccer keepaway has been used as a testbed do-
main for several previous machine learning studies. A vari-
ant based on the the RoboCup soccer simulator was intro-
duced for the purposes of studying multi-agent reinforce-
ment learning [17]. In that research, the low-level behav-
iors were hand-coded; only the high-level decision of when
and where to pass was learned. An evolutionary learning
approach has been successfully used for the same task, but
again with only a single learned layer [11]. The work perhaps
most related to ours uses two learned layers, each learned
via genetic programming, for a keepaway task in a simplified
abstraction of the SoccerBots environment [8]. This imple-
mentation uses the traditional layered learning approach of
freezing the first layer (passing) before advancing to the next
layer (the whole task).

The original implementation of the layered learning para-
digm was on the full robotic soccer task in the RoboCup
soccer simulator [15]. First, a neural network was used to
learn an interception behavior. This behavior was used to
train a decision tree for pass evaluation, which was in turn
used to generate the input representation for a reinforcement
learning approach to pass selection.

As indicated by the preceding example, layered learning
makes no commitment to any particular learning algorithm,
and indeed can combine several different algorithms across
the different layers. There have also been some hierarchical
approaches proposed that are specific to individual learn-
ing algorithms, most notably coevolution, as summarized in
Section 2.2.1, and hierarchical reinforcement learning.

Most hierarchical RL approaches use gated behaviors:

There is a collection of behaviors that map envi-
ronment states into low-level actions and a gating
function that decides, based on the state of the
environment, which behavior’s actions should be
switched through and actually executed. [9]

In some cases the behaviors are learned, in some cases the



gating function is learned, and in some cases both are learned.
In this last example, the behaviors are learned and fixed
prior to learning the gating function. On the other hand,
the MAXQ algorithm [3] does learn at all levels of the hierar-
chy simultaneously. In all of these approaches, the behaviors
and the gating function are all control tasks with similar in-
puts and actions (sometimes abstracted). Layered learning,
both traditional and concurrent, allows for conceptually dif-
ferent tasks, such as pass evaluation and get open, at the
different layers.

7. CONCLUSION AND FUTURE WORK
The main contribution of this paper is evidence that, when

using layered learning, the concurrent training of layers is an
effective option. Specifically, we have demonstrated one in-
stance in which it is superior to traditional layered learning,
where each layer is trained completely independently.

In ongoing research, we plan to identify additional in-
stances, both in the keepaway task and in other tasks, where
concurrent layered learning outperforms traditional layered
learning, as well as situations in which the reverse is true.
Ultimately, we aim to characterize and analyze the condi-
tions under which concurrent layered learning is beneficial.
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