
TT-UT Austin Villa 2009: Naos Across Texas

Todd Hester, Michael Quinlan and Peter Stone

Department of Computer Science

The University of Texas at Austin

1 University Station C0500

Austin, Texas 78712-0233

{todd,mquinlan,pstone}@cs.utexas.edu

Mohan Sridharan

Department of Computer Science

Texas Tech University

P.O. Box 43104

Lubbock, TX 79409-3104

mohan.sridharan@ttu.edu

Technical Report UT-AI-TR-09-08

December 24, 2009

Abstract

In 2008, UT Austin Villa entered a team in the first Nao competition
of the Standard Platform League of the RoboCup competition. The team
had previous experience in RoboCup in the Aibo leagues. Using this past
experience, the team developed an entirely new codebase for the Nao. In
2009, UT Austin combined forces with Texas Tech University, to form
TT-UT Austin Villa. TT-UT Austin Villa won the 2009 US Open and
placed fourth in the 2009 RoboCup competition in Graz, Austria. This
report describes the algorithms used in these tournaments, including the
architecture, vision, motion, localization, and behaviors.

1



1 Introduction

RoboCup, or the Robot Soccer World Cup, is an international research initiative
designed to advance the fields of robotics and artificial intelligence, using the
game of soccer as a substrate challenge domain. The long-term goal of RoboCup
is, by the year 2050, to build a team of 11 humanoid robot soccer players that
can beat the best human soccer team on a real soccer field [6].

Figure 1: The Alde-
baran Nao robot.

RoboCup is organized into several leagues, includ-
ing both simulation leagues and leagues that com-
pete with physical robots. This report describes our
team’s entry in the Nao division of the Standard Plat-
form League (SPL)1. All teams in the SPL compete
with identical robots, making it essentially a software
competition. All teams use identical humanoid robots
from Aldebaran called the Nao2, shown in Figure 1.

Our team is TT-UT Austin Villa3, from the De-
partment of Computer Science at The University of
Texas at Austin and the Department of Computer Sci-
ence at Texas Tech University. Our team is made up
of Professor Peter Stone, PhD student Todd Hester,
and postdoc Michael Quinlan from UT Austin, and
Professor Mohan Sridharan from TTU. All members
are veterans of past RoboCup competitions.

We started the codebase for our Nao team from
scratch in December of 2007. Our previous work on Aibo teams [11, 12, 13]
provided us with a good background for the development of our Nao team.
We developed the architecture of the code in the early months of development,
then worked on the robots in simulation, and finally developed code on the
physical robots starting in March of 2008. Our team competed in the RoboCup
competition in Suzhou, China in July of 2008. Descriptions of the work for the
2008 tournament can be found in the corresponding technical report [2]. We
continued our work after RoboCup 2008, making progress towards the US Open
and RoboCup in 2009.

This report describes all facets of our development of the Nao team code-
base. For completeness, this report repeats portions of the 2008 team report [2].
The main changes are in vision, localization, motion, and behavior. Section 2
describes our software architecture that allows for easy extendability and de-
bugability. Our approaches to vision and localization are similar to what we
have done in the past [13] and are described in sections 3 and 4 respectively.
Section 5 describes our motion modules used on the robot. Section 6 briefly de-
scribes the behaviors we developed on the robot. Section 7 presents our results
from the competition and section 8 concludes the report.

1http://www.tzi.de/spl/
2http://www.aldebaran.com/
3http://www.cs.utexas.edu/˜AustinVilla

2



2 Software Architecture

Though based in spirit on our past software architectures used for the Aibos,
the introduction of the Nao prompted us to redesign the software architecture
without having to support legacy code. Previous RoboCup efforts had taught us
that the software should be flexible to allow quick changes but most importantly
it needs to be debugable.

The key element of our design was to enforce that the environment interface,
the agent’s memory and its logic were kept distinct (Figure 2). In this case logic
encompasses the expected vision, localization, behavior and motion modules.
Figure 3 provides a more in-depth view of how data from those modules interact
with the system.

Figure 2: Overview of the TT-UT Austin Villa software architecture.

The design advantages of our architecture are:

Consistency The core system remains identical irrespective of whether the
code is run on the robot, in the simulator or in our debug tool. As a
result, we can test and debug code in any of the 3 environments without
code discrepancies. The robot, simulator and tools each have their own
interface class which is responsible for populating memory.

The robot interface talks to NaoQi and related modules to populate the
perceptions, and then reads from memory to give commands to ALMo-
tion. The simulation interface also communicates with NaoQi. The tool
interface can populate memory from a saved log file or over a network
stream.

Flexibility The internal memory design is show in Figure 3. We can easily plug
& play modules into our system by allowing each module to maintain its
own local memory and communicate to other modules using the common
memory area. By forcing communication through these defined channels
we prevent ’spaghetti code’ that often couples modules together. For
example, a Kalman Filter localization module would read the output of
vision from common memory, work in its own local memory and then
write object locations back to common memory. The memory module
will take care of the saving and loading of the new local memory, so the
developer of a new module does not have to be concerned with the low
level saving/loading details associated with debugging the code.

3



Debugability At every time step only the contents of current memory is re-
quired to make the logic decisions. We can therefore save a “snapshot” of
the current memory to a log file (or send it over the network) and then
examine the log in our debug tool and discover any problems. The debug
tool not only has the ability to read and display the logs, it also has the
ability to take logs and process them through the logic modules. As a
result we can modify code and watch the full impact of that change in our
debug tool before testing it on the robot or in the simulator. The log file
can contain any subset of the saved modules, for example saving only per-
cepts (i.e. the image and sensor readings) is enough for us to regenerate
the rest of the log file by passing through all the logic modules (assuming
no changes have been made to the logic code).

It would be remiss not to the mention the main disadvantage of this de-
sign. We implicitly have to “trust” other modules to not corrupt data stored in
memory. There is no hard constraint blocking one module writing data into a
location it shouldn’t, for example localization could overwrite a part of common
memory that should only be written to by vision. We could overcome this draw-
back by introducing read/write permissions on memory, but this would come
with performance overheads that we deem unnecessary.

Figure 3: Design of the Memory module. The gray boxes indicated memory
blocks that are accessed by multiple logic modules. Dotted lines show connec-
tions that are either read or write only (percepts are read only, commands are
write only).

,

4



2.1 Languages

The code incorporates both C++ and Lua. Lua is a scripting language that
interfaces nicely with C++ and it allows us to change code without having to
recompile (and restart the binary on the robot). In general most of vision,
localization and motion are written in C++ for performance reasons, but all
control decisions are made in Lua as this gives us the ability to turn on/off
sections at runtime. Additionally the Lua area of the code has access to all the
objects and variable stored in C++ and therefore can be used to prototype code
in any module.

3 Vision

We used the 160×120 pixel image for vision processing. Since the number of
pixels was relatively low we were able to use same image processing techniques
that were applied by most AIBO teams [13, 8].

First, the YUV image is segmented into known colors. Second, contiguous
image regions of the same color are grouped into blobs. Finally, these blobs
are examined to see if they contain one of the target objects (ball, goal, goal
post). Additionally a line detection algorithm is run over the segmented image
to detected field lines and intersections (L’s or T’s).

Figure 4 gives an example of a typical vision frame. From left-to-right we
see the raw YUV image, the segmented image and the objects detected. In this
image the robot identified an unknown blue post (blue rectangle), an unknown L
intersection (yellow circle), an unknown T intersection (blue circle), and three
unknown lines.

Figure 4: Example of the vision system. Left-to-Right: The raw YUV image,
the segmented image and the observed objects

A key element to gaining more accurate distances to the ball is circle fitting.
We apply a least squared circle fit based upon the work of Seysener et al [9].
Figure 5 presents example images of the ball. In the first case the robot is
“bending over” to see a ball at its own feet. The orange rectangle indicates the
bounding box of the observed blob, while the pink circle is the output of the
circle fit. For reference we show a similar image gathered from the simulator.
The final image shows a ball that is occluded, in this case it extends off the
edge of the image. In this situation a circle fit is the only method of accurately
determining the distance to the ball.

5



Figure 5: Example of circle fitting applied to the ball. The first two images a
examples of a ball when the robot is preparing to kick (an image is presented
from the robot and from the simulator). The third image shows a ball where
circle fitting is required to get an accurate estimate of distance.

3.1 Goals and Posts

This year we developed new goal and goal post detection code to detect goal
posts more reliably and more accurately. First, when viewing posts that were
rotated, we used the rotated width of the post to get better distance estimates.
Second, when seeing a single post, we used the cross bar and field lines to
determine which post it was. Figure 6 shows the detection of left, right, and
unknown goal posts.

Figure 6: Example of goal post detection. In the first image, there is no in-
formation from the lines or crossbar to determine which goal post it is, so it is
defined as an unknown yellow post (yellow bounding box). In the second image,
both posts can be seen and are labeled as left and right post (green for left post
and red for right post). In the third image, part of the crossbar is seen and can
be used to define the post as a right goal post.

3.2 Field Lines and Intersections

The line detection system returns lines in the form of ax + by + c = 0 in the
image plane. These lines are constructed by taking the observed line segments
(the bold white lines in the lower right image of Figure 7) and forming the
general equation that describes the infinite extension of this line (shown by the
thin white lines). However, localization currently requires a distance and angle
to the closest point on the line after it has been projected to the ground plane.

To find the closest point on the line, we take two arbitrary points on the
image line (in our case we use the ends of the observed segments) and translate
each point to the ground plane using method described in Section 3.2.1. We
can then obtain the equation of the line in the ground plane by forming the

6



line that connects to these two points. Since this projected line is relative to
the robot (i.e. the robot is positioned at the origin), the distance and bearing
to the closest point can be obtained by simple geometry. The output of the
translations can be seen in Figure 7.

Figure 7: Example of transforming lines for use in localization. The images
on the left show the segmented image and the results of object recognition, in
this case two lines and an L intersection. The image on the right shows these
objects after they have been transformed to the ground plane. The two black
lines indicate the observed line segments, the white circles show the closest
points to the infinite extension of each line and the pink circle indicates the
observed location of the L intersection.

3.2.1 Calculating distance, bearing and elevation to a point in an

image

Given a pixel (xp, yp) in the image we can calculate the bearing (θb) and elevation
(θe) relative to the camera by:

θb = tan−1

„

w/2 − xp

w/(2 · tan(FOVx/xp))

«

, θe = tan−1

„

h/2 − yp

h/(2 · tan(FOVy/yp))

«

where w and h are the image width and height and FOV is the field of view of
the camera.

Typically for an object (goal, ball, etc.) we would have an estimated distance
(d) based on blob size. We can now use the pose of the robot to translate d,
θb, θe into that object’s location (x, y, z), where (x, y, z) is relative to a fixed
point on the robot. In our case this location is between the hips. We define
(x, y, z) = transformPoint(d, θb, θe) as:

=

0

B

B

@

1 0 0 0

0 1 0 0

0 0 1 d

0 0 0 1

1

C

C

A

0

B

B

@

cosθb 0 sinθb 0

0 1 0 0

−sinθb 0 cosθb 0

0 0 0 1

1

C

C

A

0

B

B

@

1 0 0 0

0 cosθe sinθe 0

0 −sinθe cosθe 0

0 0 0 1

1

C

C

A

0

B

B

@

1 0 0 0

0 1 0 70

0 0 1 50

0 0 0 1

1

C

C

A

0

B

B

@

1 0 0 0

0 cosφp −sinφp 0

0 sinφp cosφp 0

0 0 0 1

1

C

C

A

0

B

B

@

cosφy 0 sinφy 0

0 1 0 0

−sinφy 0 cosφy 0

0 0 0 1

1

C

C

A

0

B

B

@

1 0 0 0

0 1 0 211.5

0 0 1 0

0 0 0 1

1

C

C

A

0

B

B

@

1 0 0 0

0 cosθp −sinθp 0

0 sinθp cosθp 0

0 0 0 1

1

C

C

A

where φp and φy are angle of the head pitch and head yaw joints. θp is the body
pitch as calculated in Section 5.3 and the constants are the camera offset from

7



the neck joint (70mm and 50mm) and the distance from the neck joint to our
body origin (211.5mm).

For a point on a line we do not have this initial distance estimate and instead
need an alternate method for calculating the relative position. The approach
we use is to solve the above translation for two distances, one very short and
one very long. We then form a line (ℓ) between the two possible locations in
3D space. Since a field line must lie on the ground, the relative location can
be found at the point where ℓ crosses the ground plane (Eq 1). We can then
calculate the true distance, bearing and elevation to the point (Eq 2).

(x1, y1, z1) = transformPoint(200, θb, θe)

(x2, y2, z2) = transformPoint(20000, θb, θe)

y = −height , x = x1 + (x2 − x1) ·

„

y − y1

y2 − y1

«

, z = z1 + (z2 − z1) ·

„

y − y1

y2 − y1

«

(1)

dtrue =
p

x2 + y2 + z2 , θbtrue = tan−1

“x

z

”

, θetrue = tan−1

„

y
√

x2 + z2

«

(2)

where height is the calculated height of the hip from the ground.

4 Localization

We used Monte Carlo localization (MCL) to localize the robot. Our approach is
described in [10, 3]. In MCL, the robot’s belief of its current pose is represented
by a set of particles, each of which is a hypothesis of a possible pose of the robot.
Each particle is represented by 〈h, p〉 where h = (x, y, θ) is the particle’s pose
and p represents the probability that the particle’s pose is the actual pose of
the robot. The weighted distribution of the particle poses represents the overall
belief of the robot’s pose.

At each time step, the particles are updated based on the robot’s actions
and perceptions. The pose of each particle is moved according to odometry
estimates of how far the robot has moved since the last update. The odometry
updates take the form of m = (x′, y′, θ′), where x′ and y′ are the distances the
robot moved in the x and y directions in its own frame of reference and θ′ is the
angle that the robot has turned since the last time step.

After the odometry update, the probability of each particle is updated using
the robot’s perceptions. The probability of the particle is set to be p(O|h), which
is the likelihood of the robot obtaining the observations that it did if it were
in the pose represented by that particle. The robot’s observations at each time
step are defined as a set O of observations o = (l, d, θ) to different landmarks,
where l is the landmark that was seen, and d and θ are the the observed distance
and angle to the landmark. For each observation o that the robot makes, the
likelihood of the observation based on the particle’s pose is calculated based on
its similarity to the expected observation ô = (l̂, d̂, θ̂), where d̂ and θ̂ are the the
expected distance and angle to the landmark based on the particle’s pose. The
likelihood p(O|h) is calculated as the product of the similarities of the observed

8



and expected measurements using the following equations:

rd = d− d̂ (3)

sd = e−r2

d/σ2

d (4)

rθ = θ − θ̂ (5)

sθ = e−r2

θ/σ2

θ (6)

p(O|h) = sd · sθ (7)

Here sd is the similarity of the measured and observed distances and sθ is the
similarity of the measured and observed angles. The likelihood p(O|h) is de-
fined as the product of sd and sθ. Measurements are assumed to have Gaussian
error and σ2 represents the standard deviation of the measurement. The mea-
surement variance affects how similar the observed and expected measurement
must be to produce a high likelihood. For example, σ2 is higher for distance
measurements than angle measurements when using vision-based observations,
which results in angles needing to be more similar than distances to achieve a
similar likelihood. The measurement variance also differs depending on the type
of landmark observed.

For observations of ambiguous landmarks, the specific landmark being seen
must be determined to calculate the expected observation ô = (l̂, d̂, θ̂) for its
likelihood calculations. With a set of ambiguous landmarks, the likelihood of
each possible landmark is calculated and the landmark with the highest like-
lihood is assumed to be the seen landmark. The particle probability is then
updated using this assumption.

Next the algorithm re-samples the particles. Re-sampling replaces lower
probability particles with copies of particles with higher probabilities. The
expected number of copies that a particle i will have after re-sampling is

n×
pi∑n

j=1
pj

(8)

where n is the number of particles and pi is the probability of particle i. This
step changes the distribution of the particles to increase the number of particles
at the likely pose of the robot.

After re-sampling, new particles are injected into the algorithm through the
use of re-seeding. Histories of landmark observations are kept and averaged over
the last three seconds. When two or more landmarks observations exist in the
history, likely poses of the robot are calculated using triangulation. When only
one landmark has been seen, the re-seeding creates particles in an arc around
that landmark. In either case, the probabilities of the particles are calculated
and then lower probability particles are replaced by the new particles that are
created with these poses [7].

The pose of each particle is then updated using a random walk where the
magnitude of the particle’s adjustment is inversely proportional to its probabil-
ity. Each particle’s pose h is updated by adding w = (i, j, k) where (i, j, k) are
defined as:

i = max-distance · (1 − p) · random(1) (9)

j = max-distance · (1 − p) · random(1) (10)

k = max-angle · (1 − p) · random(1) (11)

9



Figure 8: Example of Robot Pose Estimate and Particles. Here the robot has
seen a blue goal post and two field lines. The particles are the small black
lines that are scattered around the robot, with their length representing their
probability. The robot’s pose estimate is at the weighted mean of the particle
locations, with the standard deviation of the particles shown by the white circle
around the robot.

The max-distance and max-angle parameters are used to set the maximum
distance and angle that the particle can be moved during a random walk, and
random(1) is a random real number between 0 and 1. This process provides
another way for particles to converge to the correct pose without re-sampling.

Finally, the localization algorithm returns an estimate of the pose of the
robot based on an average of the particle poses weighted by their probabil-
ity. Figure 8 shows an example of the robot pose and the particle locations.
The algorithm also returns the standard deviation of the particle poses. The
robot may take actions to improve its localization estimate when the standard
deviation of the particle poses is high.

In addition to the standard use of MCL, in [3], we introduced enhancements
incorporating negative information and line information. Negative information
is used when an observation is expected but does not occur. If the robot is
not seeing something that it expects to, then it is likely not where it thinks it
is. When starting from a situation where particles are scattered widely, many
particles can be eliminated even when no observations are seen because they
expect to see a landmark. For each observation that is expected but not seen,
the particle is updated based on the probability of not seeing a landmark that is
within the robot’s field of view. It is important to note that the robot can also
miss observations that are within its view for reasons such as image blurring or
occlusions, and these situations need to be considered when updating a particle’s

10



Figure 9: Example of center circle tangent lines. Vision has detected two tangent
lines to the circle, as well as the center line. The particle filter is able to match
these tangent lines to the circle to provide a good localization estimate.

probability based on negative information. Our work on negative information
is based on work by Hoffmann et al [4, 5].

We update particles from line observations by finding the nearest point on
the observed line and the expected line. Then we do a normal observation
update on the distance and bearing to these points. We also use this method
when seeing the center circle on the field. Vision reports the center circle as a set
of tangent lines to the circle. For each particle and observed line, localization
finds the two tangent lines at the angle of the observed line. It then does
localization updates comparing the observed line with these two lines as well as
all the other field lines on the field. It uses the nearest points on these lines and
the observed lines as it does for normal lines. The matching of tangent lines to
the field circle is shown in Figure 9.

We used a four-state Kalman filter to track the location of the ball. The
Kalman filter tracked the location and velocity of the ball relative to the robot.
Using our localization estimate we could then translate the ball’s relative co-
ordinates back to global coordinates. Our Kalman Filter was based on the
seven-state Kalman filter tracking both the ball and the robot’s pose used in [8].

Our combined system of Monte Carlo localization for the robot and a Kalman
filter to track the ball worked well and was robust to bad observations from

11



Parameter Straight Turning Sideways

Step Length 0.06 m 0.05 m 0.05 m
Step Height 0.018 m 0.02 m 0.02 m
Step Side 0.04 m 0.02 m 0.05 m
Max Turn 0.19 deg 0.3 deg 0.3 deg
Zmp Offset X 0.02 m 0.015 m 0.015 m
Zmp Offset Y 0.02 m 0.018 m 0.018 m

LHipRoll 1 deg 2.5 deg 4.5 deg
RHipRoll -1 deg -25. deg -4.5 deg
Hip Height 0.2 m 0.2 m 0.2 m
Torso Orient 9.0 deg 8.0 deg 6.0 deg

Samples Per Step 26 24 26

Table 1: Parameters for the Aldebaran walk engine based on walk direction.

vision. A video showing the performance of the localization algorithm while the
keeper was standing in its goal is available at:
http://www.cs.utexas.edu/users/AustinVilla/legged/teamReport08/naoParticleFilter.avi.

5 Motion

We used the provided Aldebaran walk engine for our walk, with carefully tuned
walk parameters and joint stiffnesses. We also developed our own kick engine,
allowing us to use multiple kicks in different directions. We have also developed
our own kinematics models for use in the kick engine.

5.1 Walking

We use the walk engine provided by Aldebaran in the ALMotion module. This
walk engine is a ZMP based walk, which then controls the robots center of
mass to follow the pattern generated by the ZMP walk engine. There are 10
parameters for the walk engine, plus the number of samples per step for the
walk. In addition to these parameters, we also adjusted the stiffnesses of the
joints of the robot to make it more compliant in its walking. We used different
parameters for the robot when walking straight, turning, or walking sideways.
The parameters we used for walking are shown in Table 1. The parameters were
tuned through trial and error, with an emphasis on stability and speed.

5.2 Kicking

For this year’s RoboCup, we developed a general kick engine. Each kick is
defined by a number of states, and each state is defined by seven parameters:
the distance from the ankle to the hip in the x, y, and z coordinates for each leg,
and the angle for the HipYawPitch joint. There is also a flag defining for each
state which one is the kick state. Our engine uses inverse kinematics (Section
5.3.2) to create target joint angles for the given ankle-hip distances for each
state. The robot is then told to move its legs to these positions through an
interpolate command lasting 0.5 seconds. After the completion of each state,
the robot continues to the next one. For the kick phase, the command is instead

12



given with the interpolate with speed command, with a speed varying depending
on the desired strength of the kick.

We used this general framework to develop multiple kicks, including a for-
ward kick, a backward kick, an inside-out side kick, an outside-in side kick, and
a 45 degree kick using the inside of the foot. The forward kick is a typical one,
and incorporates the following 8 states: (0) stand, (1) shift weight to stance leg,
(2) lift kicking leg and swing back, (3) align leg to ball, (4) swing leg through
ball, (5) bring leg back, (6) bring leg down, (7) shift weight back.

When we first approach a ball, the robot chooses a kick from its engine based
on the desired heading of the ball. It then chooses the kick that will provide
the closest heading to the desired one. For example, if the robot desires a ball
heading of 80 degrees, it will choose to do a side kick, which kicks the ball at
approximate 90 degrees. Next the robot does some adjustment steps if the ball
is not in a plausible location for that kick. The robot then decides which leg
to use based on the ball location. Finally, it executes the kick engine, moving
through the state machine described above.

5.3 Kinematics

5.3.1 Forward Kinematics

To determine the pose of the robot we used the accelerometers to estimate the
roll (φ), pitch (θ) and yaw (ψ) of the torso. As expected the accelerometers were
fairly noisy; to overcome this we used a Kalman Filter to produce a smoother
set of values (φf , θf , ψf ). The forward kinematics were then calculated by
using the modified Denavit-Hartenberg parameters with the XYZ axes rotated
to reflect φf ,θf and ψf . Figure 10 shows the filtered versus unfiltered estimates
of the robots pose during a typical walking cycle. A video can also found at:
http://www.cs.utexas.edu/users/AustinVilla/legged/teamReport08/naoKinematics.avi.

5.3.2 Inverse Kinematics

For 2009 we implemented a Jacobian approach for solving the inverse kinematics
problem. Primarily this was developed to allow the proper use of the ‘groin’
joint while kicking, in particular the 45 degree kick employed at RoboCup relied
heavily on this joint.

The developed technique was an iterative least squares method, and termi-
nated when the end effector position was inside a minimum acceptable error or
we had performed too many iterations. In practice we could reach an acceptable
error of 0.5 mm in only a few iterations. While this was sufficient for 2009 as
we were only using it for kicking, a faster method maybe required in 2010 for
computing joint angles at 50 Hz. It appears that a closed form solution can be
implemented and should be more efficient [1].

6 Behavior

Our behavior module is made up of a hierarchy of task calls. We call a PlaySoc-

cer task which then calls a task based on the mode of the robot {ready, set,
playing, penalized, finished}. These tasks then call sub-tasks such as Chase-

Ball or GoToPosition.

13



Figure 10: Estimations of the robots pose while walking forwards. The blue
robot is the unfiltered pose while the white robot is the filtered pose.

Our task hierarchy is designed for easy use and debugging. Each task main-
tains a set of state variables, including the sub-task that it called in the previous
frame. In each frame, a task can call a new sub-task or continue running its
previous one. If it does not explicitly return a new sub-task, its previous sub-
task will be run by default. Tasks at the bottom of the hierarchy are typically
the ones that send motor commands to the robot; for example telling it to walk,
kick, or move its head.

Tasks in our system can also call multiple tasks in parallel. This ability is
used mainly to allow separate tasks to run for vision and motion on the robot.
While the robot is running a vision behavior such as a head scan or looking at
an object, the body can be controlled by a separate behavior such as kicking or
walking towards the ball.

One of the benefits of our task hierarchy is its debugability. In addition to
the logs of memory that the robot creates, it also creates a text log that displays
the entire tree of tasks that were called each frame along with all their state
variables. Figure 11 shows an example of one frame of output of the behavior
log in the tool. The information provided in the text log is enough to determine
why the robot chose each particular behavior, making it easy to debug. In
addition, this text log is synchronized with the memory log in the tool, allowing
us to correlate the robot’s behaviors with information from vision, localization,
and motion.

The emphasis in our team behaviors was to get to the ball quickly and be

14



Figure 11: Example Behavior Log, showing the trace of task calls and their
state variables.

sure to do the right thing once we got to it. First, the robot would search for
the ball, scanning its head, then spinning in a circle, and finally walking to
center of the field if it could not find the ball. Once the ball was found, the
robot would walk to the ball as quickly as possible. Once the robot got to the
ball, it would look up and scan the field to localize itself. Based on the bearing
of the opponent’s goal, the robot would decide which kick to do (forward kick,
side kick, etc). Then the robot would check the ball’s position and make small
steps to adjust to it if required. Finally it would kick the ball and then continue
chasing it. This behavior can be seen in our team highlight videos at:
http://www.cs.utexas.edu/ AustinVilla/?p=competitions/RoboCup09

http://www.cs.utexas.edu/ AustinVilla/?p=competitions/US09

7 Competition

In 2009, TT-UT Austin Villa competed in two tournaments, the US Open and
RoboCup 2009 in Graz, Austria. Our results in each are described below.

15



Round Opponent Score

Round Robin UPennalizers 3-0
Round Robin CMWright Eagle 3-0
Round Robin Northern Bites 2-0

Semifinal CMWright Eagle 2-0

Championship UPennalizers 1-1 (3-2 penalty kicks)

Table 2: US Open 2009 Results

7.1 US Open

The 2009 Standard Platform League US Open was held at Bowdoin College in
Brunswick, Maine from May 1-3, 2009. There were four participants: TT-UT
Austin Villa, Northern Bites, CMWright Eagle, and the UPennalizers. The
tournament started with a round robin between all the teams on Saturday to
determine seeding, followed by a four team elimination tournament on Sunday.
In the round robin, TT-UT Austin Villa beat each of the other three teams,
scoring 8 goals while allowing none. TT-UT Austin Villa faced CMWright
Eagle in the semi-finals and won 2-0. In the final against the UPennalizers, the
game ended with a 1-1 tie in regulation. TT-UT Austin Villa won the game 3-2
in penalty kicks to win the US Open championship. Scores from all of TT-UT
Austin Villa’s US Open games are shown in Table 2.

7.2 RoboCup 2009

The 13th International Robot Soccer Competition (RoboCup) was held in July
2009 in Graz, Austria4. 24 teams entered the competition. Games were played
with three robots on a team. The tournament consisted of two round robin
rounds, followed by an elimination tournament with the top 8 teams. The first
round consisted of a round robin with eight groups of three teams each, with
the top two teams from each group advancing. In the second round, there were
four groups of four teams each, with the top two from each group advancing.
From the quarterfinals on, the winner of each game advanced to the next round.

All of Austin Villa’s scores are shown in Table 3. In the first round robin,
TT-UT Austin Villa was in a group with SPQR and NTU Robot Pal. Austin
Villa beat SPQR 2-0 and had a 0-0 tie with NTU Robot Pal. In the second
round robin, Austin Villa was placed with Team Chaos, B-Human, and Burst.
Austin Villa beat both Team Chaos and Burst 2-0, but lost to B-Human 9-0.

Austin Villa faced the Austrian Kangaroos in the quarterfinals and came
away with a hard fought 2-0 victory. In the semi-finals, Austin Villa faced the
eventual winners B-Human again, this time holding them to 7-0 (the closest
game they had had at the time). There was a very fast turn around between
the semi final and the third place game. With some remaining hardware issues
from the semi final, Austin Villa lost the third place game to the Dortmund
Nao Devils 4-1. Austin Villa finished 4th overall in the tournament.

4http://robocup-cn.org/

16



Round Opponent Score

Round Robin 1 SPQR 2-0
Round Robin 1 NTU Robot PAL 0-0

Round Robin 2 Team Chaos 2-0
Round Robin 2 B-Human 0-9
Round Robin 2 Burst 2-0

Quarterfinal Austrian Kangaroos 2-0

Semifinal B-Human 0-7

Third Place Game Nao Devils 1-4

Table 3: RoboCup 2009 Results

8 Conclusion

This report described the technical work done by the TT-UT Austin Villa team
for its entry in the Standard Platform League. Our team developed an architec-
ture that consisted of many modules communicating through a shared memory
system. This setup allowed for easy debugability, as the shared memory could
be saved to a file and replayed later for debugging purposes. The Nao code
included vision and localization modules based on previous work. The team
developed new algorithms for motion and kinematics on a two-legged robot.
Finally, we developed new behaviors for use on the Nao.

The work presented in this report gives our team a good foundation on which
to build better modules and behaviors for future competitions. In particular,
our modular software architecture provides us with the ability to easily swap in
new modules to replace current ones, while still maintaining easy debugability.
Our work on this code paid off with a US Open Championship and a fourth
place finish at RoboCup 2009. We plan to continue to progress on our codebase
and continue to compete in RoboCup in 2010.

References

[1] T. Hermans, J. Strom, G. Slavov, J. Morrison, A. Lawrence, E. Krob, and
E. Chown. Northern Bites 2009 Team Report. Technical report, Depart-
ment of Compute Science, Bowdoin College, December 2009.

[2] T. Hester, M. Quinlan, and P. Stone. UT Austin Villa 2008: Standing on
Two Legs. Technical Report UT-AI-TR-08-8, The University of Texas at
Austin, Department of Computer Sciences, AI Laboratory, November 2008.

[3] T. Hester and P. Stone. Negative information and line observations for
Monte Carlo localization. In IEEE International Conference on Robotics
and Automation (ICRA), May 2008.

[4] J. Hoffmann, M. Spranger, D. Göhring, and M. Jüngel. Exploiting the un-
expected: Negative evidence modeling and proprioceptive motion modeling
for improved markov localization. In RoboCup, pages 24–35, 2005.

[5] J. Hoffmann, M. Spranger, D. Göhring, and M. Jüngel. Making use of what
you don’t see: Negative information in markov localization. In IEEE/RSJ
International Conference of Intelligent Robots and Systems, 2005.

17



[6] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. RoboCup:
The robot world cup initiative. In Proceedings of The First International
Conference on Autonomous Agents. ACM Press, 1997.

[7] S. Lenser and M. Veloso. Sensor resetting localization for poorly mod-
elled mobile robots. In IEEE International Conference on Robotics and
Automation (ICRA), 2000.

[8] M. J. Quinlan, S. P. Nicklin, N. Henderson, R. Fisher, F. Knorn, S. K.
Chalup, R. H. Middleton, and R. King. The 2006 NUbots Team Report.
Technical report, School of Electrical Engineering & Computer Science
Technical Report, The University of Newcastle, Australia, 2007.

[9] C. J. Seysener, C. L. Murch, and R. H. Middleton. Extensions to object
recognition in the four-legged league. In D. Nardi, M. Riedmiller, and
C. Sammut, editors, Proceedings of the RoboCup 2004 Symposium, LNCS.
Springer, 2004.

[10] M. Sridharan, G. Kuhlmann, and P. Stone. Practical vision-based monte
carlo localization on a legged robot. In IEEE International Conference on
Robotics and Automation, April 2005.

[11] P. Stone, K. Dresner, P. Fidelman, N. K. Jong, N. Kohl, G. Kuhlmann,
M. Sridharan, and D. Stronger. The UT Austin Villa 2004 RoboCup four-
legged team: Coming of age. Technical Report UT-AI-TR-04-313, The
University of Texas at Austin, Department of Computer Sciences, AI Lab-
oratory, October 2004.

[12] P. Stone, K. Dresner, P. Fidelman, N. Kohl, G. Kuhlmann, M. Sridharan,
and D. Stronger. The UT Austin Villa 2005 RoboCup four-legged team.
Technical Report UT-AI-TR-05-325, The University of Texas at Austin,
Department of Computer Sciences, AI Laboratory, November 2005.

[13] P. Stone, P. Fidelman, N. Kohl, G. Kuhlmann, T. Mericli, M. Sridharan,
and S. en Yu. The UT Austin Villa 2006 RoboCup four-legged team.
Technical Report UT-AI-TR-06-337, The University of Texas at Austin,
Department of Computer Sciences, AI Laboratory, December 2006.

18


