In Lakemeyer,
Springer Verlag, 2007.

pp.

72--85,

Sklar, Sorrenti, Takahashi, editors, RoboCup-2006: Robot Soccer World Cup X,

Half Field Offense in RoboCup Soccer: A
Multiagent Reinforcement Learning Case Study

Shivaram Kalyanakrishnan, Yaxin Liu, and Peter Stone

Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-0233

{shivaram, yxliu, pstone}@cs.utexas.edu

Abstract. We present half field offense, a novel subtask of RoboCup sim-
ulated soccer, and pose it as a problem for reinforcement learning. In this
task, an offense team attempts to outplay a defense team in order to shoot
goals. Half field offense extends keepaway [11], a simpler subtask of RoboCup
soccer in which one team must try to keep possession of the ball within a
small rectangular region, and away from the opposing team. Both keepaway
and half field offense have to cope with the usual problems of RoboCup soc-
cer, such as a continuous state space, noisy actions, and multiple agents,
but the latter is a significantly harder multiagent reinforcement learning
problem because of sparse rewards, a larger state space, a richer action
set, and the sheer complexity of the policy to be learned. We demonstrate
that the algorithm that has been successful for keepaway is inadequate to
scale to the more complex half field offense task, and present a new algo-
rithm to address the aforementioned problems in multiagent reinforcement
learning. The main feature of our algorithm is the use of inter-agent commu-
nication, which allows for more frequent and reliable learning updates. We
show empirical results verifying that our algorithm registers significantly
higher performance and faster learning than the earlier approach. We also
assess the contribution of inter-agent communication by considering sev-
eral variations of the basic learning method. This work is a step further in
the ongoing challenge to learn complete team behavior for the RoboCup
simulated soccer task.

1 Introduction

RoboCup simulated soccer [2, 4] has emerged as an excellent domain for researchers
to test ideas in machine learning. Learning in the RoboCup soccer domain has to
overcome several challenges, such as a continuous multi-dimensional state space,
noisy sensing and actions, multiple agents (including adversaries), and the need
to act in real-time. Machine learning techniques have been used in the past on a
wide range of tasks in RoboCup soccer. For instance, the Brainstormers team [8, 9]
uses reinforcement learning to train both individual behaviors and team strategies.
Several researchers have focused on specific subtasks like goal-shooting [3, 6].
Keepaway is a subtask of RoboCup soccer that has recently been proposed by
Stone et al. [11] as a testbed for reinforcement learning methods. In keepaway, a
team of keepers tries to keep possession of the ball away from the opposing team
of takers within a small rectangular region. The task is episodic, and each episode
ends when the takers gain possession, or when the ball goes outside the region of

play. The keepers seek to maximize the duration of the episode, and are rewarded
based on the time elapsed after every action. Stone et al. [11] provide a Sarsa-
based reinforcement learning method to learn keeper behavior at a high level of
abstraction.

In this paper, we extend keepaway to a more complex task of RoboCup soccer,
half field offense. This task is played on one half of the soccer field, much bigger
than the typical keepaway region. There are also typically more players on both
teams. In each episode, the offense team needs to score, which involves keeping
possession of the ball, moving up the field, and shooting goals. The defense team
tries to stop it from doing so. Since the task realistically models the offense scenario
in soccer, a policy learned for half field offense can be integrated quite naturally
into full-fledged RoboCup simulated soccer games.

Both keepaway and half field offense have to cope with the usual difficulties
associated with RoboCup soccer: continuous state space, noisy actions, and multiple
agents. But several factors contribute to making half field offense a much harder
multiagent reinforcement learning problem than keepaway. Maintaining possession
of the ball is the main objective in keepaway, but it is only a subtask in half field
offense. In order to succeed in half field offense, the offense players not only have
to keep possession, but must also learn to pass or dribble to forge ahead towards
the goal, and shoot whenever an angle opens up. With a larger state space and a
richer action set than keepaway, a successful half field offense policy is therefore
quite complex. A factor that makes learning in half field offense even more difficult
is that the success of the task is evaluated simply based on whether a goal is scored
or not at the end of an episode. Since goal scoring episodes are rare initially, it
becomes necessary that the learning algorithm make the most efficient use of such
information.

The learning method proposed for keepaway [11] only achieves limited success on
the more difficult half field offense task. We analyze this method and propose a new
method that overcomes many of its shortcomings. While reinforcement learning is
indeed constructed to accommodate delayed updates and learning complex policies,
we show that the learning process on a complex multiagent task like half field offense
can be expedited by making better design choices. In particular, our algorithm uses
inter-player communication to speed up learning and achieve better performance.
We introduce the half field offense task in Section 2 and the learning method in
Section 3. Section 4 presents emprical results of the performance of our method
on the half field offense task. Section 5 discusses related work, and we conclude in
Section 6.

2 Half Field Offense Task Description

Half field offense is an extension of the keepaway task [11] in RoboCup simulated
soccer. In half field offense, an offense team of m players has to outsmart the defense
team of n players, including a goalie, to score a goal. Typically n > m. The task is
played over one half of the soccer field, and begins near the half field line with the
ball close to one of the offense players. The offense team tries to maintain possession
(keep the ball close enough for it to be kicked), move up the field, and score. The
defense team tries to take the ball away from the offense team. The task is episodic,

and an episode ends when one of three events occurs: 1. A goal is scored, 2. The
ball is out of bounds, or 3. A defender gets possession of the ball (including the
goalie catching the ball). Fig. 1 shows a screen-shot from a half field offense task,
where four players are on the offense team and five players including a goalie are
on the defense team. We denote this version of the task 4v5 half field offense, and
discuss it in Section 2.2.

In principle, it is possible to frame
half field offense as a learning prob-
lem for either the offense team or the
defense team (or both), but here we
only focus on learning by the offense
team. The objective is to increase the
goal-scoring performance of the offense
team, while the defense team follows a
fixed strategy. A similar approach is
also adopted for keepaway [11]. Fig. 1: Half field offense game in progress.

The offense team player who possesses the ball (and is hence closest to it) is
required to take one of the following actions!:

— Passk. This action involves a direct kick to the teammate that is the k-th closest to
the ball, where k = 2,3, ..., m. The representation used is indexical, since it is based
on distances to the teammates, and not their actual jersey numbers.

— Dribble. In order to encourage the offense player with possession to dribble towards
the goal, a cone is constructed with the player at its vertex and its axis passing through
the center of the goal. The player takes a small kick within this cone in a direction
that maximizes its distance to the closest defense player also inside the cone. The half
angle of the cone is small (15°) when it is far away from the goal and opponents, but
is progressively increased (up to 75°) as it gets closer to the goal or opponents. Thus
it is encouraged to forge ahead towards the goal whenever possible, but has room to
move away from the defense players should they get too close.

— Shoot. By taking this action the player kicks the ball towards the goal in the direction
bisecting the widest open angle available between the goalie, other defenders, and the
goalposts.

When no offense player has possession of the ball, the one closest to the ball
seeks to reach it by dashing directly towards it (GetBall). Offense players other
than the one closest to the ball always try to to maintain a formation in order to
take the attack forward (GetOpen). More precisely, any player from the offense
team is constrained to behave as follows.

if I have possession of the ball then
Execute some action from {Pass2, ..., Passm, Dribble, Shoot}
else if I am the closest offense player to the ball then
GetBall (Intercept the ball).
else
GetOpen (Move to the position prescribed by the formation, see Section 2.2).

! They are in fact high-level skills, and are better described by the term “options,”
which are themselves composed of low-level actions over extended time periods. They
nevertheless play the role of actions in the sense of reinforcement learning. We simply
refer to them as actions for simplicity. For a more detailed discussion, see [11].

Therefore, the behavior of any offense player is fixed except when it has pos-
session of the ball. Deciding which action to take when in possession of the ball
precisely constitutes the learning problem, as is also the case in keepaway [11]. In
principle, the player who has possession can benefit from a larger action set than
the one we have described, but these actions are enough to achieve quite a high
level of performance. More importantly, they allow us to focus on learning high-level
strategies.

2.1 State Representation

In RoboCup simulated soc- o

N a: dist(O1, O:
cer [2], the server provides N ™ b distEOi Dd))
the players sensory informa- o . 'D;\\ ol c: dist(04’ Gi)

. . L-- *)
t%on at regular 11.1tervals of 036’_}1‘,:/;5”'9\ J\gth\ o) |, d: mindist(Os, D)
time. Players typically pro- va . = e: min_ang(0s, 01, D)
cess the low-level information '@ / b f: minidist(O; Dd7)
thus obtained to maintain es- ©o, ®% GPy, o ma}; goal aI;g(Oclo)ne
timates of the positions and o
Fig. 2: Sample state variables for 4v5 half field offense.

velocities of the players and
the ball. For our task, we define the state using a set of variables involving distances
and angles between players, which can be derived from information about their po-
sitions. These are listed below. The offense players are numbered according to their
distances to the ball using an indexical representation. The offense player with the
ball is always denoted O;. Its teammates are Oz, Os, ..., O,,. The defense players
are also numbered according their distances to the ball; they are Dy, Do, ..., D,.
The goalie, which may be any of the D;, is additionally denoted D,.

— dist(01,0;),i =2,3,...,m. The distances from O; to its teammates

— dist(O1, Dg). The dlstance from O; to the goalie on the defense team.

— dist(0;,GL),i = 1,2,...,m. For the offense player, the distance to the segment of
the goal line GL between the goalposts.

— min_dist(O;, D),i = 1,2,...,m. For each offense player, the closest distance to any
opponent, that is, min_dist(O;, D) = minj—1,... » dist(O;, D;).

— min_ang(0;,01,D),i = 2,3,...,m. For offense players other than O1, the smallest an-
gle Z0O;01D among all D, where D is a defense player, that is, min_ang(O;, 01, D) =
minj:1 ,,,,, n ang(Oi,Ol,Dj).

— min_dist(O1, Ddcone)- The distance from O; to the closest defender in the dribble cone
or dcone. The dribble cone is a cone with half angle 60° with its vertex at O and axis
passing through the center of the goal. Dgcone is the set of defenders in the dribble
cone.

— max_goal_ang(O1). The maximum angle with the vertex at O1, formed by rays con-
necting O; and goalposts or defense players that are in the goal cone, which is the
triangle formed by O; and the two goalposts G Piesy and G Pright-

We adopt this set of state variables expecting them to be of direct relevance
to the actions, although they are neither independent nor complete. We expect
dist(O1,GL), max_goal_ang(01), and dist(O1,Dg) to directly affect Shoot;
min_dist(O1, D) and min_dist(O1, Dgcone) to affect Dribble; and the other vari-
ables to affect Passk. As in keepaway [11], the indexical representation based on
distances is expected to help the players generalize better. We arrived at this set of
state variables through experimentation, but did not expend much time optimizing

the set. We note that the set of state variables is independent of the number of
defense players, and has a linear relation with the number of offense players, there-
fore scaling to versions of the task with large numbers of players. The 4v5 version
of the task uses 17 state variables.

2.2 4v5 Half Field Offense and Benchmark Policies

4v5 half field offense (see Fig. 1) is a version of the task involving four offense
players and five defense players, including the goalie. We use this version of the
task for all our experiments. In 4v5, the offense player wiith the ball must choose
an action from the set {Pass2, Pass3, Pass4, Dribble, Shoot}, while the other
offense players, following a fixed strategy, stay in an arc formation. The defense
players also follow a static policy. Due to space limitations, the complete behaviors
of the offense and defense players on the 4v5 task are specified on a supplementary
web site?. The web site also lists examples of policies (including Random, in
which actions are chosen randomly, and Handcoded, a policy we have manually
engineered) for the 4v5 task and videos of their execution.

3 Reinforcement Learning Algorithm

Since half field offense is modeled as an extension of keepaway [11], they share the
same basic learning framework. In fact, the learning method that has been most
successful on keepaway [11] can be directly used for learning half field offense. But
while with keepaway the learning curve obtained using this method typically levels
off after just 15 hours of simulated time, we find that with half field offense it
continues to gradually rise even after 50 hours. Furthermore, when we visualize the
execution of the policy thus learned,? it is quite apparent that it is sub-optimal.
In order to ascertain whether indeed the learning can be improved, we analyze
the task and the learning method in detail. We then proceed to introduce a new
learning approach using inter-agent communication, which significantly improves
the learning rate and the resulting performance. In this section, we explain how
the reinforcement learning method is set up, the problems faced by multiagent
reinforcement learning on this task, and how we handle them using explicit inter-
agent communication.

3.1 Basic Setup

. As in keepaway [H]’ the ’ Game Scenario H Notation ‘Reward‘
reinforcement learning prob-
lem is modeled as a semi- . Goal goal reward 1.0
Markov decision process [1], Ball with some offense player || offense_reward 0
where decisions are taken Ball caught by goalie catch_reward | —0.1
at unequal intervals of time, Ball out of bounds out_reward —0.1
and only by the player with Ball with some defense player||defense_reward| —0.2

the bal.l. Each agent uses Table 1: Definition of rewards
a function approximator to

represent an action-value function or @-function that maps state and action pairs
(s,a) to real numbers, which are its current estimates of the expected long term
reward of taking action a from state s. Each agent updates its Q-function using

2 http://wuw.cs.utexas.edu/"AustinVilla/sim/halffieldoffense/index.html

the Sarsa learning method. The main difference between the method from [11] and
the one we propose in Section 3.3 is in how each agent obtains the experience, and
how frequently updates are made.

Rewards for the reinforcement learning problem are defined in Table 1. A posi-
tive reward of 1.0 is given for an action that results in a goal, while small negative
rewards are given when the episode ends unsuccessfully. It is conceivable to give
small positive rewards (say 0.01) for successful passes, but we found that a zero
reward was just as effective. Negative rewards are provided at the end of unsuc-
cessful episodes to encourage keeping the ball in play. The ratios between different
rewards can have a significant impact on the learning process [3]. We informally
tested out different values and found this particular assignment effective. Since the
task is episodic, we do not use discounting.

3.2 Difficulty of Multiagent Learning

In the method used for keepaway [11], each
agent learns independently. The only points in
time when it receives rewards and makes up-

dates to its @Q-function are when it has pos-
session of the ball, or when the episode ends.
The reward itself is the length of the duration
between when the action was taken and when
possession was regained or the episode ended.

6

O
3
Kj‘:so

o \

Clearly, it is easy to apply this scheme to half
field offense, using the reward structure spec-
ified in Table 1. We illustrate this method by
tracing through a typical episode from half field
offense (depicted in Fig. 3). The episode begins
with O4 in possession of the ball.? O 4 passes the ball to Op, who takes three drib-
ble actions before passing it to O¢. O¢ then passes it back to O, who shoots
the ball into the goal. Op does not participate in this episode. Using the learning
method from [11], O4 will receive goal_reward for its pass action (1); Op will re-
ceive offense_reward for its dribble actions (2, 3, and 4) and pass action (5), and
goal_reward for its shoot action (7); while O¢ will get goal_reward for its pass action
(6). O4 and and O¢ will only make their learning updates at the end of the episode,
while Op will also make intermediate updates whenever it regains possession. Op
does not make any learning update in this episode.

We find shortcomings in the method from [11] that we have just described. First,
consider another episode that differs from the above example only in that the final
Shoot action results in the ball being caught by the goalie instead of finding the
goal. In this case also, O4, Op, and O¢ make corresponding updates to their Q-
functions, but the reward used for the updates is catch_reward. Even though the
reason for the failure to score on this episode is only perhaps a slightly flawed Shoot
action, the reward assigned to O4 for its successful pass to Op (and indeed actions
6 and 7) now becomes drastically different (negative instead of positive). This case
illustrates that it is more desirable for O4 to update its Q-function for the pass
to Op right after Op receives the ball, since the update then would be based on
the @-value of Op in its current state, and the reward for a successful pass. While

Fig. 3: Example episode: The num-
bers indicate the sequence of ac-
tions.

3 We use subscripts A, B, C, D to indicate fixed players since numerical subscripts indicate
players according to how close they are to the ball.

using the method from [11], the update is only based on how the episode ends.
This can lead to a higher variance for updates to the @-function, especially since
the task is stochastic. The problem is that there is a long temporal delay between
the execution of an action by a player and the corresponding learning update;
because of this delay, the assigned reward and the next resulting state can change
drastically. It is not too harmful in keepaway, since the rewards are themselves the
time elapsed between the events, and do not change based on the next state. But
in half field offense, even slight changes in the middle of an episode can lead to very
different outcomes and very different rewards.

Another evident shortcoming is the case of player Op. Since each player learns
solely based on its own experiences in the method from [11], Op, which is not
involved in this episode, does not update its Q-function even once during this
episode. Since the players are homogeneous, it seems conceivable that the players’
experiences can be shared. For instance, Op should be able to learn, based on Op’s
experience, that Shoot action taken from close to the goal is likely to receive high
reward. In fact, even among O 4, Op, and O¢, only Opg records the information that
the Shoot action resulted in a goal; O4 and O¢ are only able to make updates to
their respective Pass actions. Surely, they will also benefit by making Op’s update
for the Shoot action. Sharing experiences can be particularly useful early in train-
ing, when successful episodes are rare. We next describe our learning method, which
uses inter-agent communication to overcome the shortcomings described above.

3.3 Agent Communication

In the solution we propose,
inter-agent communication is

’ Number ‘ Sender‘ State‘ Action ‘ Reward

used to facilitate information 1 Oa | s1 |Pass3 (to Op)|offense reward
sharing among the agents, and 2 Op | s2 Dribble |offense_reward
to enable frequent and more 3 Op 83 Dribble |offense_reward
reliable updates. The proto- 4 OB S4 Dribble |offense_reward
col followed is similar to one 5 Op | s5 |Pass2 (to Oc)|offense_reward
used by Tan [12] for learning 6 Oc | s¢ |Pass2 (to Op)|offense_reward
in an artificial predator-prey 7 Op | st Shoot goal_reward

domain, where agents are able
to communicate their experi-
ences to their partners.

Since every action leads either to some offense player getting possession or the
end of the episode, in our scheme, the appropriate reward for that action is pro-
vided as soon as one of these events occurs. Thus, in our example, O4 is given
offense_reward as soon as its pass (action 1) to Op succeeds, instead of having
to wait until the end of the episode to receive goal reward. As soon as it receives
offense_reward, O 4 broadcasts a message (see Table 2) to its teammates, describ-
ing the state in which it was when it took the pass action (s1), the pass action
itself (Pass3), and the reward received (offense_reward). In general, every time
a player takes action a in state s and receives reward r, it broadcasts a mes-
sage of the form (s,a,r) to the team. Since a Sarsa update is completely specified
by a (s,a,r,s’,a’) tuple, each player records the messages received and makes an
update as soon as enough information is available for it. Thus, when Op broad-

Table 2: Messages broadcast during the example
episode

Algorithm 1 Reinforcement Learning with Communication
Initializations;
for all episode do
s «— NULL;
repeat
// acting
if T have possession of the ball then
s «— getCurrentStateFromEnvironment();
Choose action a using @Q-function and e-greedy selection;
Execute action a;
r «— waitForRewardFromEnvironment();
broadcast(s, a, r);
else
if I am the closest offense player to the ball then
GetBall;
else
GetOpen;
// learning
if I receive message (Sm,am,Tm) then
if s is NULL then
5,G,T = Sm, Gm, Tm;
else
s'ya',r’ — Sm, Gm, Tm;
Perform Sarsa update based on (s,a,r,s’,a’):
Qs,a) — Q(s,a) + o (r+1Q(s', a’) — Q(s, a));
s,a,r «— s',a’,r’;
until episode ends;

casts message 2 (see Table 2), all the players make a Sarsa update using the tuple
(s1, Pass3, offense_reward, sy, Dribble.). It is quite clear that in this scheme, the
SMDP step is designed to last only until some teammate gets possession (unless
the episode ends before that), therefore keeping the updates more reliable. At the
same time, communication permits each player to make an update for every action
that has been taken by any of the offense players during the episode. In fact, since
all the players begin with the same initial Q-function and make the same updates,
we can expect that their action-value functions will always be alike, thereby re-
ducing an essentially distributed problem to one of centralized control (imagine a
single “virtual” agent who resides at all times inside the player who currently has
possession of the ball). However, in practice, the message passing is not completely
reliable, so a small number of updates get missed.

Algorithm 1 provides the pseudocode of the algorithm the learning players im-
plement. Each player stores its current action value function using a function ap-
proximator. When in possession of the ball, it decides which action to take based
on an e-greedy action selection scheme. After executing a and receiving a reward
r, the player broadcasts the triple (s, a,r) to the team. Players not in possession of
the ball simply follow the static policy. Each player uses the first message that is
received during an episode to initialize values for the triple (s,a,r), and on every
subsequent message (s, a’, ') makes a learning update using the saved and received
information.

We implement the inter-player communication using a “trainer,” an indepen-
dent agent that can communicate with all the players. The player broadcasting an
(s,a,r) message actually sends it to the trainer, who then sends it to all the players.
To be consistent, we assume that even to make an update corresponding to its own
action, a player first sends a message to the trainer, and makes the update only
on receiving it back from the trainer. The trainer sends a special (s, a,r) message
to the players when the end of an episode is reached, so that they may make a

final update for that episode and start afresh for the next. We use Sarsa(0) as our
reinforcement learning algorithm, along with CMAC tile coding for function ap-
proximation (as in [11]). The CMACs comprise 32 tilings for each feature. Distance
features have tile widths of 3m, while the tile width for angle features is fixed at
10°. We use @ = 0.125, v = 1.0, and € = 0.01.

4 Experimental Results and Discussion

In this section we present performance results of our learning algorithm. The graphs
depict learning curves with the y-axis showing the fraction of successful episodes,
and the x-axis the number of training episodes. The learning curves are smoothed
using a sliding window of 1000 episodes. Each curve is an average of at least 30 inde-
pendent runs. We have performed t-tests every 5,000 episodes comparing the values
of the curves, and we report the levels of significance for important comparisons.

To focus on learning while still perserving a high level of complexity in our
experiments with the 4vb half field offense task, we have modified a couple of
RoboCup simulated soccer defaults. While the RoboCup default only allows players
to “see” within a 90° cone, we allow for 360° vision, which removes hidden state,
but still retains sensor noise. Also, we do not enforce the offsides rule in our task,
even though our players get offsides only occasionally. These changes are enforced
in all our experiments, in order to make meaningful comparisons between different
offense team policies.

Fig. 4(a) plots the performance of our learning algorithm. Our learning algo-
rithm using inter-agent communication achieves a long term success ratio of 32%,
while one where the agents learn independently (as in keepaway [11]) only man-
ages to register 23%. Beyond 5000 episodes, their order is significant (p < 107%).
Clearly, the gain from using communication is substantial. This is particularly ap-
parent when we compare it to the performance recorded by other static policies.
Within 2000 episodes of training, our algorithm is able to learn a more successful
policy than the Handcoded policy mentioned in Section 2.2. When we visualize
the execution of the learned policy,? it is noticeably different from the Handcoded,
suggesting that learning is able to capture behavior that is non-intuitive for humans
to describe. Fig. 4(a) also plots the performance of the Random policy, which suc-
ceeds less than 1% of the time, thereby confirming that extended sequences of the
right actions are required to score goals. The other curve in the graph shows the
performance achieved by a set of four offense players (numbers 6, 7, 8, and 9) from
the UvA 2003 RoboCup team [5], which won the RoboCup simulated league cham-
pionship that year. The comparison between our players and the UvA offenders is
not completely fair, because they have not been tuned specifically for the half field
offense task. But the fact that our players are able to learn a policy that performs
at least twice as well as the UvA players in this setting still gives some insight into
the effectiveness of the policy they learn.

In order to get a clearer understanding of the impact of communication, we ran
a set of experiments in which only subsets of players communicate among them-
selves, while some learn independently (as in keepaway [11]). Fig. 4(b) plots learning
curves from experiments in which all four players communicate their updates (4),
only three of them communicate while one learns independently (3-1), all players
communicate but each only with a partner (2-2), two of them communicate while

Learning Performance L?vels of Co‘mmumcanf)n

0.
0.
With Communication 4)
o 03f

© 03[°
3 2 3-1
2 3
W .25+ ” [T W25
= Without Communication o}
8 Q
8 0.2F § 0.2 (2=
o —1-1=
3 8 e (1=1-1-1)
2 015 UvA Offense § 045
8 5]
% 0.1 % 0.1
] Handcoded 3
< <

.05 , : 0.05F

Random
0 5,000 10,000 15,000 20,000 25,000 30,000 0 5,0‘00 ‘0,600 ‘5,‘000 20.‘000 25“000 30,000
Number of Episodes Number of Episodes
(a) Learning performance (b) Impact of agent cooperation

Different Function Approximators
035 T T

; . Against UvA Defense
Comm + CMAC ! ! !

o3 03
Comm + RBF
oeer No Comm #+ CMAC | 025t
T
02k Comm. + NNet RN] 02k

o5k No Comm + RBF
W UvA Offense
No Comm + NNet
01F N

Average Goals Scored per Episode
Average Goals Scored per Episode

With Communicatig
0.05 1 0.051

Without Communication

0 5,000 10,000 15,000 20,000 25,000 30,000 0 5,000 10,000 15,000 20,000 25,000 30,000
Number of Episodes Number of Episodes

(c) Different function approximators (d) Against UvA defenders
Fig. 4: Experimental results

two learn independently (2-1-1), and they are all independent (1-1-1-1). At 5,000
and 10,000 episodes of training, the order specified above (except between 2-2 and
2-1-1) is significant with p < 1073, suggesting that increased communication results
in a faster learning rate. After 30,000 episodes of training, the full-communication
curve (4) remains ahead of all the others, with p < 1078. It is clear, therefore, that
communication does make a significant difference to the performance. Through in-
formal experimentation, we verified that communication results in a faster learning
rate for the keepaway task too, though the final policy it learns does not perform
significantly better than one learned with no communication [11].

While we use CMACs for function approximation in most of our experiments,
we ran an additional set of experiments using different function approximators to
see how this change affects the performance. The other function approximators we
used are neural networks (NNets) and radial basis functions (RBFs). They have also
been in the past used for learning keepaway [10]. Fig. 4(c) plots the performance
obtained by using these function approximators both in the full-communication case
and the no-communication case. In both cases, the order CMAC > RBF > NNet
is preserved beyond 10,000 episodes of training (In keepaway the RBFs perform
slightly better than the CMACs). But more importantly, we find that for each
of the function approximators, significantly higher performance is achieved by the
communication-based algorithm.

In order to verify to what extent our learning algorithm was robust to changes in

the task, we ran a variation in which the offense team plays against a set of defense
players from the UvA 2003 team [5] (players 5, 6, 2, 3, and 1). These players offer a
far more defensive strategy than ours, and position themselves strategically to block
passes between the offense players. After 30,000 episodes of learning, our players
show an 11% success rate, which almost matches the performance achieved by the
set of UvA offense players against this opposition. In fact, the learning curve still
seems to be rising at this point. The UvA offense performs better than the learned
policy, however with a low confidence (p < 0.2356). Therefore our learning method
is able to achieve a high level of performance against a world-class opposition,
despite having only been trained with a limited action set. Surely, the main reason
for its success is inter-agent communication, as the no-communication algorithm
only manages to achieve a success rate of 5% in the same number of episodes.

5 Related Work

Half field offense is a natural extension of the keepaway task introduced by Stone
et al. [11]. It is a much harder problem to learn than keepaway, and we have shown
that inter-agent communication can be effectively coupled with the algorithm that
has so far been successful for keepway [11] to boost its performance significantly.
Geipel [3] and Maclin et al. [6] have in the past applied reinforcement learning tech-
niques to goal-shooting scenarios, but these have typically involved fewer players
and a smaller field than 4v5 half field offense. The Brainstormers RoboCup team
[8,9] has consistently applied reinforcement learning techniques to train different
aspects of team behavior. They use reinforcement learning to learn high-level skills
called “moves” in terms of low-level actions, and use these as primitives for learning
high-level tactical behavior for attacking players [9]. For function approximation,
they use neural networks, inputs to which are low-level state information. They also
formulate simulated soccer as a Multi-agent Markov Decision Process (MMDP) [8]
and discuss different models of agents based on their action sets and coordination.
While their focus has been to develop a general architecture for learning team
behavior, we, in this paper, address the specific problem of learning high-level be-
havior by the offense player with ball possession. For this reason, we use predefined
high-level skills like Passk and Shoot. Since we mainly use CMACs, which cannot
represent arbitrary non-linear functions, we design our state features to be at a
high level of abstraction, in order to facilitate better generalization.

Multiagent reinforcement learning with inter-agent communication has been
studied in the past. Whitehead [13] describes a Learn-by- Watching method simi-
lar to ours and obtains theoretical bounds for the speedup in learning by multiple
Q-learning agents. Tan [12] empirically evaluates the effect of inter-agent commu-
nication on a much simpler problem than ours, a predator-prey scenario within a
10x10 discrete grid. The predators can cooperate by sharing their sensations, learn-
ing episodes, and whole policies. Of these, sharing episodes involves communicating
extended series of state-action-reward messages between the predators, and has a
direct correspondence with the method we have employed. Again, communication is
is shown to be beneficial to learning. Mataric [7] uses reinforcement learning to train
real robots on a box-pushing task. Communication is mainly used to share their
sensations in order to form a complete state of the world, unlike in our algorithm,
where communication directly impacts updates made to the agents’ action-value
functions.

6 Conclusions and Future Work

In this paper, we have introduced half field offense, a novel subtask of RoboCup
simulated soccer. It extends an earlier benchmark problem for reinforcement learn-
ing, keepaway [11]. Half field offense presents significant challenges as a multiagent
reinforcement learning problem. We have analyzed the learning algorithm that has
been most successful for keepaway [11], and scaled it to meet the demands of our
more complex task. The main feature of our new algorithm is the use of inter-agent
communication, which allows for more frequent and reliable learning updates. We
have presented empirical results suggesting that the use of inter-agent communica-
tion can increase the learning rate and the resulting performance significantly.
Learning half field offense is a step further in the ongoing challenge to learn
complete team behavior for RoboCup simulated soccer. In this work we have only
focused on learning the behavior of the offense player who has possession of the ball.
It is in principle possible to pose as learning problems the behaviors of the other
offense players, as well as the defense team. Also, high-level skills like Passk and
Shoot, which we have directly used for learning here, may themselves be learned in
terms of low-level actions like turn and kick. These are avenues for future research.

Acknowledgements

This research was supported in part by NSF CISE Research Infrastructure Grant
EIA-0303609, NSF CAREER award 11S-0237699, and DARPA grant HR0011-04-
1-0035.

References

1. S. J. Bradtke and M. O. Duff. Reinforcement learning methods for continuous-time Markov decision
problems. In Advances in Neural Information Processing Systems 7 (NIPS-94), 1995.

2. M. Chen, E. Foroughi, F. Heintz, Z. Huang, S. Kapetanakis, K. Kostiadis, J. Kummeneje, I. Noda,
O. Obst, P. Riley, T. Steffens, Y. Wang, and X. Yin. Users Manual: RoboCup Soccer Server —
for Soccer Server Version 7.07 and Later. The RoboCup Federation, August 2002.

3. M. M. Geipel. Informed and advice-taking reinforcement learning for simulated robot soccer. Mas-
ter’s thesis, Fakultéat fiir Informatik, Forschungs- und Lehreinheit Informatik IX, Technische Uni-
versitat Minchen, 2005.

4. H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsubara. RoboCup: A challenge
problem for AI. AI Magazine, 18(1):73-85, 1997.

5. J. R. Kok, N. Vlassis, and F. C. A. Groen. UvA Trilearn 2003 team description. In Proceedings
CD RoboCup 2003, 2003.

6. R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild. Giving advice about preferred actions
to reinforcement learners via knowledge-based kernel regression. In Proceedings of the Twentieth
National Conference on Artificial Intelligence (AAAI-05), 2005.

7. M. J. Matari¢. Using communication to reduce locality in distributed multi-agent learning. Journal
of Experimental and Theoretical Artificial Intelligence, 10(3):357-369, 1998.

8. A. Merke and M. Riedmiller. Karlsruhe Brainstormers — a reinforcement learning approach to
robotic soccer II. In RoboCup-2001: Robot Soccer World Cup V, 2001.

9. M. Riedmiller, A. Merke, D. Meier, A. Hoffmann, A. Sinner, O. Thate, and R. Ehrmann. Karlsruhe
Brainstormers a reinforcement learning approach to robotic soccer. In RoboCup-00: Robot Soccer
World Cup IV, 2000.

10. P. Stone, G. Kuhlmann, M. E. Taylor, and Y. Liu. Keepaway soccer: From machine learning testbed
to benchmark. In RoboCup-2005: Robot Soccer World Cup IX, 2006.

11. P. Stone, R. S. Sutton, and G. Kuhlmann. Reinforcement learning for RoboCup-soccer keepaway.
Adaptive Behavior, 13(3):165-188, 2005.

12. M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings
of the Tenth International Conference on Machine Learning (ICML-93), pages 330-337, 1993.

13. S. D. Whitehead. A complexity analysis of cooperative mechanisms in reinforcement learning. In
Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI-91), pages 607—
613, 1991.

