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Abstract—As the prevalence of autonomous agents grows,
so does the number of interactions between these agents.
Therefore, it is desirable for these agents to be capable of
banding together with previously unknown teammates towards
a common goal: to collaborate without pre-coordination. While
past research on ad hoc teamwork has focused mainly on
theoretical treatments and empirical studies in relatively simple
domains, the long-term vision has been to enable robots and
other autonomous agents to exhibit the sort of flexibility and
adaptability on complex tasks that people do, for example when
they play games of “pick-up” basketball or soccer. This paper
introduces a series of pick-up robot soccer experiments that
were carried out in three different leagues at the international
RoboCup competition in 2013. In all cases, agents from different
labs were put on teams with no pre-coordination. This paper
introduces the structure of these experiments, describes the
strategies used by UT Austin Villa in each challenge, and
analyzes the results. The paper’s main contribution is the
introduction of a new large-scale ad hoc teamwork testbed that
can serve as a starting point for future experimental ad hoc
teamwork research.

I. INTRODUCTION

The increasing capabilities and decreasing costs of robots

makes it increasingly possible to study the interactions

among teams of heterogeneous robots. To date, most such

research on multi-robot teamwork assumes that robots share

a common coordination protocol. However, as the number

of different companies and research labs producing robots

grows, and especially as long-term autonomous capabilities

become more common, it becomes increasingly likely that

robots will have the occasion to collaborate with previously

unknown teammates in pursuit of a common goal. When en-

gaging in such ad hoc teamwork [10], robots must recognize

and reason about their teammates’ capabilities.

Although much of the initial research on ad hoc teamwork

has taken a theoretical perspective, it has been argued that ad

hoc teamwork is “ultimately an empirical challenge” [10]. In

order to facilitate such empirical ad hoc teamwork research,

this paper introduces a series of “drop-in player challenges”

that the authors helped to organize at RoboCup1 2013, a

well established multi-robot competition. These challenges

brought together real and simulated robots from teams from

around the world to investigate the current ability of robots

to cooperate with a variety of unknown teammates.

In each game of the challenges, robots were drawn from
1http://www.robocup.org/

the participating teams and combined to form a new team.

These robots were not informed of each other’s identities,

and thus had to adapt quickly to their teammates over the

course of a single game so as to discover how to intelligently

share the ball and select which roles to play. Teams from

around the world submitted teammates for this challenge.2

This paper introduces the drop-in player challenges as

a novel testbed for ad hoc teamwork and facilitates future

research in this area. After specifying the ad hoc team-

work problem and introducing the three substrate RoboCup

domains in Section II, its main contributions are: 1) the

detailed format and rules of the challenges (Section III);

2) an introduction of a team strategy used in each of the

challenges, (Section IV); and 3) detailed results and analyses

of the largest scale ad hoc teamwork experiments conducted

to date (Sections V and VI). Section VII situates this work

in literature, and Section VIII concludes. The paper’s main

purpose is to serve as a strong starting point for future

large-scale experimental ad hoc teamwork research, both in

RoboCup, and in other multi-robot domains.

II. OVERVIEW AND DOMAIN DESCRIPTION

Robot soccer1 has served as an excellent research domain

for autonomous agents and multiagent systems over the past

decade and a half. In this domain, teams of autonomous

robots compete with each other in a complex, real-time, noisy

and dynamic environment, in a setting that is both collab-

orative and adversarial. RoboCup includes several different

leagues, each emphasizing different research challenges.

A. Ad Hoc Teamwork

During the more than 15 years of annual RoboCup soccer

competitions, participants have always created full teams of

agents to compete against other teams. As a result, they

have been able to build in complex, finely-tuned coordination

protocols that allow them to agree upon which player should

go to the ball and the other players’ roles.

While the majority of multiagent research in general

focuses on creating coordinated teams that complete shared

tasks, ad hoc teamwork research focuses on creating agents

that can cooperate with unknown teammates without prior

coordination. Rather than creating a whole team of agents
2Videos of the challenges are at http://www.cs.

utexas.edu/˜AustinVilla/sim/3dsimulation/

AustinVilla3DSimulationFiles/2013/html/dropin.html



that share a coordination protocol, we assume that each

developer can only create a single agent or a small subset

of agents on the team; the other agents are under the control

of other developers. The objective of each agent is to be

capable of adapting to any teammates it may encounter while

working on a shared task, in this case winning soccer games.

B. RoboCup Standard Platform League (SPL)

In the Standard Platform League (SPL),3 teams compete

with identical 57.3cm tall Aldebaran Nao humanoid robots,4

as shown in Figure 1. Since teams compete with identical

hardware, the SPL is essentially a software competition. In

the SPL, games are played with 5 robots per side on a 6m by

9m carpeted field and last for two, 10 minute halves. Robots

play completely autonomously and are able to communicate

with each other via a wireless network.

Fig. 1: UT Austin Villa’s Nao robots (in pink) at RoboCup 2013.

C. RoboCup 2D Simulation League

As one of the oldest RoboCup leagues, 2D simulation

soccer has been well explored, both in competition and in

research. The domain consists of teams of 11 autonomous

agents playing soccer on a simulated 2D soccer field shown

in Figure 2. The field measures 105m by 68m with robots

having a radius of 30cm. Games have two 5 minute halves

having a total of 6,000 simulation steps each lasting 100 ms.

The agents receive abstract sensory information about the

game, including the position of the ball and other agents,

from the central server. After processing this information,

the agents select abstract actions such as dashing, kicking,

and turning. 2D soccer abstracts away many of the low-

level behaviors required for humanoid robot soccer, including

walking and computer vision, instead focusing on higher-

level aspects of playing soccer such as multiagent coordina-

tion and strategy.

Fig. 2: A screenshot of a 2D soccer simulation league game.

3http://www.tzi.de/spl/
4http://www.aldebaran.com

D. RoboCup 3D Simulation League

The RoboCup 3D simulation environment is based on

SimSpark,5 a generic physical multiagent systems simulator.

SimSpark simulates realistic physics using the Open Dy-

namics Engine (ODE) library.6 The robots used are 57cm

tall models of the Aldebaran Nao4 which receive abstract

perceptual information and send torque commands for their

motors.

Each robot has 22 degrees of freedom, each equipped with

a perceptor and an effector. Joint perceptors provide the agent

with noise-free angular measurements every simulation cycle

(20ms), and joint effectors allow the agent to specify the

torque and direction in which to move a joint. Although there

is no intentional noise in actuation, there is slight actuation

noise that results from approximations in the physics engine.

Abstract visual information about the environment is given to

an agent every third simulation cycle (60ms) through noisy

measurements of the distance and angle to objects within

a restricted vision cone (120◦). Agents are also outfitted

with noisy accelerometer and gyroscope perceptors, as well

as force resistance perceptors on the sole of each foot.

Additionally, agents can communicate with each other every

other simulation cycle (40ms) by sending 20 byte messages.

Games consist of two 5 minute halves of 11 versus 11

agents on a 20m by 30m field. Figure 3 shows a visualization

of the simulated robot and the soccer field during a game.

Fig. 3: A screenshot of the Nao-based humanoid robot (left), and a view
of the soccer field during a 11 versus 11 game (right).

III. CHALLENGE DESCRIPTIONS

This section describes the first main contribution of this

paper, namely the format and rules of the drop-in player

challenges held at RoboCup 2013. These rules encouraged

new ad hoc teamwork research in a competitive setting.

A. SPL Challenge

The SPL challenge7 required five players per side, and

given that six teams participated, each team contributed

one or two drop-in players. If two players from the same

team were used, they played on the same side. Both teams

were composed of randomly selected drop-in players, and

each competitor participated in four drop-in games lasting 5

minutes each. Shorter games were used to allow for more

games to be played in the allotted time. In normal SPL

games, a goalie is specified at the start of a game. In the
5http://simspark.sourceforge.net/
6http://www.ode.org/
7Full rules of the SPL challenge can be found at http://www.tzi.

de/spl/pub/Website/Downloads/Challenges2013.pdf



challenge, the first defensive player to enter the goal box

became the goalie for the remainder of the game.

During the challenge, players were allowed to commu-

nicate with each other using a simple protocol, but this

communication was not required. This protocol allows for

communicating the locations of the player and the ball, the

variance (uncertainty) of the player and ball locations, the

ball’s velocity, the time since the ball was last seen, and

whether the robot is fallen or penalized.

The SPL challenge was scored using two metrics: average

goal difference and average score from three judges. The

two scoring metrics were combined to determine the overall

winner of the SPL challenge. Human judges were used to

help identify good teamwork abilities in agents and alleviate

the effects of random variance given the limited number of

games played. For each game, each judge was asked to score

each player between 0 (poor) and 10 (excellent). The judges

were instructed to focus on teamwork capabilities, rather than

individual skills, such that a less-skilled robot could still be

given top marks for good teamwork.

B. 2D Challenge

For the 2D drop-in player challenge,8 each team con-

tributed two drop-in field players to a game where both

teams consisted of drop-in field players. Games consisted

of two 5 minute halves with teams of 7 players, rather

than the standard 11 players. The number of players was

changed because the majority of teams are based on the

same code release (agent2d [1]) which provides default

formations for 11 player teams that would provide implicit

coordination for these teams. The seventh player on each

team was a common goalie agent from the agent2d release,

and no coaches were used in the challenge. Drop-in players

were encouraged to use the default agent2d communication

protocol for communication, but this was not required.

Players were scored exclusively by their average goal

difference across all of their games; no human judges were

used. To accurately measure their performance, every team

played at least one game against opponents from each other

team. A total of nine teams participated in the challenge.

Game pairings were chosen by a greedy algorithm that

attempts to even out the number of times agents from

different teams play with and against each other, shown in

Alg. 1. This algorithm is general and can be applied to other

ad hoc teamwork settings. The algorithm terminates when

all agents have played at least one game against opponents

from every other team.

C. 3D Challenge

For the 3D drop-in player challenge,9 each participating

team contributed two drop-in field players to a game. Games

lasted for two 5 minute halves with both teams consisting of
8Full rules of the 2D challenge can be found at http:

//www.cs.utexas.edu/˜AustinVilla/sim/2dsimulation/

2013_dropin_challenge/2D_DropInPlayerChallenge.pdf
9Full rules of the 3D challenge can be found at http:

//www.cs.utexas.edu/˜AustinVilla/sim/3dsimulation/

2013_dropin_challenge/3D_DropInPlayerChallenge.pdf

drop-in players. No goalies were used for the challenge to

increase the likelihood of goals being scored.

Each drop-in player could communicate with its team-

mates about the ball and their own positions, but using the

protocol was optional. The challenge was scored solely by

the average goal difference received by an agent across all

games it played. Four drop-in games were played during the

challenge, and each of the ten participating teams played in

every game. Team pairings for games were determined by

Alg. 1 so each drop-in player played at least one game versus

each other player.

IV. DROP-IN PLAYER STRATEGIES

In addition to creating the rules for the drop-in player

challenges, UT Austin Villa also participated in these chal-

lenges. This section describes the strategies we employed

in these large-scale ad hoc teamwork experiments. We can

only analyze the UT Austin Villa strategies as there was no

mechanism to collect other teams’ strategies. At the 2014

RoboCup competition drop-in player challenge participants

will be asked to submit brief descriptions of their strategies.

A. SPL Strategies

In the main SPL competition, UT Austin Villa’s robots

coordinate by communicating their positions and bids to

play as chaser (player who goes to the ball) based on their

relative positions to the ball. The robot with the highest bid

becomes chaser, and the remaining players are assigned to

the remaining roles, such as defender, forward, or midfielder.

These roles are assigned based on the priority of the roles

and the robots’ distances from the roles’ locations.

For the drop-in player challenge, our robots follow a

similar strategy. Our robots estimate their teammates’ bids to

be chaser based on their communicated locations, ignoring

robots that do not communicate. The player with the highest

estimated bid is assumed to be the chaser. Remaining players

are assumed to assign themselves to roles based on their

locations similarly to above, though there is no guarantee

that they will follow these assumptions. While a more

sophisticated approach might better estimate the teammates’

roles, this approach worked well in initial tests.

As in the main competition, our robots reasoned about

passing and positioning to receive passes, adapting to their

Algorithm 1 Drop-In Team Pairings

Input: Agents (single agents or sets of agents teams contribute to a game)

1: games = ∅

2: while not allAgentsHavePlayedEachOther() do

3: team1, team2 := ∅

4: for i := 1 to AGENTS PER TEAM do

5: team1← getNextAgent(Agents \ {team1 ∪ team2})
6: team2← getNextAgent(Agents \ {team1 ∪ team2})

7: games← {team1, team2}

8: return games

9: getNextAgent(AvailableAgents)

10: Select agents using the following ordered preferences:

1) Played fewer games.

2) Played against fewer of the opponents.

3) Played with fewer of the teammates.

4) Played lower max number of games against/with any one opponent/teammate.

5) Played lower max number of games against any one opponent.

6) Played lower max number of games with any one teammate.



teammates dynamically. Furthermore, during the team’s kick-

off, the robot considers a variety of set plays, and prefers

plays that pass the ball to its teammates when its teammates

report that they are in opportune positions. If the other

players do not cooperate by moving to receiving positions,

the robot executes set plays that do not require their help,

such as burying the ball deep near the opponents’ goal.

B. 2D Strategies

For the 2D competition, UT Austin Villa builds on the

agent2d [1] base code release which provides a fully func-

tional soccer playing agent team. We modified this code base

to use our own dynamic role assignment system [8] which

attempts to minimize the makespan (time for all agents to

reach target home positions) while also preventing collisions

among agents. An important aspect of the drop-in challenge

is for an agent to be able to adapt to the behaviors of its

teammates: for instance if most of an agent’s teammates

are assuming offensive roles, that agent might better serve

the team by taking on a defensive role. UT Austin Villa’s

dynamic role assignment system implicitly allows for this

adaptation to occur as it naturally chooses roles that do not

currently have other agents nearby.

C. 3D Strategies

For the drop-in challenge, UT Austin Villa’s agent goes

to the ball when it is closest and tries to move the ball

towards the opponent’s goal. If our agent is not closest to

the ball, it waits two meters behind the ball as this was

found in [8] to be an important supporting position due to

the prevalence of dribbling in the competition. Since two

UT Austin Villa agents are always on the same team and

neither of them may be closest to the ball, the two agents

are often moving to the same target position, but avoid each

other using collision avoidance as described in [8].

As not all agents are adept at self-localization, our agent

tracks the trustworthiness of other teammates’ observations.

This assessment is done throughout the game by recording

the accuracy of the teammates’ messages about their location

and the ball’s location, comparing them to values observed by

our agent. Should the average accuracy fall below a set level,

our agent disregards that agent’s information when building

a model of the world. Unfortunately, as no other teams used

the shared communication protocol for this challenge, this

feature was only used in our preliminary tests.

During kickoffs, agents can teleport to anywhere on their

own side of the field before play begins. As shown in [9],

long kicks that move the ball deep into the opponent’s side

provide a substantial gain in performance. Therefore, prior

to our team’s kickoff, our agents would teleport to a random

position on the field and wait for their teammates to move

to their positions. Then, if no teammate is next to the ball,

our agent would teleport near the ball to take the kickoff.

V. CHALLENGE RESULTS

In addition to the challenges themselves and the strategies

we used to participate, the third main contribution of this

paper is a presentation and analysis of the results of the

RoboCup 2013 drop-in challenges. In this section, we present

the raw results of the challenges as well as additional tests

we performed to further gauge the competitors’ performance.

Section VI further analyzes these results.

A. SPL Results

In the SPL drop-in player challenge, six teams participated

in four 5-minute games. As discussed in Section III-A, the

overall winner of this challenge was determined via two

metrics: average goal difference and average human-judged

score. Challenge scores and rankings can be seen in Table I.

Team

Avg

Goal

Diff

Norm

Goal

Diff

Avg

Judge

Score

Final

Score

Rank

(Goal,

Judge)

B-Human 1.17 10 6.67 16.67 1 (1,1)

Nao Devils 0.57 4.9 6.24 11.14 2 (3,2)

rUNSWift 0.67 5.71 5.22 10.94 3 (2,4)

UT Austin Villa -0.29 -2.45 6 3.55 4 (4,3)

UPennalizers -0.57 -4.9 4.48 -0.42 5 (5,5)

Berlin United -1.29 -11.02 3.38 -7.64 6 (6,6)

TABLE I: Final scores and rankings for the SPL drop-in challenge.

B. 2D Simulation Results

Nine teams participated in the 2D drop-in player challenge

with seven games being played in total. Due to the noise of

2D simulation games, seven games are not enough for the

results to be statistically significant. Therefore, following the

competition, we also replayed the challenge with the released

binaries over many games including all combinations of the

nine teams contributing two agents each. There are (
(

9
3

)

∗
(

6
3

)

)/2 = 840 combinations given that each drop-in team is

made up of agents from three different teams. Five games

were played for each combination, resulting in 4,200 games.
RoboCup Many Games

Team AGD Rank AGD Rank

FCPerspolis 2.4 1 3.025 (0.142) 1

Yushan 2.25 2 2.583 (0.141) 2

ITAndroids 2.0 3 1.379 (0.152) 5

Axiom 1.2 4 1.315 (0.148) 6

UT Austin Villa .25 5 1.659 (0.153) 4

HfutEngine -0.2 6 -2.076 (0.152) 7

WrightEagle -1.6 7 -6.218 (0.129) 9

FCPortugal -2.2 8 -3.379 (0.150) 8

AUTMasterminds -2.8 9 1.711 (0.152) 3

TABLE II: Avg. goal difference (AGD) with standard error shown in
parentheses and rankings for the 2D drop-in player challenges.

The competition results and extended results are shown

in Table II. The difference between these results show that

only playing seven games does not reveal the true rankings

of teams as the last place team during the challenge at

RoboCup, AUTMasterminds, finished third overall when

playing thousands of games. We do however acknowledge

that as we are not running games on the same exact machines

as were used at RoboCup, there is the potential for agents

to behave differently in these tests.

C. 3D Simulation Results

Ten teams participated in the 3D drop-in player chal-

lenge, and four games were played in total. Game results

in the 3D simulator also tend to have high variance, so

results from only four games are not statistically significant.

Therefore, we once again replayed the challenge using the

released binaries using all combinations of teams. The total



number of possible different drop-in team combinations is

(
(

10
5

)

∗

(

5
5

)

)/2 = 126 as each drop-in team is made of

agents from five different teams. Five games were played for

each combination, resulting in a total of 630 games. Results

from the competition and the extended analysis are shown

in Table III.
RoboCup Many Games

Team AGD Rank AGD Rank

BoldHearts 1.5 1 0.178 (0.068) 4

FCPortugal 0.75 T2 1.159 (0.060) 1

Bahia3D 0.75 T2 -0.378 (0.068) 7

Apollo3D 0.75 T2 0.159 (0.068) 5

magmaOffenburg 0.25 5 0.254 (0.068) 3

RoboCanes -0.5 6 -0.286 (0.068) 6

UT Austin Villa -0.75 T7 0.784 (0.065) 2

SEUJolly -0.75 T7 -0.613 (0.066) 9

Photon -0.75 T7 -0.425 (0.068) 8

L3MSIM -1.25 10 -0.832 (0.065) 10

TABLE III: Avg. goal difference (AGD) with standard error shown in
parentheses and rankings for the 3D drop-in player challenges.

VI. CHALLENGE ANALYSIS

This section presents deeper analysis of the results of the

challenges, with a particular eye towards identifying which

ad hoc teamwork strategies proved to be most effective.

A. SPL Analysis

The winners of the drop-in challenges should be the play-

ers who displayed the best teamwork abilities, not necessarily

the best low level skills. Hence, we compare teams’ perfor-

mances in the drop-in player challenge to their performance

in the main competition. Overall, the challenge’s results

were well correlated with the main competition’s results.

UPennalizers and Berlin United finished near the bottom in

the drop-in challenge, and they also finished in the lower part

of the main competition.10 Notably, B-Human performed best

in terms of their drop-in and main ranks as well as in the

human judges’ scores, indicating that their teamwork and

adaptability performed well in both settings.

B. 2D Analysis

To further analyze the results from the 2D drop-in player

challenge we again compare teams’ performances in the

drop-in player challenge to their performance in the main

competition. As the main tournament only includes a rela-

tively small number of games, and thus rankings from the

main competition are typically not statistically significant,

we ran 1,000 games of our team’s main competition binary

against each of the other teams’ released main competition

binaries who participated in the drop-in player challenge.

This process gives us a statistically significant baseline for

comparing the performance of teams on the task of playing

standard team soccer. Results are shown in Table IV, using

the drop-in rankings from the larger analysis.

While Table IV shows that there is not a direct correlation

between ranking in the drop-in player challenge compared

to standard team soccer, there is a trend for agents that

perform better at standard team soccer to also perform better

at the drop-in player challenge. Excluding the outlier team

WrightEagle, the top half of the teams for the drop-in player
10Main competition results can be found at https://www.tzi.de/

spl/bin/view/Website/Results2013

Drop-In Main Against UT Austin Villa

Team Rank Rank Rank AGD

FCPerspolis 1 5 4 2.923 (0.056)

Yushan 2 2 3 3.616 (0.063)

AUTMasterminds 3 4 2 5.289 (0.084)

UT Austin Villa 4 8 8 0 (self)

ITAndroids 5 7 7 0.442 (0.060)

Axiom 6 3 5 1.248 (0.072)

HfutEngine 7 9 9 -6.07 (0.175)

FCPortugal 8 6 6* *

WrightEagle 9 1 1 6.537 (0.25)

TABLE IV: Avg. goal difference (AGD) with standard error shown in
parentheses and rankings for the 2D drop-in player challenge, main com-
petition, and playing against UT Austin Villa. *We were unable to run the
released FCPortugal binary and thus used their relative ranking from the
main competition.

challenge had an average rank of 4.25 when playing against

UT Austin Villa while the bottom half of the teams had an

average rank of 6.75 against UT Austin Villa.

An important aspect of the drop-in player challenge is for

agents to adapt to the behaviors of their teammates, such as

moving to defense when most teammates are playing offen-

sive roles. As mentioned in Section IV-B, UT Austin Villa’s

dynamic role assignment system [8] implicitly encourages

this adaptation. We tested a version of the UT Austin Villa

agent that used a static role assignment rather then the

dynamic system across the same 4,200 games. Compared

to the dynamic assignments, using the static assignments

dropped our agent’s average goal difference from 1.659 (+/-

0.153) to 1.473 (+/-0.157). We empirically found that most

agents in the challenge used static role assignments, which

may explain why UT Austin Villa performed better in the

drop-in player competition than in the main competition.

C. 3D Analysis

To analyze results from the 3D drop-in player challenge

we followed the same methodology used in the 2D analysis.

To do so we ran at least 100 games of our team’s main

competition binary against each of the other teams’ released

main competition binaries who participated in the drop-in

player challenge. Results for this are shown in Table V, using

the drop-in rankings from the larger analysis.
Drop-In Main Against UT Austin Villa

Team Rank Rank Rank AGD

FCPortugal 1 3 2 -0.465 (0.023)

UT Austin Villa 2 2 1 0 (self)

magmaOffenburg 3 T5 5 -1.447 (0.026)

BoldHearts 4 T5 6 -1.607 (0.029)

Apollo3D 5 1 3 -0.698 (0.027)

RoboCanes 6 T5 7 -1.828 (0.031),

Bahia3D 7 10 10 -9.80 (0.110)

Photon 8 8 8 -4.59 (0.081)

SEUJolly 9 4 4 -1.133 (0.027)

L3MSIM 10 9 9 -6.05 (0.098)

TABLE V: Average goal difference (AGD) with standard error shown
in parentheses and rankings for the 3D drop-in player challenge, main
competition, and playing against UT Austin Villa.

Similar to the results in the 2D simulation league, Table V

shows that there is not a strong correlation between rankings

in the drop-in player challenge and ranking in the main

competition. However, there is a trend that teams performing

better at drop-in player soccer also do better at standard

team soccer. The top half of the teams for the drop-in player

challenge had an average rank of 3.4 against UT Austin Villa,

while the bottom half’s same average rank was 7.6.



To evaluate the importance of different parts of our drop-

in player strategy, we created the following variants of the

UT Austin Villa drop-in player agent:

Dribble: Agent only dribbles and never kicks.

DynamicRoles: Uses dynamic role assignment.

NoKickoff: No teleporting next to ball to take the kickoff.

We then tested them across the same 630 game extended

drop-in player challenge used in Section V-C.
Agent AGD

Dribble 1.370 (0.064)

UT Austin Villa 0.784 (0.065)

NoKickoff 0.676 (0.065)

DynamicRoles 0.568 (0.071)

TABLE VI: Average goal difference (AGD) with standard error shown in
parentheses for agents playing in the extended 3D drop-in player challenge.

The results in Table VI show that the strategy of teleport-

ing in to take the kickoff if no teammates are in place to

do so improves performance. The results also reveal that by

only dribbling, and not kicking, we would greatly improve

our agent’s performance in the drop-in player challenge.

Considering that the UT Austin Villa 3D simulation team

won both the 2011 and 2012 RoboCup world championships,

and took second place in 2013, it can be surmised that the UT

Austin Villa agent likely has better low-level skills than most

other agents on its drop-in player team. Therefore, kicking

the ball, and potentially passing it to a teammate, has a

reasonable likelihood of hurting overall team performance.

VII. RELATED WORK

Multiagent teamwork is a well studied topic, with most

work tackling the problem of creating standards for co-

ordinating and communicating. One such algorithm is

STEAM [11], in which team members build up a partial

hierarchy of joint actions and monitor the progress of their

plans while communicating selectively. In [5], Grosz and

Kraus present a reformulation of the SharedPlans, where

agents communicate their intents and beliefs and use this

information to reason about how to coordinate joint actions.

In addition, SharedPlans provides a process for revising

agents’ intents and beliefs to adapt to changing conditions.

While these algorithms have been shown to be effective, they

require teammates to share their coordination framework.

On the other hand, ad hoc teamwork focuses on the case

where the agents do not share a coordination algorithm.

In [7], Liemhetcharat and Veloso reason about selecting

agents to form ad hoc teams. Barrett et al. [3] empirically

evaluate an MCTS-based ad hoc team agent in the pursuit

domain, and Barrett and Stone [2] analyze existing research

on ad hoc teams and propose one way to categorize ad hoc

teamwork problems. Other approaches include Jones et al.’s

work [6] on ad hoc teams in a treasure hunt domain. A more

theoretical approach is Wu et al.’s work [12] into ad hoc

teams using stage games and biased adaptive play.

In the domain of robot soccer, Bowling and McCracken [4]

measure the performance of a few ad hoc agents, where each

ad hoc agent is given a playbook that differs from that of its

teammates. The teammates implicitly assign the ad hoc agent

a role, and then react to it as they would any teammate. The

ad hoc agent analyzes which plays work best over hundreds

of games and predicts the roles that its teammates will play.

However, none of this previous research has evaluated their

approaches with agents created by developers from around

the world in a true ad hoc teamwork setting. Other RoboCup

leagues have looked into ad hoc teamwork, including the

small size league holding mixed team challenges.11 Our work

extends their results by including participation from many

more teams, and with more than two teams per side.

VIII. CONCLUSIONS

This paper describes and documents the drop-in player

challenges run in three of the leagues at the 2013 RoboCup

competition. These challenges serve as a novel testbed for

ad hoc teamwork, in which agents must adapt to a variety

of new teammates without pre-coordination, and provided

an opportunity to evaluate robots’ abilities to cooperate with

new teammates to accomplish goals in complex tasks. These

were the first large scale pick-up games between teams each

composed of agents designed by more than two sources with

the goal to perform well as an ad hoc team. These challenges

and the strategies introduced in them could generalize to

other ad hoc teamwork scenarios. We believe that these drop-

in challenges will serve as the starting point for many future

drop-in challenges, and will also serve as a point of reference

for designing new ad hoc teamwork testbeds.
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