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Abstract. The UT Austin Villa team, from the University of Texas at
Austin, won the 2017 RoboCup 3D Simulation League, winning all 23
games that the team played. During the course of the competition the
team scored 171 goals without conceding any. Additionally, the team
won the RoboCup 3D Simulation League technical challenge by winning
each of a series of three league challenges: free, passing and scoring,
and Gazebo running challenge. This paper describes the changes and
improvements made to the team between 2016 and 2017 that allowed
it to win both the main competition and each of the league technical
challenges.

1 Introduction

UT Austin Villa won the 2017 RoboCup 3D Simulation League for the sixth time
in the past seven years, having also won the competition in 2011 [1], 2012 [2],
2014 [3], 2015 [4], and 2016 [5] while finishing second in 2013. During the course
of the competition the team scored 171 goals and conceded none along the way to
winning all 23 games the team played. Many of the components of the 2017 UT
Austin Villa agent were reused from the team’s successful previous years’ entries
in the competition. This paper is not an attempt at a complete description of
the 2017 UT Austin Villa agent, the base foundation of which is the team’s 2011
championship agent fully described in a team technical report [6], but instead
focuses on changes made in 2017 that helped the team repeat as champions.

In addition to winning the main RoboCup 3D Simulation League competi-
tion, UT Austin Villa also won the RoboCup 3D Simulation League technical
challenge by winning each of the three league challenges: free, passing and scor-
ing, and Gazebo running challenge. This paper also serves to document these
challenges and the approaches used by UT Austin Villa when competing in the
challenges.

The remainder of the paper is organized as follows. In Section 2 a descrip-
tion of the 3D simulation domain is given. Section 3 details the most important
improvement to the 2017 UT Austin Villa team: fast walk kicks, while Sec-
tion 4 analyzes the contribution of this improvement in addition to the overall
performance of the team at the competition. Section 5 describes and analyzes



the league challenges that were used to determine the winner of the technical
challenge, and Section 6 concludes.

2 Domain Description

The RoboCup 3D simulation environment is based on SimSpark [7, 8], a generic
physical multiagent system simulator. SimSpark uses the Open Dynamics Engine
(ODE) library for its realistic simulation of rigid body dynamics with collision
detection and friction. ODE also provides support for the modeling of advanced
motorized hinge joints used in the humanoid agents.

Games consist of 11 versus 11 agents playing two 5 minute halves of soccer on
a 30 X 20 meter field. The robot agents in the simulation are modeled after the
Aldebaran Nao robot, which has a height of about 57 cm, and a mass of 4.5 kg.
Each robot has 22 degrees of freedom: six in each leg, four in each arm, and
two in the neck. In order to monitor and control its hinge joints, an agent is
equipped with joint perceptors and effectors. Joint perceptors provide the agent
with noise-free angular measurements every simulation cycle (20ms), while joint
effectors allow the agent to specify the speed/direction in which to move a joint.

Visual information about the environment is given to an agent every third
simulation cycle (60ms) through noisy measurements of the distance and angle to
objects within a restricted vision cone (120◦). Agents are also outfitted with noisy
accelerometer and gyroscope perceptors, as well as force resistance perceptors
on the sole of each foot. Additionally, agents can communicate with each other
every other simulation cycle (40ms) by sending 20 byte messages.

In addition to the standard Nao robot model, four additional variations of
the standard model, known as heterogeneous types, are available for use. These
variations from the standard model include changes in leg and arm length, hip
width, and also the addition of toes to the robot’s foot. Teams must use at least
three different robot types, no more than seven agents of any one robot type,
and no more than nine agents of any two robot types.

The main change for the 2017 RoboCup 3D Simulation League competition
from previous years was the removal of crowding rules. Previously, too many
players crowded around the ball caused players to be penalized and beamed to
the sideline. Crowding rules were primarily enforced to decrease the number of
collisions between robots as multiple collisions at the same time can slow down
the simulator and potentially cause it to crash. With existing touching rules such
that a player is beamed to the sideline if a group of three or more players are
touching each other, and the addition in 2016 of charging fouls that penalize
players for running into opponents, it was determined that crowding rules were
no longer needed.

Figure 1 shows a visualization of the Nao robot and the soccer field during a
game.



Fig. 1: A screenshot of the Nao humanoid robot (left), and a view of the soccer field during a 11
versus 11 game (right).

3 Fast Walk Kicks

Many components developed prior to 2017 contributed to the success of the
UT Austin Villa team including dynamic role assignment [9], marking [10], and
an optimization framework used to learn low level behaviors for walking and
kicking via an overlapping layered learning approach [11]. This section discusses
the development of a new and important component for 2017: fast walk kicks.
Fast walk kicks refer to the ability of agents to approach the ball and quickly kick
it without having to first come to a stop and enter a stable standing position. The
amount of time it takes for agents to approach and kick the ball is an important
consideration as kick attempts that take longer to perform give opponents a
better chance to stop them from being executed.

The UT Austin Villa team specifies kicking motions through a periodic state
machine with multiple key frames, where a key frame is a parameterized static
pose of fixed joint positions. Figure 2 shows an example series of poses for a
kicking motion. While some joint positions are specified by hand, a subset of
values for joint positions are optimized using the CMA-ES [12] algorithm and
overlapping layered learning [11] methodologies.

Prior to the 2017 competition all kicking motions performed by the UT
Austin Villa team first required the agent to come to a stable standing posi-
tion with both feet on the ground before kicking the ball. The team’s fastest
kicks took about 0.5 seconds to execute but only traveled a little over 5 meters.
Longer kicks, traveling as far as 20 meters, were slower and could take up to 2
seconds to execute.

The UT Austin Villa team has noticed a couple trends when optimizing pa-
rameter values for kicks: policies with more parameters allow for longer kicks, and
policies with more parameters allow for kicking motions with shorter durations
that are quicker to execute without the robot becoming unstable and falling over.



Fig. 2: Example of a fixed series of poses that make up a kicking motion.

As adding more parameters to a policy increases the space of policies that can be
represented, it is not surprising that policies with more parameters have allowed
for kicks that can travel farther and be executed faster. However, adding more
parameters to a kick can make learning slower and more difficult, and there is
likely an upper limit on the number of parameters that can effectively be learned
as CMA-ES does not scale well to thousands of parameters [13].

Given a desire to develop a kick with good distance that is very fast to ex-
ecute, we decided to learn kicking motion parameters for every joint over 12
simulation cycles (24ms)—such a kicking motion is thus learned over the entire
range of possible poses for any kick less than 0.25 seconds in duration. We opti-
mized ≈ 260 parameters for this kick across 1000 generation of CMA-ES using
a population size of 300—previously we have used a CMA-ES population size of
150 when optimizing kicks consisting of ≈ 75 parameters, however we decided to
double the size of the population due to the larger number of parameters being
optimized. Initial parameter values were seeded with joint angles taken from a
subset of poses used by our longest kick: joint angle values across a 12 simulation
cycle window of the kick that include when the ball is struck by the foot. During
learning we used the following fitness function that rewards the agent for the
distance the ball is kicked, encourages accuracy by giving a Gaussian penalty for
the difference/offset between the desired and actual angles that the ball travels,
and promotes stability via a negative value if the agent falls over during kicking:

fitnesskick =

{

−1 : Agent Fell

distBallTraveledForward ∗ e−angleOffset2/360 : Otherwise

The resulting kick learned from this optimization takes 0.24 seconds to execute,
travels close to 20 meters in distance (nearly the same distance as our longest
kicks that can take up to 2 seconds to execute), and provides a substantial
increase in the teams performance—a performance analysis of using fast walk
kicks is provided in Section 4.1.

As our learned kick takes less than 0.25 seconds to execute, the robot must
begin the kicking motion starting from a walking position, and perform a “walk



kick” due to there not being enough time for the robot to first assume a standing
position before striking the ball. During walk kicks it is important that a robot
has its non-kicking support leg on the ground before initiating a kicking motion
as otherwise the robot will likely fall over. When attempting walk kicks, the UT
Austin Villa agent will wait until its support leg is on the ground—as determined
by a large enough force measured by the force resistance perceptor on the sole
of the agent’s support leg’s foot—before beginning a kick. The magmaOffenburg
team, who also developed a walk kick for this year’s competition, similarly ensure
that a robot’s support leg is on the ground before attempting a kick [14].

4 Main Competition Results and Analysis

In winning the 2017 RoboCup competition UT Austin Villa finished with a per-
fect record of 23 wins and no losses.1 During the competition the team scored
171 goals while conceding none. Despite finishing with a perfect record, the rela-
tively few number of games played at the competition, coupled with the complex
and stochastic environment of the RoboCup 3D simulator, make it difficult to
determine UT Austin Villa being better than other teams by a statistically sig-
nificant margin. At the end of the competition, however, all teams were required
to release their binaries used during the competition. Results of UT Austin Villa
playing 1000 games against each of the other twelve teams’ released binaries
from the competition are shown in Table 1.

Table 1: UT Austin Villa’s released binary’s performance when playing 1000 games against the
released binaries of all other teams at RoboCup 2017. This includes place (the rank a team achieved
at the 2017 competition), average goal difference (values in parentheses are the standard error),
win-loss-tie record, and goals for/against.

Opponent Place Avg. Goal Diff. Record (W-L-T) Goals (F/A)

magmaOffenburg 2 3.756 (0.057) 983-0-17 3778/22
FUT-K 3 4.793 (0.056) 995-0-5 4823/30
AIUT3D 5 5.946 (0.054) 1000-0-0 5981/35
BahiaRT 6 6.677 (0.055) 1000-0-0 6677/0

FCPortugal 7 6.753 (0.062) 1000-0-0 6818/65
Nexus3D 11 7.486 (0.035) 1000-0-0 7486/0
KgpKubs 8 7.510 (0.057) 1000-0-0 7510/0
RoboCanes 4 7.801 (0.066) 1000-0-0 7806/5

HfutEngine3D 12 7.952 (0.049) 1000-0-0 7957/5
Miracle3D 10 8.404 (0.056) 1000-0-0 8404/0
ITAndroids 9 11.169 (0.057) 1000-0-0 11169/0

RIC-AASTMT 13 11.466 (0.051) 1000-0-0 11466/0

UT Austin Villa finished with at least an average goal difference greater than
3.75 goals against every opponent. Additionally, UT Austin Villa won all but

1 Full tournament results can be found at https://www.robocup2017.org/file/

results/0730/0730_soccer_simulation_3d.pdf



22 games that ended in ties—no losses—out of the 12,000 that were played in
Table 1 with a win percentage greater than 98% against all teams. These results
show that UT Austin Villa winning the 2017 competition was far from a chance
occurrence. The following subsection analyzes the contribution of fast walk kicks
(described in Section 3) to the team’s dominant performance.

4.1 Analysis of Fast Walk Kicks

To analyze the contribution of fast walk kicks (Section 3) to the UT Austin Villa
team’s performance, we played 1000 games between a version of the 2017 UT
Austin Villa team with fast walk kicks turned off—and no other changes—against
each of the RoboCup 2017 teams’ released binaries. Results comparing the per-
formance of the UT Austin Villa team with and without using fast walk kicks
are shown in Table 2.

Table 2: Average goal difference achieved by versions of the UT Austin Villa team with and without
fast walk kicks, and the gain in average goal difference by using fast walk kicks, when playing 1000
games against all teams at RoboCup 2017.

Opponent Fast Walk Kicks No Fast Walk Kicks Fast Walk Kicks Gain

UTAustinVilla 0a -0.557 0.557
magmaOffenburg 3.756 2.159 1.597

FUT-K 4.793 2.912 1.881
AIUT3D 5.946 4.824 1.122
BahiaRT 6.677 4.051 2.626

FCPortugal 6.753 4.701 2.052
Nexus3D 7.486 7.002 0.484
KgpKubs 7.510 5.532 1.978
RoboCanes 7.801 6.113 1.688

HfutEngine3D 7.952 6.827 1.125
Miracle3D 8.404 6.830 1.574
ITAndroids 11.169 10.294 0.875

RIC-AASTMT 11.466 10.526 0.940

a Games were not played, but assumed to be an average goal difference of 0 in expec-
tation with self play.

Against all opponents the average goal difference was higher when using fast
walk kicks, with the gain in average goal difference performance against each
opponent averaging 1.423 goals. These results show that fast walk kicks provide
a substantial improvement in game performance to the UT Austin Villa team.

4.2 Additional Tournament Competition Analysis

To further analyze the tournament competition, Table 3 shows the average goal
difference for each team at RoboCup 2017 when playing 1000 games against all
other teams at RoboCup 2017.



Table 3: Average goal difference for each team at RoboCup 2017 (rows) when playing 1000 games
against the released binaries of all other teams at RoboCup 2017 (columns). Teams are ordered
from most to least dominant in terms of winning (positive goal difference) and losing (negative goal
difference).

UTA mag FUT FCP AIUT Rob Bah Kgp Hfut Mir Nex ITA RIC

UTAustinVilla — 3.756 4.793 6.753 5.946 7.801 6.677 7.510 7.952 8.404 7.486 11.169 11.466
magmaOffenburg -3.756 — 0.058 1.698 1.441 2.692 2.593 2.863 3.627 5.340 4.088 4.760 6.210

FUT-K -4.793 -0.058 — 1.621 1.989 2.077 2.165 2.603 4.151 4.986 5.297 5.313 6.597
FCPortugal -6.753 -1.698 -1.621 — 0.325 0.695 1.031 1.735 2.388 3.991 2.950 4.287 5.352
AIUT3D -5.946 -1.441 -1.989 -0.325 — 0.506 0.449 0.738 2.077 2.721 3.223 2.609 5.536

RoboCanes -7.801 -2.692 -2.077 -0.695 -0.506 — 1.068 1.852 2.279 4.175 2.612 3.309 4.791
BahiaRT -6.677 -2.593 -2.165 -1.031 -0.449 -1.068 — 0.393 1.005 1.437 1.448 1.645 3.120
KgpKubs -7.510 -2.863 -2.603 -1.735 -0.738 -1.852 -0.393 — 0.974 1.115 0.638 1.664 3.027

HfutEngine3D -7.952 -3.627 -4.151 -2.388 -2.077 -2.279 -1.005 -0.974 — 0.436 0.081 0.180 1.426
Miracle3D -8.404 -5.340 -4.986 -3.991 -2.721 -4.175 -1.437 -1.115 -0.436 — 0.562 0.525 2.693
Nexus3D -7.486 -4.088 -5.297 -2.950 -3.223 -2.612 -1.448 -0.638 -0.081 -0.562 — 0.179 1.691

ITAndroids -11.169 -4.760 -5.313 -4.287 -2.609 -3.309 -1.645 -1.664 -0.180 -0.525 -0.179 — 1.889
RIC-AASTMT -11.466 -6.210 -6.597 -5.352 -5.536 -4.791 -3.120 -3.027 -1.426 -2.693 -1.691 -1.889 —

It is interesting to note that the ordering of teams in terms of winning
(positive goal difference) and losing (negative goal difference) is strictly dom-
inant—every opponent that a team wins against also loses to every opponent
that defeats that same team. Relative goal difference does not have this same
property, however, as a team that does better against one opponent relative to
another team does not always do better against a second opponent relative to
that same team. UT Austin Villa is dominant in terms of relative goal difference,
however, as UT Austin Villa has a higher goal difference against each opponent
than all other teams against the same opponent.

5 Technical Challenges

For the fourth straight year there was an overall technical challenge consisting of
three different league challenges: free, passing and scoring, and Gazebo running
challenge. For each league challenge a team participated in points were awarded
toward the overall technical challenge based on the following equation:

points(rank) = 25− 20 ∗ (rank− 1)/(numberOfParticipants− 1)

Table 4 shows the ranking and cumulative team point totals for the technical
challenge as well as for each individual league challenge. UT Austin Villa earned
the most points and won the technical challenge by taking first in each of the
league challenges. The following subsections detail UT Austin Villa’s participa-
tion in each league challenge.2

2 Videos of the passing and scoring challenge and the Gazebo running challenge can
be found at
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/#2017challenges



Table 4: Overall ranking and points totals for each team participating in the RoboCup 2017 3D
Simulation League technical challenge as well as ranks and points awarded for each of the individual
league challenges that make up the technical challenge.

Overall Free Passing and Scoring Gazebo Running

Team Rank Points Rank Points Rank Points Rank Points

UTAustinVilla 1 75.00 1 25.00 1 25.00 1 25.00

magmaOffenburg 2 43.00 3 11.67 4 13.00 2 18.33
AIUT3D 3 30.33 4 5.00 3 17.00 3-4 8.33

FCPortugal 4 29.33 — — 2 21.00 3-4 8.33
BahiaRT 5 23.33 2 18.33 6 5.00 — —

HfutEngine3D 6 9.00 — — 5 9.00 — —

5.1 Free Challenge

During the free challenge, teams give a five minute presentation on a research
topic related to their team. Each team in the league then ranks the top five
presentations with the best receiving 5 votes and the 5th best receiving 1 vote.
Additionally several respected research members of the RoboCup community
outside the league vote, with their votes being counted double. The winner of
the free challenge is the team that receives the most votes. Table 5 shows the
results of the free challenge in which UT Austin Villa was awarded first place.

Table 5: Results of the free challenge.

Team Votes

UTAustinVilla 59

BahiaRT 49
magmaOffenburg 46

AIUT3D 42

UT Austin Villa’s free challenge submission3 presented the team’s fast walk
kicks discussed in Section 3. Additionally, UT Austin Villa’s free challenge sub-
mission divulged preliminary work on representing the policy of a kicking motion
as a neural network, and using deep learning [15] and the Trust Region Policy
Optimization (TRPO) algorithm [16] to learn longer kicks. The BahiaRT team
provided details about an optimization framework they created, the magmaOf-
fenburg team talked about a 2D simulator they use for testing the strategy
layer of their team, and the AIUT3D team introduced a motion editor for 3D
Simulation League agents.4

3 Free challenge entry description available at http://www.cs.utexas.edu/

~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2017/files/

UTAustinVillaFreeChallenge2017.pdf
4 https://github.com/AIUT3D/aiut3d-motion-editor



5.2 Passing and Scoring Challenge

In the course of the passing and scoring challenge,5 a group of four agents on
one team attempts to pass the ball between themselves—such that each agent
touches the ball at least once—before scoring a goal in as little time as possible.
At the beginning of the challenge the ball is placed at the center of the field and
the agents must start with at least a three meter distance, along the X axis, from
each other. If the initial position of the agents does not comply with the rules,
the team is awarded a score of 85. The challenge ends when a goal is scored, the
ball leaves the field, or 80 seconds have passed. For each distinct agent kicking
the ball—judged as the ball traveling freely for at least 2.5 meters after being
kicked, the score is reduced by one point. If a goal is scored, the score is reduced
by one point. If the goal is scored after the ball has been kicked by all four
players, the score is the time (in seconds) from the start of the trial until the
scoring event. The objective of the challenge is to get as low a score as possible.

The starting position and strategy used by UT Austin Villa for the passing
and scoring challenge is shown in Figure 3. Whichever agent is closest to the
ball passes the ball to a position about a meter in front of the next farthest
agent from the goal as shown by the yellow arrows in Figure 3. Once the ball
has been sequentially passed forward between agents and the agent closest to
the goal receives the ball, that agent kicks the ball in the goal as shown by the
pink arrow in Figure 3. When agents are not the closest agent to the ball they
just stand in place.

Table 6 shows the results of the passing and scoring challenge where teams
were ranked by the average score of a team’s best (lowest) three out of four trials.
UT Austin Villa won the challenge with an average score/time of less than 20.
Each of UT Austin Villa’s passing and scoring challenge trial scores were better
than all the scores of other teams’ trials.

Table 6: Scores for each of the teams competing in the passing and scoring challenge.

Team Trial 1 Trial 2 Trial 3 Trial 4 Average of Best Three Trials

UTAustinVilla 19.34 20.26 21.28 19.38 19.66

FCPortugal 82.00 21.58 22.06 22.18 21.94
AIUT3D 31.26 53.66 33.98 35.98 33.74

magmaOffenburg 30.38 83.00 23.66 82.00 45.35
HfutEngine3D 35.58 84.00 82.00 83.00 66.86

BahiaRT 81.00 83.00 83.00 82.00 82.00

5 Details and framework for the passing and scoring challenge at
https://github.com/magmaOffenburg/magmaChallenge#passing-challenge



Fig. 3: Starting positions and strategy for the passing and scoring challenge. Yellow arrows represent
passes between agents and the pink arrow represents a shot on goal.

5.3 Gazebo Running Challenge

Ongoing work within the RoboCup community is the development of a plugin6

for the Gazebo [17] robotics simulator to support the RoboCup 3D Simulation
League. As such, a challenge7 was held where robots attempt to walk forward
as fast as possible for 20 seconds in the Gazebo simulator without falling. In
preparation for the challenge UT Austin Villa optimized fast walking parameters
for the team’s omnidirectional walk engine [18] within the Gazebo simulator
using the CMA-ES algorithm [12]. Walk engine parameters were optimized for
300 generations of CMA-ES with a population size of 150.

Results of the Gazebo running challenge are shown in Table 7. Each partic-
ipating team performed four running attempts and were scored by the average
forward walking speed across their three best attempts. UT Austin Villa won
the challenge with all of the team’s runs having a speed of over 1.15 m/s. Each
of UT Austin Villa’s running attempt speeds were greater than all other teams’
attempts. UT Austin Villa also won this same challenge at RoboCup 2016 [5].

6 https://bitbucket.org/osrf/robocup3ds
7 Framework for running the Gazebo running challenge at
https://github.com/magmaOffenburg/magmaChallenge



Table 7: Speed in meters per second for each of the teams competing in the Gazebo running challenge.

Team Run 1 Run 2 Run 3 Run 4 Average of Best Three Runs

UTAustinVilla 1.176 1.210 1.159 1.179 1.188

magmaOffenburg 0.354 0.365 0.417 0.256 0.379
AIUT3D 0.000 0.000 0.000 0.000 0.000

FCPortugal 0.000 0.000 0.000 0.000 0.000

6 Conclusion

UT Austin Villa won the 2017 RoboCup 3D Simulation League main competi-
tion as well as all technical league challenges.8 Data taken using released binaries
from the competition show that UT Austin Villa winning the competition was
statistically significant. The 2017 UT Austin Villa team also improved dramat-
ically from 2016 as it was able to beat the team’s 2016 champion binary by an
average of 1.339 (+/- 0.039) goals across 1000 games.

In an effort to both make it easier for new teams to join the RoboCup 3D
Simulation League, and also provide a resource that can be beneficial to exist-
ing teams, the UT Austin Villa team has released their base code [19].9 This
code release provides a fully functioning agent and good starting point for new
teams to the RoboCup 3D Simulation League (it was used by six teams at
the 2017 competition: AIUT3D, HfutEngine3D, KgpKubs, Miracle3D, Nexus3D,
and RIC-AASTMT). Additionally the code release offers a foundational platform
for conducting research in multiple areas including robotics, multiagent systems,
and machine learning.
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