
In the Ninth International Conference on Autonomous Agents and Multiagent Systems - Adaptive Learning Agents Workshop (AAMAS - ALA),
Toronto, Canada, May 2010.

Transfer Learning for Reinforcement Learning on a
Physical Robot ∗

Samuel Barrett
Dept. of Computer Science
University of Texas at Austin

Austin, TX 78712 USA
sbarrett@cs.utexas.edu

Matthew E. Taylor
Dept. of Computer Science

University of Southern
California

Los Angeles, CA 90089

taylorm@usc.edu

Peter Stone
Dept. of Computer Science
University of Texas at Austin

Austin, TX 78712 USA
pstone@cs.utexas.edu

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithms, Experimentation

Keywords

Transfer Learning, Robotics, Reinforcement Learning, Artificial

Intelligence

ABSTRACT

As robots become more widely available, many capabilities that

were once only practical to develop and test in simulation are be-

coming feasible on real, physically grounded, robots. This new-

found feasibility is important because simulators rarely represent

the world with sufficient fidelity that developed behaviors will work

as desired in the real world. However, development and testing on

robots remains difficult and time consuming, so it is desirable to

minimize the number of trials needed when developing robot be-

haviors.

This paper focuses on reinforcement learning (RL) on physically

grounded robots. A few noteworthy exceptions notwithstanding,

RL has typically been done purely in simulation, or, at best, ini-

tially in simulation with the eventual learned behaviors run on a

real robot. However, some recent RL methods exhibit sufficiently

low sample complexity to enable learning entirely on robots. One

such method is transfer learning for RL. The main contribution of

this paper is the first empirical demonstration that transfer learn-

ing can significantly speed up and even improve asymptotic per-

formance of RL done entirely on a physical robot. In addition, we

show that transferring information learned in simulation can bolster

additional learning on the robot.

1. INTRODUCTION

∗The authors thank Todd Hester and Michael Quinlan for writ-
ing the base code for the Nao upon which this research was built.
This work has taken place in the Learning Agents Research Group
(LARG) at the Artificial Intelligence Laboratory, The University of
Texas at Austin. LARG research is supported in part by grants from
the National Science Foundation (IIS-0917122), ONR (N00014-
09-1-0658), DARPA (FA8650-08-C-7812), and the Federal High-
way Administration (DTFH61-07-H-00030). Samuel Barrett was
supported by the Department of Defense (DoD) through the Na-
tional Defense Science and Engineering Graduate Fellowship (ND-
SEG) Program.

Physically grounded robots need to be able to learn from their

experience, both in order to deal with changing environments and

to adapt to new problems. For the purpose of online learning of se-

quential decision making tasks with limited feedback, value-function-

based reinforcement learning (RL) [15] is an appealing paradigm,

because of the well-defined semantics of the value function and its

elegant theoretical properties. However, a few notable successes

notwithstanding (e.g., flying RC helicopters [3, 9] and quadruped

walking [8]), RL algorithms have typically been applied only in

simulation, or at best trained in simulation with the eventual learned

behaviors run on a real robot (e.g., [6], [10], and [5]).

Learning on physically grounded robots is difficult for several

reasons, including environmental and sensor noise, high costs of

failure (such as a crashed helicopter), the large amount of time it

takes to perform tasks, and the fact the robots’ dynamics are often

not constant due to wear and tear on their motors. Thus, to the ex-

tent possible, it is desirable to train robots in a controlled environ-

ment before sending them out into the world. Doing so can reduce

damage to the robots and prepare them to deal with expected sit-

uations. However, when encountering unexpected situations after

“deployment” in the real world, the robot will have to continue to

adapt. Such unexpected situations can even arise from the dynam-

ics of the robot itself changing as its joints break, or as repairs are

made. It is conceivable to relearn tasks from scratch each time a

change happens, but due to the time and cost of learning, it is not

practical. Instead, it is desirable for the robot to reuse prior infor-

mation in order to learn faster. The concept of reusing information

from past learning is the idea behind transfer learning.

Transfer learning for RL tasks has been shown to be effective in

simulation [18], but no prior work has been done on transfer learn-

ing on physically grounded robots. The main contribution of this

paper is the first empirical demonstration that transfer learning for

RL can significantly speed up and even improve asymptotic per-

formance of RL with learning done entirely on a physical robot,

specifically using Q-value reuse for the Sarsa(λ) algorithm [19]. In

addition, we show that transferring information from learning in

simulation can improve subsequent learning learning on the robot.

To this end, we introduce a novel reinforcement learning task

for humanoid robots and demonstrate that transfer learning can be

effective for this task. The results additionally represent one of the

first successful applications of reinforcement learning on the Nao

humanoid platform developed by Aldebaran1. A limited amount of

previous work has been done using the Nao, but this work focused

on simulation work, with only a single run on a physical robot [7].

The remainder of the paper is organized as follows. Section

2 presents the main algorithms used in our experiments, namely

1http://www.aldebaran-robotics.com/eng



Sarsa(λ) and Q-value reuse. Section 3 introduces our experimental

testbed and fully specifies the task to be learned. Sections 4 and

5 present the results of our experiments. Section 6 further situates

the results in the literature, and Section 7 concludes.

2. BACKGROUND
Reinforcement learning (RL) is a framework for learning se-

quential decisions with delayed rewards [15]. RL is promising for

robotics because it handles online learning with limited feedback

where actions taken affect the environment. RL has been exten-

sively studied in many domains, with positive results. However,

RL techniques can require long training times. Therefore, espe-

cially on robots, it can be useful to reuse knowledge learned from

similar problems to speed up training times via transfer learning.

Value-function-based RL algorithms assume that the task to be

learned can be modeled as a Markov Decision Process (MDP). An

MDP is a four-tuple of (S, A, T, R) where S is a state space, A
is an action space, T is a transition function specifying the effects

of actions, and R is an immediate reward function specifying the

value of state transitions. The complete formulation is given by

T (s, a) = s′ with s, s′ ∈ S and a ∈ A and R(s, s′) = r where r ∈

R. However, the agent typically does not start with any knowledge

about T or R, so it must learn what actions should be taken in the

states it encounters. One way of doing so is via an intermediate

data structure called a state-action value function (Q) that stores

the expected long-term reward of executing action a from state s.

Taylor et al. [19] recently demonstrated that state-action values

from one RL problem can be effectively reused in a related, but dif-

ferent sequential decision making problem. This result is surprising

because the state-action values are intuitively the most problem-

specific data structure of an RL algorithm: they represent the ex-

pected long-term reward from a given state-action pair in a single,

specific problem. However, it turns out that there are useful pat-

terns encoded in the state-action value function that can speed up

and even improve asymptotic learning on related tasks. Their algo-

rithm of Q-value reuse, which we adopt in this paper, is based on

the standard RL framework.

2.1 Sarsa(λ)
This research uses the Sarsa(λ) learning algorithm as the base

RL algorithm. We choose to use Sarsa because it is compatible

with Q-value reuse, and because it is among the simplest of RL

algorithms: our focus is on speed-up due to transfer rather than on

the learning algorithm itself.

Sarsa is an on-policy temporal difference learning algorithm first

proposed by Rummery and Niranjan [11] and later augmented by

Sutton [14]. Specifically, Sutton’s work describes using cerebellar

model arithmetic computers (CMACs) [2] as a function approxi-

mator for generalizing learning, allowing the agent to generalize

across similar states and handle larger (or infinite) state spaces.

This approach has been shown to be successful in a number of do-

mains.

The Sarsa(λ) algorithm is a well-known approach to solving an

MDP. It learns a value function over state-action pairs, Q(s, a) =
r, and actions are chosen ǫ-greedily with respect to Q. The value

function is changed via a Bellman (TD) update:

Q(s, a) = (1 − α)Q(s, a) + α[R(s, s′) + γe(s, a)Q(s′, a′)]

given the state s, action a, reward r, next state s′, next action a′,

the discount factor γ, the eligibility trace e(s, a) (representing how

recently the state-action pair was visited), and the decay parameter

λ.

a s
Reward
r

Action State

source source source

Source Task
Q−value 
Function
Approximator

Source Task
Q−value 
Function
Approximator

Q−value 
Function
Approximator

Target Task

Q−value 
Function
Approximator

Target Task

Source Task
Q−value 
Function
Approximator

Source Task
Q−value 
Function
Approximator

Source Task Target Task

a s
Reward
r

Action State

target target target

EnvironmentEnvironment

Agent

Inter−Task Mapping

Variable Mappings

Action and State

Inter−Task Mapping

Agent +

Figure 1: Q-Value Reuse

We use CMACs for their discretization and generalization abili-

ties, deriving from their infinite, axis-parallel tilings over a contin-

uous state space. These tiles are discrete features, and there are a

constant number active for each point in the space. Several tilings

are used and each is offset from the others (by a random amount in

our implementation). The value function is generalized over each

tile, but the overlapping tiles allow for better resolution. A CMAC’s

value for each action is computed by summing the weights from

each activated tile:

f(x) =
X

i

wifi(x)

where

fi(x) =



1 if tile i is activated

0 otherwise

For any state, the result is a vector of values with length equal to

the number of actions, and the lengths may not be the same for

different tasks.

2.2 Q-value Reuse
Transfer learning involves reusing knowledge learned from ear-

lier tasks to learn new problems more effectively. The task learned

previously is called the source task and the new task is called the

target task. We use Q-value reuse for the transfer, where the value

function, Qsource, learned from an earlier task is used as a start-

ing point for the new problem, and a new value function, Qtarget,

is learned to correct errors in the source value function. However,

the source state and action spaces may not coincide with the tar-

get state and action spaces. Therefore, the agent must be given a

mapping between the source and target tasks: χX(starget) = ssource

and χA(atarget) = asource. In this work, this mapping is provided

to the agent rather than learned. Therefore, the agent’s new value

function is given by

Q(s, a) = Qsource(χX(s), χA(a)) + Qtarget(s, a)

Figure 1 shows how Q-value reuse works, reusing the source task’s

state-action value function approximator in the target.

Sarsa updates are calculated the same way as previously, but

only the target’s function approximator weights (Qtarget(s,a)) are

updated. In some cases, there may be no corresponding action in

the source task so a default value is given to these actions. In this

paper, we initialize these actions to the average action values across

all possible states in the source domain [19]. We also tried initializ-

ing new actions to an intermediate value picked by hand (0) and to



Figure 2: Estimates of episode rewards

the average action value for the current state, but the average action

values of all states performed better in initial experiments.

3. EXPERIMENTAL SETUP
For all experiments in this paper, we use a novel task on the Nao

humanoid platform developed by Aldebaran. We chose a task with

the robot seated to reduce the possibility of damaging the robot and

for easier control of the robot’s start state. We emphasize the phys-

ical groundedness of our experiments by requiring that the robot

calculate its own reward signal from observations, accepting any

resulting inaccuracies.

Specifically, the robot’s task was to hit an orange ball as far as

possible at a 45◦ angle with its right hand. It used its onboard

camera to observe the result of each trial and calculate the reward

signal. The robot is seated with the ball 80 mm in front of the

center of the robot and 170 mm to its right. Note that the robot is

not given ball’s location except for the information in the reward

signal. Every 75 ms, the robot is given the current positions of the

joints and their velocities as observations.

The reward signal is given by r = d ∗ cos(θ), where d is the

distance that the ball moved, and θ is the angle between the ball’s

trajectory and the 45◦ target angle. If the ball was not seen for

sufficiently long, it was assumed to have been hit backwards, and

the action was assigned reward −100. All other steps were given a

reward of -1 to encourage the agent to find a fast action sequence

to hit the ball.

The reward from vision can be inaccurate, due to the ball mov-

ing outside the sight range of the robot, the arm obscuring the sight

of the ball, and noisy distance estimates of the ball. However, we

measured these effects, and found that they were not very signifi-

cant. Figure 2 compares the robot’s estimate of the reward with the

measurements taken by hand using a tape measure and a protrac-

tor. Out of 50 episodes, only two successful hits were not seen by

the robot and incorrectly assumed to be backward hits with reward

−100. The R-squared value of the robot’s estimations was 0.86.

As shown in Figure 3 (supplied by Aldebaran1), the robot can

use four joints to help it hit the ball: shoulder pitch, shoulder roll,

elbow pitch, and elbow yaw. For each episode, these joints start

at a fixed position with no initial velocity; these values are given

in Table 1 and depicted in the left-most frames of Figure 4. Also,

the ball starts in the same position for every episode, as shown in

Figure 4. At each time step, the robot can accelerate one joint in ei-

ther direction or leave all the joints alone. Therefore, the robot has

nine actions: {no change, accelerate the shoulder pitch upwards,

accelerate the shoulder pitch downwards, accelerate the shoulder

roll clockwise, or accelerate the shoulder roll counter-clockwise,

etc.}. Furthermore, it has eight observations: the position and ve-

locity for each joint. The velocities are kept in the range [−100◦/s,

Figure 3: Joint movements possible for the task

(a) Source task

(b) Target task

Figure 4: Keyframes of robot tasks

+100◦/s] and the actions are taken every 75ms (more than 13

times per second) to change the velocity by 50◦/s.

It is possible to learn this task without any prior information,

but the process can be slow and the robot converges to a mediocre

policy. Our work focuses on improving this learning, specifically

by using a related source task as prior information. For this simpler

task, the robot only has control of the two shoulder joints, with the

elbow roll and yaw fixed at 0◦ and 0◦. Therefore, the robot will

only have five actions and four observations. We will refer to this

simpler task as the source task and the original task as the target

task. The keyframes of the robot performing the two tasks can be

seen in Figure 4. The robot has less control in this source task,

and therefore cannot hit the ball as far as in the target task, but it

can learn faster as the problem is simpler. Our central hypothesis

is that using Q-value reuse to transfer information from this source

task will enable the robot to learn faster on the target task.

As this work focuses on transfer learning on robots, so the main

task considered was transferring from the source task to the target

task on the robot, compared to learning the target task with no prior

information. We also replicated both tasks in the Webots simulator2

to test our algorithm in a different, though similar environment (as

the dynamics of the simulator do not entirely match the physical

2Cyberbotics Ltd. http://www.cyberbotics.com

Joint Min Max Start

Shoulder pitch 0◦ 115◦ 115◦

Shoulder roll −90◦ 5◦
−75◦

Elbow roll 0◦ 120◦ 45◦

Elbow yaw −90◦ 90◦
−45◦

Table 1: Joint angle ranges and starting positions



robot). We do not assume that a useful simulator will be available

in all cases, which is why we focus on transfer on the robot itself.

In this case, the simulator allows us to better evaluate the effective-

ness and robustness of the algorithm and to run many more experi-

ments than physical robots allow. However, we emphasize that for

the main result of the paper, both the source and target tasks were

learned on the physical robot.

We refer to the source task on the robot as SOURCEROB, the

target task on the robot as TARGETROB, the source task in the

simulator as SOURCESIM, and the target task in the simulator as

TARGETSIM. The main test of our algorithm is in how the trans-

fer from SOURCEROB to TARGETROB and from SOURCESIM to

TARGETSIM performs. However, the use of the simulator allows

for several other paths for transfer information, and we discuss this

idea further in Section 5

A significant part of the work was done using the Webots simulator2,

and this work relies heavily on the code developed by the UT Austin

Villa robot soccer team3. This code base provides the interface be-

tween the learning agent and the robot’s actions, as well as provid-

ing visual detection of the ball.

4. RESULTS
Transfer learning can be evaluated in many different ways [18].

In this paper, our main focus is on “weak” transfer, meaning that

we assume that the time spent in the source task does not count

against the learner in the target. This is the case when the robot

has already learned the source task, so this training time is not a

new cost. For example, if a robot was trained in a lab before being

sent out, we might be interested in the time it would take the robot

to learn a new task, and less interested in how long the robot was

trained in the lab. We also show one “strong” transfer result, where

time spent in the source does count.

For all experiments, we plot the running average reward for each

approach, taken with a 25 episode moving window for the robot

tests and a 50 episode window for the simulation tests. Each test

on the robot represents five runs, each lasting 50 episodes. In the

simulator, each test averages 50 runs, each lasting 1,000 episodes.

These 50 episodes on a robot takes approximately 30 minutes, and

1,000 episodes in simulation takes approximately three hours. This

data allows us to draw conclusions with statistical significance and

reason about the convergence of each approach.

The baseline that we use is learning TARGETROB with no prior

information. Figure 5a shows that transfer from SOURCEROB to

TARGETROB is helpful, improving the reward throughout the en-

tire test. The initial few episodes of each algorithm are very noisy,

so the initial positive performance of TARGETROB is not signifi-

cant, just the effect of a few outliers. This graph is an evaluation of

weak transfer: we do not depict training time in the source task.

Figure 5b shifts the transfer plot 50 episodes to the right to rep-

resent the strong transfer scenario. Though not as dramatic, the

result is still positive, thus demonstrating that it can be useful to

break a robot task into robot subtasks, and then transfer from the

subtasks to the target task. In this test, the robot performs about as

well in the source task as in the target task, because it does not have

enough trials to completely explore the target task and find a good

behavior.

Unfortunately, the small number of tests on the robots means that

we cannot draw statistical conclusions about the performance of the

methods. However, the tests were also replicated in simulation with

good results. Figure 6a shows that the transfer from SOURCESIM

to TARGETSIM is helpful, even after a large number of episodes.

3http://www.cs.utexas.edu/users/austinvilla

(a) Weak Transfer (b) Strong Transfer

Figure 5: Transfer on the robot to the target task

(a) Weak Transfer (b) Strong Transfer

Figure 6: Transfer in the simulator

The differences between the final rewards of each method are sta-

tistically significant with a confidence of 99%, and the error bars

in the diagram show the standard deviation of the average rewards.

Figure 6b shows that our results for strong transfer hold in simu-

lation. Overall, Figures 5–6 suggest that transfer learning works

on robots, and can greatly speed up learning and reach better end

behaviors.

5. ADDITIONAL EXPERIMENTS
In addition to providing statistically significant results, the use of

the simulator opens several other paths for transferring knowledge

between tasks, including two-step transfer, where we learn sequen-

tially from multiple source tasks. Two-step transfer is performed as

described in Section 2, with the value function:

Q(s, a) = Q1(χX1
(s), χA1

(a))

+Q2(χX2
(s), χA2

(a)) + Q3(s, a)

We consider TARGETROB to be the target for all of the tests, and

we continue using 1,000 episodes in simulation and 50 on the phys-

ical robot. Figure 7 shows all the ways to transfer information to

TARGETROB, with numbers corresponding to the following tests:

1. SOURCEROB → TARGETROB

2. SOURCESIM → TARGETROB

3. TARGETSIM → TARGETROB

4. SOURCESIM → SOURCEROB → TARGETROB

5. SOURCESIM → TARGETSIM → TARGETROB



SOURCEROB TARGETROB

SOURCESIM TARGETSIM

1

2
3

4

5

Figure 7: Paths for transferring experience

Figure 8: One-step transfer to the robot target task

Test 1 is further investigated in Section 4, and the results of the

three one-step transfer tests (tests 1, 2, and 3) are displayed in Fig-

ure 8. Transferring from TARGETSIM produces the biggest im-

provement in the early episodes due to it having already learned

about the entire state-action space. However, the agent does have to

learn about the differences between the simulated and real robots.

Also, transferring from SOURCESIM performs better than trans-

ferring from SOURCEROB, probably due to the higher number of

runs in SOURCESIM, which allow the agent to explore the state-

action space more completely. In the end, all of the transfer meth-

ods end up with similar performance, and all perform much better

than starting with no prior information.

The two types of two-step transfer were also tested (tests 4 and

5), and the results are shown in Figure 9. Both methods show a sub-

stantial boost to early episodes but later plateau, achieving similar

results to the other transfer methods. The results of the two-step

transfer are not better than some of the one-step transfers, but Fig-

ure 10 shows that multi-step transfer can be beneficial, giving a

large early boost.

Though all of these results are for weak transfer, we speculate

that these trends will hold for strong transfer (as they did in both

one-step transfer cases). Furthermore, transferring from simulation

Figure 9: Two-step transfer to the robot target task

Figure 10: Comparison of one and two-step transfer.

to a physical robot raises the possibility of having different costs

for training spent in the simulator than on the robot. For example,

if we consider simulation time to be insignificant, then tests 2, 3,

and 5 are all evidence of strong transfer.

6. RELATED WORK
One of the earliest uses of transfer learning for reinforcement

learning was done by Selfridge et al. [12] in the familiar cart-pole

domain. In this work, the function approximator was reused for

poles of different sizes and weights, with good effect.

Taylor and Stone [18] recently surveyed the use of transfer learn-

ing in reinforcement learning. Significant prior work in this area

has been performed, with good results. However, little work has

been done in applying transfer learning to the area of robotics. Tay-

lor and Stone discuss several approaches to transfer learning, and

point out several ways to evaluate the effects of the transfer. Our

research focuses on Q-value reuse with supervised task transfer.

Taylor et al. [19] explored Q-value reuse in temporal difference

learning with good results. They specifically evaluate a Sarsa agent

using CMAC for function approximation. However, this work fo-

cuses on the simulated domain of keepaway for soccer. Our work

applies this research to a physical robot, and has a greater differ-

ence between the source and target tasks.

One interesting approach to transfer learning is to extract higher

level strategies from the policy learned by the agent. Torrey et

al. [20] explored this idea using relational macros to represent the

strategies learned by induction logic programming (ILP) in the RoboCup

breakaway domain, but this requires the domain to be translated

into first-order logic. It is also possible to break a single problem

into a series of smaller tasks. Then, the agent learns each of these

sub-tasks and combines the learned knowledge for the full task.

In the target task, the state space, actions, and transition function

are the same as the sub-tasks, and the information is transferred

via Q-value transfer. Singh [13] also explored this area, naming it

“compositional learning.”

It is possible to learn a mapping between source and target tasks

autonomously (e.g., when a human is unable or unwilling to pro-

vide such a mapping). Talvitie and Singh [16] developed an algo-

rithm to generate possible state variable mappings and learn which

mapping is best as an n-armed bandit problem. Further work has

been done by Taylor et al. [17] using a model-based approach to

reduce the samples needed, and they transfer observed (s, a, r, s′)
instances, which allows the source and target agents to have differ-

ent representations for the task. However, these methods are not

as reliable as hand-mapping and can be unnecessary for smaller

domains.

Unfortunately, tests on robots can be slow, and most learning al-

gorithms require a large amount of training data to perform well.



Therefore, it can be useful to train an agent in simulation and trans-

fer these behaviors to a robot [6, 10, 5]. However, we cannot as-

sume that a simulator will accurately model complex perception or

manipulation tasks, so it is often useful to tune the behavior from

the simulator by running more tests on a robot. This requires com-

bining information about a source simulation task and a target robot

task, but no work we know of treats this as a transfer learning prob-

lem.

Another way to speed up learning is to use prior demonstrations.

Researchers have shown that sub-optimal demonstrations can be

sufficient to teach an agent to control an autonomous helicopter [1,

4]. Unfortunately, this requires on an expert in the domain to per-

form the demonstrations, which is not always possible.

7. CONCLUSIONS AND FUTURE WORK
This paper empirically tests transfer learning for RL on physical

robots. The results show that model-free RL can be effective on a

robot, and that transfer learning can speed up learning on physical

robots.

Furthermore, this prior information can be learned in simulation,

even if the simulator does not completely capture the dynamics of

the robot. For example, the simulator does not model collisions

between the robot’s different parts, so dynamics of the arm hitting

the body are never learned in the simulator. However, the behaviors

learned in the simulator serve as good starting points for learning

on the robot. This result is useful when a simulator is available,

since simulator tests are significantly easier to run than robot tests:

it suggests that only a relatively small amount of tuning is necessary

to adapt behaviors learned in the simulator to the real robot. The

main motivation for this work is that in some situations learning

must be performed entirely on a physical platform, and the positive

results in that setting are the main contribution of this paper.

This work opens up several interesting directions for future work.

For example, it is worth investigating if other learning algorithms

can learn this task faster than Sarsa, and if so, whether Q-value

reuse (if applicable) can show similar benefits with these other al-

gorithms. It would also be interesting to see how different methods

for transfer learning perform on this task. In the long run, we view

the research reported in this paper as just the first of many possible

applications of transfer learning for RL to physical robots.

8. REFERENCES
[1] P. Abbeel and A. Y. Ng. Exploration and apprenticeship

learning in reinforcement learning. In ICML ’05, pages 1–8.

ACM, 2005.

[2] J. S. Albus. Brains, Behavior, and Robotics. Byte Books,

Peterborough, NH, 1981.

[3] J. A. Bagnell and J. Schneider. Autonomous helicopter

control using reinforcement learning policy search methods.

In ICRA ’01, pages 1615–1620. IEEE Press, 2001.

[4] A. Coates, P. Abbeel, and A. Y. Ng. Learning for control

from multiple demonstrations. In ICML ’08, pages 144–151.

ACM, 2008.

[5] Y. Davidor. Genetic Algorithms and Robotics: A Heuristic

Strategy for Optimization. World Scientific Publishing Co.,

Inc., 1991.

[6] E. Gat. On the role of simulation in the study of autonomous

mobile robots. In AAAI-95 Spring Symposium on Lessons

Learned from Implemented Software Architectures for

Physical Agents., March 1995.

[7] T. Hester, M. Quinlan, and P. Stone. Generalized model

learning for reinforcement learning on a humanoid robot. In

ICRA ’10, 2010.

[8] N. Kohl and P. Stone. Policy gradient reinforcement learning

for fast quadrupedal locomotion. In ICRA ’04, May 2004.

[9] A. Y. Ng, H. J. Kim, M. I. Jordan, and S. Sastry. Inverted

autonomous helicopter flight via reinforcement learning. In

In International Symposium on Experimental Robotics. MIT

Press, 2004.

[10] J. M. Porta and E. Celaya. Efficient gait generation using

reinforcement learning. In Proceedings of the Fourth

International Conference on Climbing and Walking Robots,

pages 411–418, 2001.

[11] G. A. Rummery and M. Niranjan. On-line Q-learning using

connectionist systems. Technical Report

CUEF/F-INFENG/TR 166, Cambridge University

Engineering Dept., 1994.

[12] O. G. Selfridge, R. S. Sutton, and A. G. Barto. Training and

tracking in robotics. In IJCAI, pages 670–672, 1985.

[13] S. P. Singh. Transfer of learning by composing solutions of

elemental sequential tasks. Machine Learning, 8:323–339,

1992.

[14] R. S. Sutton. Generalization in reinforcement learning:

Successful examples using sparse coarse coding. In NIPS

’96, 1996.

[15] R. S. Sutton and A. G. Barto. Reinforcement Learning: An

Introduction. MIT Press, Cambridge, MA, USA, 1998.

[16] E. Talvitie and S. Singh. An experts algorithm for transfer

learning. In IJCAI, pages 1065–1070, 2007.

[17] M. E. Taylor, N. K. Jong, and P. Stone. Transferring

instances for model-based reinforcement learning. In ECML

PKDD, pages 488–505, September 2008.

[18] M. E. Taylor and P. Stone. Transfer learning for

reinforcement learning domains: A survey. JMLR,

10(1):1633–1685, 2009.

[19] M. E. Taylor, P. Stone, and Y. Liu. Transfer learning via

inter-task mappings for temporal difference learning. JMLR,

8(1):2125–2167, 2007.

[20] L. Torrey, J. W. Shavlik, T. Walker, and R. Maclin.

Relational macros for transfer in reinforcement learning. In

ILP ’07, 2007.


