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ABSTRACT

Both genetic algorithms (GAs) and temporal difference (TD)
methods have proven effective at solving reinforcement learn-
ing (RL) problems. However, since few rigorous empiri-
cal comparisons have been conducted, there are no gen-
eral guidelines describing the methods’ relative strengths
and weaknesses. This paper presents the results of a de-
tailed empirical comparison between a GA and a TD method
in Keepaway, a standard RL benchmark domain based on
robot soccer. In particular, we compare the performance
of NEAT [19], a GA that evolves neural networks, with
Sarsa [16, 17], a popular TD method. The results demon-
strate that NEAT can learn better policies in this task,
though it requires more evaluations to do so. Additional ex-
periments in two variations of Keepaway demonstrate that
Sarsa learns better policies when the task is fully observable
and NEAT learns faster when the task is deterministic. To-
gether, these results help isolate the factors critical to the
performance of each method and yield insights into their
general strengths and weaknesses.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithms, Performance, Experimentation

Keywords

Empirical study, Genetic algorithms, Machine learning, Per-
formance analysis

1. INTRODUCTION
Reinforcement learning (RL) problems are characterized

by agents making sequential decisions with the goal of max-
imizing total reward, which may be time delayed. RL prob-
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lems contrast with classical planning problems in that agents
do not know a priori how their actions will affect the world.
RL differs from supervised learning because the agent is
never given training examples with the correct action la-
beled.

Temporal difference (TD) [25] methods are one popular
way to solve RL problems. TD methods learn a value func-
tion that estimates the expected long-term reward for taking
a particular action in a state. Genetic algorithms (GAs) can
also address RL problems by searching the space of policies
for one that receives maximal reward. Although these two
approaches have both had success in difficult RL tasks, only
a few studies (e.g [4, 9, 11]) have directly compared them. As
a result, there are currently no general guidelines describing
the methods’ relative strengths and weaknesses.

This paper presents the results of a detailed empirical
comparison between a GA and a TD method. In particular,
we compare the performance of NeuroEvolution of Augment-
ing Topologies (NEAT) [19] with Sarsa [16, 17]. NEAT, a
GA that evolves neural networks, has had substantial suc-
cess in RL domains like pole balancing [19], game play-
ing [21], and robot control [20]. Sarsa is a popular TD
method that has also had empirical success [23, 24, 25].

These comparisons are conducted in 3 vs. 2 Keepaway [22],
a standard RL benchmark domain based on robot soccer in
which agents have noise in both their sensors and actua-
tors. Keepaway is an appealing platform for empirical com-
parisons because the performance of TD methods in it has
already been established in previous studies [8, 23]. While
GAs have been applied to variations of Keepaway [7, 26],
they have never been applied to the benchmark version of
the task. We compare NEAT to Sarsa with radial basis
function approximators, the best performing TD method
to date [22]. Our results in this domain demonstrate that
NEAT discovers better policies, though it requires many
more evaluations to do so.

In addition, this paper presents the results of experiments
conducted in fully observable and deterministic variations
of Keepaway that are designed to isolate factors critical to
the performance of each method. Results in these variations
demonstrate that the performance of Sarsa is improved if the
task is fully observable and the speed of NEAT is greatly
improved if the fitness function is deterministic. Together,
these results shed light on the open question of when GAs
or TD methods perform better and why.



The remainder of this paper is organized as follows. Sec-
tion 2 introduces NEAT and Sarsa. Section 3 gives details
of the Keepaway domain. Section 4 shows how we apply
the NEAT and Sarsa learning algorithms to this task. Sec-
tion 5 presents and discusses the results of our experiments.
Section 6 addresses future work and Section 7 concludes.

2. BACKGROUND
In this section we provide an overview of the GA and TD

methods, NEAT and Sarsa, used in our experiments. There
are a wide variety of both GAs and TD methods in use
today but in order to compare these different approaches
empirically we must focus on specific instantiations. We use
Sarsa and NEAT as representative methods because of their
empirical success in the benchmark Keepaway task [23] or
variations thereof [26].

Sarsa and NEAT are also the methods that the authors are
most familiar with. In addition to the obvious practical ad-
vantages, this familiarity enables us to set both algorithms’
parameters with confidence. Throughout our experiments,
we tried to give equal effort to optimizing the parameters of
each algorithm, though such factors are admittedly difficult
to control for. Wherever possible, we quantify the amount
of tuning involved.

2.1 NeuroEvolution of Augmenting
Topologies (NEAT)1

The experiments in this paper use NeuroEvolution of Aug-
menting Topologies (NEAT) as a representative evolution-
ary method for RL. NEAT is an appropriate choice because
of its empirical successes on difficult RL tasks like pole bal-
ancing [19], game playing [21], and robot control [20].

In a typical neuroevolutionary system [28], the weights of
a neural network are strung together to form an individual
genome. A population of such genomes is then evolved by
evaluating each one and selectively reproducing the fittest
individuals through crossover and mutation. Most neuroevo-
lutionary systems require the designer to manually deter-
mine the network’s topology (i.e. how many hidden nodes
there are and how they are connected). By contrast, NEAT
automatically evolves the topology to fit the complexity
of the problem. It combines the usual search for network
weights with evolution of the network structure. The re-
mainder of this section provides a brief overview of this pro-
cess. Stanley and Miikkulainen [19] present a full descrip-
tion.

2.1.1 Minimizing Dimensionality

Unlike other systems that evolve network topologies and
weights [6, 28], NEAT begins with a uniform population of
simple networks with no hidden nodes and inputs connected
directly to outputs. New structure is introduced incremen-
tally via two special mutation operators. Figure 1 depicts
these operators, which add new hidden nodes and links to
the network. Only the structural mutations that yield per-
formance advantages tend to survive evolution’s selective
pressure. In this way, NEAT tends to search through a min-
imal number of weight dimensions and find an appropriate
complexity level for the problem.

1Section 2.1 is adapted from the original NEAT paper [19].
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Figure 1: Examples of NEAT’s mutation operators for adding
structure to networks. At top, a hidden node is added by splitting
a link in two. At bottom, a link, shown with a thicker black line,
is added to connect two nodes.

2.1.2 Genetic Encoding with Historical Markings

Evolving network structure requires a flexible genetic en-
coding. Each genome in NEAT includes a list of connec-
tion genes, each of which refers to two node genes being
connected. Each connection gene specifies the in-node, the
out-node, the weight of the connection, whether or not the
connection gene is expressed (an enable bit), and an inno-
vation number, which allows NEAT to find corresponding
genes during crossover.

To perform crossover, the system must be able to tell
which genes match up between any individuals in the popu-
lation. For this purpose, NEAT keeps track of the historical
origin of every gene. Whenever a new gene appears (through
structural mutation), a global innovation number is incre-
mented and assigned to that gene. The innovation numbers
thus represent a chronology of every gene in the system.
Whenever these genomes crossover, innovation numbers on
inherited genes are preserved. Thus, the historical origin of
every gene in the system is known throughout evolution.

Through innovation numbers, the system knows which
genes match up with which. Genes that do not match are
either disjoint or excess, depending on whether they occur
within or outside the range of the other parent’s innovation
numbers. When crossing over, the genes in both genomes
with the same innovation numbers are lined up. Genes that
do not match are inherited from the more fit parent, or if
they are equally fit, from both parents randomly.

Historical markings allow NEAT to perform crossover with-
out expensive topological analysis. Genomes of different or-
ganizations and sizes stay compatible throughout evolution,
and the problem of matching different topologies [15] is es-
sentially avoided.

2.1.3 Speciation

In most cases, adding new structure to a network initially
reduces its fitness. However, NEAT speciates the popula-
tion every generation so that individuals compete primarily
within their own niches rather than with the population at
large. Hence topological innovations are protected and have
time to optimize their structure before competing with other
niches in the population.

Historical markings make it possible for the system to
divide the population into species based on topological sim-
ilarity. The distance δ between two network encodings is a



simple linear combination of the number of excess (E) and
disjoint (D) genes, as well as the average weight differences
of matching genes (W ):

δ =
c1E

N
+

c2D

N
+ c3 ·W. (1)

The coefficients c1, c2, and c3 adjust the importance of the
three factors, and the factor N , the number of genes in the
larger genome, normalizes for genome size. Genomes are
tested one at a time; if a genome’s distance to a randomly
chosen member of the species is less than δt, a compatibility
threshold, it is placed into this species. Each genome is
placed into the first species where this condition is satisfied,
so that no genome is in more than one species.

The reproduction mechanism for NEAT is explicit fitness
sharing [3], where organisms in the same species must share
the fitness of their niche, preventing any one species from
taking over the population.

2.1.4 NEAT for Reinforcement Learning

Since NEAT is a general purpose optimization technique,
it can be applied to a wide variety of problems. In this paper,
we use NEAT to perform policy search RL. Each neural
network in the population represents a candidate policy in
the form of an action selector. The inputs to the network
describe the agent’s current state. There is one output for
each available action; the agent takes whichever action has
the highest activation.

A candidate policy is evaluated by allowing the corre-
sponding network to control the agent’s behavior and ob-
serving how much reward it receives. The policy’s fitness is
simply the sum of the rewards the agent accrues while under
the network’s control. In deterministic domains, each mem-
ber of the population can be evaluated in a single episode.
However, most real-world problems are non-deterministic
and hence the reward a policy receives over the course of
an episode may have substantial variance. In such domains,
it is necessary to evaluate each member of the population
for many episodes to get accurate fitness estimates.

2.2 Sarsa
The experiments presented in this paper use Sarsa as a

representative TD method. Sarsa is an appropriate choice
because of its multiple empirical successes [23, 24, 25]. Sarsa
is a TD method that learns to estimate the action-value
function, Q(s, a), which predicts the long-term expected re-
turn of taking a particular action, a, in a particular state, s.
Learning a value function allows the learner to estimate the
efficacy of each action in a given state. By contrast, GAs
evaluate entire policies holistically and hence have no notion
of the value of individual actions.

Sarsa is an acronym for State Action Reward State Ac-
tion, describing the 5-tuple needed to perform the update:
(s, a, r, s′, a′), where s and a are the the agent’s current state
and action, r is the immediate reward the agent receives
from the environment, and s′ and a′ are the agent’s sub-
sequent state and chosen action. In the simple case, the
action-value function is represented in a table, with one en-
try for each state-action pair. After each action, the table
is updated according to the following rule:

Q(s, a)← (1− α)Q(s, a) + α(r + γQ(s′, a′)) (2)

where α is the learning rate and γ is a discount factor used to
weight immediate rewards more heavily than future rewards.

Like other TD methods, Sarsa estimates the value of a
given state-action pair by bootstrapping off estimates of
other such pairs. In particular, the value of a given state-
action pair (s, a) can be estimated as r + γQ(s′, a′), which
is the discounted value of the subsequent state-action pair
(s′, a′) plus the immediate reward received during the transi-
tion. Sarsa’s update rule takes the old action-value estimate
Q(s, a), and moves it incrementally closer towards this new
estimate. The learning rate parameter α controls the size of
these increments. Ideally, these action-value estimates will
become more accurate over time and the agent’s policy will
steadily improve.

In continuous domains like Keepaway, the value function
cannot be represented in a table. In such cases, TD meth-
ods rely on function approximators, which map state-action
pairs to values via more concise, parameterized functions
and use supervised learning methods to set these parame-
ters. Many function approximators have been used, includ-
ing neural networks, CMACs, and radial basis functions [25].
In this paper we use a radial basis function approximator
(RBF), a method with previous empirical successes [13, 22].

3. THE BENCHMARK KEEPAWAY TASK
To test the relative efficacy of NEAT and Sarsa, we use

the benchmark 3 vs. 2 Keepaway task. Keepaway is an
appealing platform for empirical comparisons because the
performance of TD methods has already been established
in previous studies [8, 23]. While GAs have been applied
to variations of Keepaway [7, 26], they have never, to our
knowledge, been applied to the task’s benchmark version.

Keepaway is part of the open source RoboCup Soccer
Server [10], and we set parameters the same as in our past
research [22, 23]. RoboCup simulated soccer is well under-
stood as it has been the basis of multiple international com-
petitions and research challenges. This multiagent domain
has noisy sensors and actuators as well as hidden state so
that agents have only a partial view of the world.

In Keepaway, a subproblem of the full 11 vs. 11 simulated
soccer game, a team of keepers attempts to maintain posses-
sion of the ball on a 20m x 20m field while one or more takers
attempt to gain possession of the ball or force the ball out
of bounds, ending an episode. Figure 2 depicts three keep-
ers playing against two takers. All our experiments are run
on a code base derived from version 0.6 of the benchmark
Keepaway implementation2 [22].

Three keepers are initially placed in three corners of the
field and a ball is placed near one of the keepers. The two
takers are placed in the fourth corner. When an episode
starts, the three keepers attempt to keep control of the ball
by passing among themselves and moving to open positions.
The agent’s state is defined by 13 variables, as shown in
Figure 2. The keepers receive a reward of +1 for every time
step that the ball remains in play. The episode finishes when
a taker gains control of the ball or the ball is kicked out of
bounds. The episode is then reset with a random keeper
placed near the ball. The initial state is different in each
episode because the same keeper does not always start in
the same corner and because the keepers are only placed
near the corners rather than in exact locations.

2Available at http://www.cs.utexas.edu/~AustinVilla/
sim/Keepaway/



Figure 2: 13 state variables are used
for learning with 3 keepers and 2 tak-
ers. The state is ego-centric and rota-
tionally invariant for the keeper with
the ball; there are 11 distances, indi-
cated with blue lines, between players
and the center of the field as well as 2
angles along passing lanes.

The agents choose
not from the sim-
ulator’s primitive
actions but from
a set of higher-
level macro-actions
implemented as part
of the player. These
macro-actions can
last more than
one time step and
the keepers make
decisions only when
a macro-action ter-
minates. The
macro-actions are
Hold Ball, Get
Open, Receive, and
Pass [23]. The
agents make de-
cisions at discrete
time steps, at which
point macro-actions are initiated and terminated. Takers do
not learn and always follow a static hand-coded strategy.

The keepers learn in a constrained policy space: they have
the freedom to decide which action to take only when in
possession of the ball. A keeper in possession may either
hold the ball or pass to one of its teammates. Therefore, in
3 vs. 2 Keepaway, a keeper with the ball may choose from 3
actions, A = {hold, passToTeammate1, passToTeammate2}.
Keepers not in possession of the ball are required to execute
the Receive macro-action in which the keeper who can reach
the ball the fastest goes to the ball and the remaining players
follow a hand-coded strategy to try to get open for a pass.

In the standard Keepaway task, noise in the sensors and
actuators causes the evaluation of a policy to have a large
variance; the standard deviation of hold times from ten
Keepaway episodes is roughly half of the mean hold time.
Hence, when testing the performance of a policy after learn-
ing, we evaluate it for 1,000 episodes.

The RoboCup Soccer Server’s time steps are in 0.1 sec-
ond increments and all times reported in this paper refer
to simulator time. Thus we only report sample complexity
and not computational complexity; the running time for our
learning methods is negligible compared to that of the Soc-
cer Server. The machines used for our experiments allowed
us to speed up the simulator by a factor of two so that the
real experimental time required was roughly half that of the
reported simulator time.

4. LEARNING IN KEEPAWAY
This section describes how we apply the NEAT and Sarsa

learning algorithms to the Keepaway domain.

4.1 NEAT
Every network evolved by NEAT has 13 inputs, corre-

sponding to the Keepaway state variables, and 3 outputs,
corresponding to the available macro-actions. The keepers
always select the action with the highest activation, break-
ing ties randomly. We found that a population of 100 or-
ganisms with a target of 5 species and the default values of
c1 = 1.0, c2 = 1.0, and c3 = 2.0 allowed NEAT to learn
well in the benchmark task. See Appendix A for additional
NEAT parameters used.

We used NEAT to evolve teams of homogeneous agents:
in any given episode, the same neural network is used to
control all three keepers on the field. The reward accrued
during that episode then contributes to NEAT’s estimate
of that network’s fitness. While heterogeneous agents could
be evolved using cooperative coevolution [12], doing so is
beyond the scope of this paper.

Since the Keepaway task is stochastic and the evaluations
are noisy, it is difficult to establish a priori the optimal
number of episodes to evaluate each NEAT organism. To set
this parameter, we generated a number of NEAT learning
curves with the number of Keepaway episodes per generation
set to one of {1,000, 2,000, 6,000, 10,000} and found that
6,000 episodes per generation yielded the best performance.

Another difficult question is how to distribute these epi-
sodes among the organisms in a particular generation, given
a noisy fitness function. While previous researchers have
developed statistical schemes for performing such alloca-
tions [1, 18], in this paper we adopt a simple heuristic strat-
egy to increase the performance of NEAT: we concentrate
evaluations on the more promising organisms in the popu-
lation because their offspring will populate the majority of
the next generation. In each generation, every organism is
initially evaluated for ten episodes. After that, the highest
ranked organism that has not already received 100 episodes
is always chosen for evaluation. Hence, every organism re-
ceives at least 10 evaluations and no more than 100, with
the more promising organisms receiving the most.

4.2 Sarsa
While it is simpler in NEAT to learn homogeneous teams

of agents, the opposite is true in Sarsa. Unlike NEAT,
Sarsa’s learning rule is applied after each action is taken. If
the team is homogeneous, then each agent must update the
same value function, which is infeasible in Keepaway since
communication between the agents is forbidden. Hence, we
use Sarsa to learn teams of heterogeneous agents, with each
keeper independently updating its own value function. This
setup might appear to give Sarsa a disadvantage, since learn-
ing three policies is presumably harder than learning one.
However, we found that Sarsa’s performance does not im-
prove when inter-agent communication is allowed and Sarsa
is used to train homogeneous teams.

In our experiments, Sarsa’s parameter values were the
same as in our previous work on Keepaway [22] except that
we tuned the learning rate, α, to maximize the performance
of the learned policies. After trying four different values, we
set it to 0.05. The discount factor, γ was set to 1.0. Since
learners must select from macro-level actions that may take
multiple time-steps, we utilized a distributed SMDP [2, 14]
version of Sarsa, as in our previous Keepaway research [23].

Given the estimated Q-values for the current state, the
agent needs a method of picking an action based on these
values. If the agent always behaves greedily and selects the
action with the highest estimated value, it will never ex-
plore potentially superior alternatives. To improve its pol-
icy, the agent must occasionally try other actions. We utilize
the standard ǫ-greedy action selection mechanism to ensure
that this occurs. With probability 1− ǫ, the agent takes the
greedy action, while with probability ǫ it selects a random
action. Our experiments set ǫ to 0.01, as was done previ-
ously [22]. We also tried different values of ǫ and allowed it
to decay over time at different rates but did not find notice-
able improvements in learning performance.



Figure 3: Function approximation is necessary for agents learn-
ing in a continuous world. This diagram schematically depicts
how a TD agent produces state-action values. In this paper we
use RBF function approximation although many other function
approximators have also been shown to work well with Sarsa.

We utilized a radial basis function approximator (RBF) [25]
as a previous study showed that it was superior to CMAC
and neural network approximators in the Keepaway domain [22]
(see Figure 3 for a visualization of function approximation
in Keepaway). When considering a single state variable, an
RBF approximator is a linear function approximator

f̂(x) =
X

i

wifi(x) (3)

where the basis functions have the form

fi(x) = φ(|x− ci|) (4)

where x is the current state, ci is the center of feature i, and
wi represents weights that can be modified over time by a
learning algorithm. Here we set the features to be evenly
spaced Gaussian radial basis functions, where

φ(|x− ci|) = exp(−
|x− ci|

2

2σ2
) (5)

(see Figure 4). The σ parameter controls the width of the
Gaussian function and therefore the amount of generaliza-
tion over the state space. We set σ to 0.25, as in previous
studies [22].

Figure 4: An RBF ap-
proximator computes Q(s,a)
via a weighted sum of Gaus-
sian functions. The contri-
bution from the i

th Gaussian
is weighted by the distance
from its center, ci, to the rel-
evant state variable. σ can
be tuned to control the width
of Gaussians and thus how
much the function approxi-
mator generalizes.

A state s is composed
of some number n of state
variables, s0 . . . sn−1.
We assumed that the state
variables are independent
as was done previously [22,
23] and thus have one set
of linearly tiled RBFs for
each state variable. We
use equations 3-5 to calcu-
late Q-values of a state s,
once for each action, where
Q(s, a) = f̂(x), s = x, and
there are n sets of tilings
(one for each state vari-
able). All weights wi are
initially set to zero, but
over time Sarsa changes
the values of the weights so
that the resulting Q-values
more closely predicted the

true returns, as specified by equation 2.

5. RESULTS AND DISCUSSION
This section presents results comparing the performance

of NEAT and Sarsa in the benchmark Keepaway task. We
also present results in two variations of Keepaway designed
to isolate factors critical to each method’s performance.

In order to perform such comparisons, we need a way to
measure the quality and speed of learning for each method.
In other words, we need to measure the quality of the best
policy each method has discovered so far at various points in
the learning process. For Sarsa, this is just the greedy policy
(ǫ = 0.0) that corresponds to the agent’s current estimate
of the value function. For NEAT, it is the champion of the
most recently completed generation.

Since Keepaway evaluations are noisy and Sarsa uses ex-
ploration (ǫ 6= 0.0) while learning, the quality of the best
policy at a given point cannot be definitely established from
each method’s performance during learning. Instead, we
assess the policies in retrospect by conducting additional
evaluations after the learning runs have completed.

For NEAT, we take the champion from each generation
and evaluate it for 1,000 episodes. For Sarsa, we take the
estimated value function at 1,000 episode intervals and eval-
uate the corresponding greedy policy for 1,000 episodes.

5.1 Benchmark Keepaway Results
To compare the performance of NEAT and Sarsa in the

benchmark Keepaway task, we conducted a series of inde-
pendent trials of each method. We ran each trial until it
plateaued, i.e. its performance did not improve for several
hours. Doing so enabled us to generate more data with fixed
computational resources. Since Sarsa trials plateaued much
sooner than NEAT trials (89 hours versus 840 hours3 of sim-
ulator time, on average), we were able to conduct a total of
20 Sarsa runs but only 5 NEAT runs.

As mentioned above, we computed the mean hold time
of the best policy found so far by each method at regular
intervals. For each trial, these means were computed by
averaging performance over 1,000 test episodes. The mean
hold times were then averaged across all trials of each of the
two methods to obtain the plots shown in Figure 5. Note
that because the Sarsa learning curves plateau before the
NEAT learning curves, the performance of the Sarsa learn-
ers is extended on the graph even after learning has finished,
denoted by a horizontal performance line without plotted
data points. For presentation purposes we plot the average
performance every 10 hours for the first 200 hours and then
every 50 hours after that. Increasing the sampling resolution
does not reveal any interesting detail in the learning curves.
We plot the performance at time 0 only for Sarsa learning
curves. The Sarsa policy can be evaluated before training
but, because NEAT must spend a number of episodes test-
ing each organism in the population before determining a
champion, at time 0 there is no champion to evaluate.

The results demonstrate that NEAT can learn better poli-
cies in the benchmark Keepaway task than Sarsa with RBFs,
the best performing TD method to date. A Student’s t-
test confirms that the difference in performance between
NEAT and Sarsa is statistically significant for times greater
than or equal to 650 hours (p < 0.014). These results also
highlight an important trade-off between the two methods

3For reference, 840 hours of simulator time in the bench-
mark Keepaway task corresponded to roughly 57 genera-
tions, 342,000 episodes, or 420 hours of real time.
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Figure 5: A comparison of the mean hold times of the policies
discovered by NEAT and Sarsa in the benchmark Keepaway task.

tested. While NEAT ultimately learns better policies, it re-
quires many more evaluations to do so. Sarsa learns much
more rapidly: in the early part of learning its average policy
is much better than NEAT’s.

In order to discover what characteristics of the Keepaway
task most critically affect the speed and quality of learning
in each method, we conducted additional experiments in two
variations of Keepaway. The remainder of this section de-
scribes these variations and the results of our experiments
therein. We found that making the Keepaway task fully
observable benefits Sarsa relative to NEAT because one of
the fundamental TD assumptions that yields convergence
guarantees is no longer violated. By contrast, when the
Keepaway task is made fully deterministic and fully observ-
able, NEAT benefits relative to Sarsa because the number of
evaluations each generation requires for successful learning
is dramatically reduced.

5.2 Fully Observable Keepaway Results
In the benchmark Keepaway task, the agents’ sensors are

noisy. Since the agents can only partially observe the true
state of the world, the task is non-Markovian, i.e. the prob-
ability distribution over next states is not independent of
the agents’ state and action histories. This fact could be
problematic for Sarsa since the principles underlying TD
update rules assume the environment is Markovian, though
in practice they can still perform well when it is not [25].
By contrast, NEAT can evolve recurrent networks that cope
with non-Markovian tasks by recording important informa-
tion about previous states [5]. NEAT makes use of this abil-
ity in the benchmark task as the champion organisms typ-
ically contain recurrent links. Therefore, we hypothesized
that Sarsa’s relative performance would improve if sensor
noise was removed, rendering the Keepaway task fully ob-
servable and effectively Markovian.4

4The state is not truly Markovian because player velocities
are not included. If the agent stored past states it could
calculate these velocities and therefore better predict future
states. However, the Keepaway benchmark task does not
include velocity because past research did not find it useful
for learning; players have low inertia and the field has a high
coefficient of friction which means that velocity does not help
agents learn in practice. In this paper we use the same state
variables as previous work [22, 23] but note that when sensor
noise is removed the state is “effectively Markovian.”
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Figure 6: A comparison of the mean hold times of the policies
discovered by NEAT and Sarsa in the fully observable version of
the Keepaway task.

To test this hypothesis we conducted 5 trials of NEAT
and 20 trials of Sarsa in the fully observable Keepaway task.
Figure 6 shows the results of these experiments, with mean
hold times computed as before and averaged across all trials
of a single method. As in the benchmark version of the task,
Sarsa learns much more rapidly than NEAT. However, in the
fully observable version, Sarsa also learns substantially bet-
ter policies. The difference in performance between NEAT
and Sarsa is statistically significant for all points graphed
(p < 1.0× 10−4).

These results confirm our hypothesis that full observabil-
ity is a critical factor in Sarsa’s performance in the Keep-
away task. While Sarsa can learn well in the partially ob-
servable benchmark version of the task, its performance rel-
ative to NEAT improves dramatically when sensor noise is
removed. These results are not surprising given the way
these two methods work: Sarsa’s underlying assumptions
are violated in the absence of the Markov property. By con-
trast, NEAT makes no such assumption and therefore tasks
with partial observability are not particularly problematic.

5.3 Deterministic Keepaway Results
Even in the fully observable version of the task, which has

no sensor noise, the Keepaway task remains highly stochas-
tic due to noise in the agents’ actuators and randomness in
the agents’ initial states. In both the benchmark task and
the fully observable variation described above, this stochas-
ticity greatly slows NEAT’s learning rate. A policy’s mea-
sured fitness in a given episode has substantial variance and
NEAT is able to learn well only when the fitness estimate
for each candidate policy is averaged over many episodes.
Therefore, we tested a second variation of Keepaway in which
noise was removed from the sensors and the actuators and
the agent’s initial states were fixed. These changes yield
a domain with a completely deterministic fitness function.5

We hypothesized that NEAT would learn much faster in this
deterministic variation as it could perfectly evaluate each or-
ganism in a single episode.

5There is also a third possible variation of Keepaway which
is partially observable but does not have stochastic actions
or random initial states. We do not study this variation
in this paper because it is not fundamentally different from
the benchmark task: it is still non-Markovian and still has
a noisy fitness function. Informal experiments suggest that
in this version of the task the relative performance of NEAT
and Sarsa are unchanged from the benchmark task.



 0

 50

 100

 150

 200

 0  20  40  60  80  100  120  140

M
e
a
n
 H

o
ld

 T
im

e
 (

s
e
c
o
n
d
s
)

Training Time (hours)

Keepaway: Deterministic Task

Sarsa

NEAT

 0

 50

 100

 150

 200

 0  20  40  60  80  100  120  140

M
e
a
n
 H

o
ld

 T
im

e
 (

s
e
c
o
n
d
s
)

Training Time (hours)

Keepaway: Deterministic Task

Sarsa

NEAT

 0

 50

 100

 150

 200

 0  20  40  60  80  100  120  140

M
e
a
n
 H

o
ld

 T
im

e
 (

s
e
c
o
n
d
s
)

Training Time (hours)

Keepaway: Deterministic Task

Sarsa

NEAT

 0

 50

 100

 150

 200

 0  20  40  60  80  100  120  140

M
e
a
n
 H

o
ld

 T
im

e
 (

s
e
c
o
n
d
s
)

Training Time (hours)

Keepaway: Deterministic Task

Sarsa

NEAT

Figure 7: A comparison of the mean hold times of the policies
discovered by NEAT and Sarsa in the deterministic version of the
Keepaway task.

To test this hypothesis, we conducted 5 trials of NEAT
and 20 trials of Sarsa in the deterministic Keepaway task.
These experiments used the same parameters as those de-
scribed above except NEAT conducted only 100 episodes per
generation instead of 6,000 because each of the 100 organ-
isms in the population required only 1 evaluation episode.
We hypothesized that the Sarsa learners would benefit from
an increased learning rate in the fully deterministic environ-
ment and experimented with different learning rates, but
found no improvement over the original value of 0.05. Fig-
ure 7 shows the results of these experiments, with mean
hold times computed as before and averaged across all tri-
als of a single method. In the deterministic version of the
task, Sarsa’s speed advantage disappears. NEAT learns
more rapidly than Sarsa, in addition to discovering dra-
matically superior policies. The difference in performance
between NEAT and Sarsa is statistically significant for all
points graphed (p < 2.6× 10−6).

These results confirm our hypothesis that stochasticity in
the Keepaway domain critically affects how quickly NEAT
can learn. In the benchmark task, NEAT learns well only
when fitness estimates are averaged over many episodes, re-
sulting in slow learning relative to Sarsa. By contrast, in
the deterministic version, only one episode of evaluation is
necessary for each organism, enabling NEAT to learn much
more rapidly. Furthermore, making the Keepaway task de-
terministic greatly improves, relative to Sarsa, the quality
of the best policies discovered. This outcome is surprising
since the deterministic version of the task is also fully ob-
servable and should be well suited to TD methods. These
results demonstrate that in the deterministic version of the
task the advantage Sarsa gains from full observability is far
outweighed by the advantage NEAT gains from the ability
to perform rapid and accurate fitness evaluations.

Our results therefore suggest that the choice between us-
ing GAs and TD methods can be made based on some of the
target task’s characteristics. In deterministic domains where
the fitness of an organism can be quickly evaluated, GAs
are likely to excel. If the task is fully observable but non-
deterministic, TD methods may have a critical advantage.
If the task is partially observable and non-deterministic,
each method may have different advantages: TD methods
in speed and GAs in ultimate performance.

6. FUTURE WORK

As stated in Section 2, no comparison between two learn-
ing methods that are parameterized differently can be com-
pletely objective. Most learning methods have some num-
ber of parameters to set, and the amount of time devoted
to “tweaking” them can have a dramatic impact on the suc-
cess of learning. Furthermore, no empirical study is able to
compare all algorithmic variants or consider every relevant
domain. Though both the algorithms and the domain used
in this paper were carefully chosen to be representative, fur-
ther data is clearly needed to make conclusive statements
about the relative strengths and weaknesses of GAs and TD
methods. We hope that in the future there will be many
more studies that address these issues.

Another open question is how to integrate GAs and TD
methods such that their contrasting strengths can be ex-
ploited simultaneously. One promising approach is evolu-
tionary function approximation [27], which uses GAs to op-
timize TD function approximators. This and other hybrid
approaches may perform well in Keepaway tasks. Extend-
ing our comparison to include such methods would likely
enhance our understanding of the differences between GAs
and TD methods.

7. CONCLUSION

This paper presents the results of a detailed empirical
comparison between NEAT and Sarsa in Keepaway, a stan-
dard RL benchmark domain based on robot soccer. The
results demonstrate that NEAT can learn better policies in
this domain than Sarsa, the previous best known method,
though it requires more evaluations to do so. Additional ex-
periments in two variations of Keepaway demonstrate that
Sarsa learns better policies when the domain is fully ob-
servable and NEAT learns faster when the domain has a
deterministic fitness function. Together, these results help
isolate factors critical to the performance of each method
and yield insights into how they may perform on additional
tasks. Additional studies using more domains and different
algorithms are necessary to draw definitive guidelines about
when to use a GA or TD method. This study provides a
model of how comparisons may be done fairly and provides
an initial data point for establishing such guidelines.
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APPENDIX

A. NEAT PARAMETERS
This section details the NEAT parameters used in our

experiments. Stanley and Miikkulainen [19] describe the
semantics of these parameters in detail. The coefficients for
measuring compatibility were c1 = 1.0, c2 = 1.0, and c3 =
2.0. The compatibility distance δt was adjusted dynamically
to maintain a target of 5 species. The survival threshold was
0.2. The weight mutation power was 0.01. The interspecies
mating rate was 0.05. The drop-off age was 1,000. The
probability of adding recurrent links was 0.2.
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