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Freface.

The main purpose of this preface is to =xplain the specification
"Preliminar Version", appearing on the title page of these lecture notes.
They have been prepared under ccnsiderable time pressure, circumstances
under which I was upasble to have my use of the English langusge corrected
by & native, circumstances under which I was unable first to try out
different methods of presentation. As they stanc, I hope that they will
serve their two primary purposes: to give my students a guide as to what
I am telling and to give my Friends and Relations an idea of what I am
doing.

The future fate of this manuscript, that may prove to be a monograph
in statu nascendi, will greatly depend on their reactions to it. I am greatly
indebted, in advance, toc any reader wha is so xind as to take the trouble
to give his comments, either in the form of suggestions how the presentation
or the material itself could be improved, or in the form of an appreciation.
From the latter comments T will try to get an idea whether it is worth-while
to pursue this effort any further ard to prepare a publication fit for and
agreeable to a wider public.

Already at this stage I should like to express my gratitude to many:
to my cellaborators £.Bran (in particular for his scrutinous screening of
the typed version), to A.N.Habermann, F.J.A.Hendriks, C.lLigtmans and P.A.
Voorhoeve for many stimulating amd clarifying discussions on the subject
itself, to the Department of Mathematics af the Technolegical University,
Eindhoven, for the opportunity te spend my time on the problems dealt with
and to lecture on their solutions and also —trivial as it may ssem, this
is nevertheless vitall- for putting at my private dispasal a typs writer
with a character set in complete accordance with my personal wishes,

E.W.Dijkstra

Department of Mathematics
Technological University
P.0. Box 513

EINDHOVEN

The Netherlands
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2. Introduction,

These lectures are intended far all those that expect that in their
future activities they will become seriously involved in the problems that
arise in either the design or the more advanced applications of digital
informatieon processing equipment; they are further interded for all thase

that are juzt interested.

The applications I have in mind are those in which the sctivity of a
computer must include the proper reacting tc & possibly great variety of
messages that can be sent to it at unpredictable momernts, a situation which
occurs in process control, traffic comirol, stock control, banking spplica-
tions, autamization of informetion flow in large crganizatiens, centralized
computer service and, finally, all information systems in which a number of

camputers are coupled to each cther.

The desirs to apply computers in the ways sketched above has often a
strong ecoromic motivation, but in these lectures the not unimportant gues—
tion of efficiency will not be stressed too much. We shall occupy ourselves
much more with the legical problems which arise, for example, when speed
ratios are unknown, communication possibilities restricted etc. We intend
to dg so in order to create a clearer insight intoc tne origin of the diffi-
culties we shall meet and inta the nature of our solutions. To decide
whether under given circumstances the application of our techniques is

sconomically attractive or mot falls outside the scope of these lactures.

I regret that I cennot offer a fully worked out thecry, complete with
Greek letter formulae, so to speak. The only thing I can do under the present
circumstances is to offer a variety of problems, together with solutions.

And in discussing these, we can only hope to bring as much system irto it
as we possibly can, to find which concepts are relevant, as we go along.
May everyone that follows me alang this road enjoy the fascination of these

intriguing problems as much as I do!
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1. On the Nature of Seauential Proceszes,

Our problem field proper is the coaperstion between two or more sequential
processes. Before we can enter this field, however, we Fave ta krnow guite
clearly what we c3ll "a sequential process"., To this preliminary question

the present section is devoted.

I should like to start my elucidation with the comparison of two machines
to do the same example joh, the one a non-seguential machine, the other a

sequential one.

Let us assume ihat of each of four quantities, named “3{7]", "a[Z]",
"8[3]" and "8[4]" respectively, the value is given, Our machine has to process
these values in such a way that, as its reaction, it "tells" us, which of the

four quantities has the largest value. E.g. in the case:
ral11=7, al2]=12, a3]=2, af4]=om

the answer to be produced is "al 2 " (Dr only "an iving the index wvalue
¥ + g g

pointing to the maximum element).

Note that the desired answer would become incompletely defined if the
set of velues were —in grder—- "7, 12, 2, 12", for then there is no unigue
largest element and the answer "a[2j" would have been as good (or as bad)
asg "3[4}". This is remedied by the further assumption, that af the four

values given, no two are equal.

Remark 1. I¥ the required answer would have been the maximum value
occuring among the given ones, therm the last restriction would have been
superfluous, for then the answer corresponding to the value set "7, 12, 2, 12v

would have been "12",

Remark 2. Our restriction "Of the four values no two ars equal" is
still somewhat loosely farmulated, for what do we mean by "equal"? In the
processes to be constructed pairs of values will be compared with ome another
and what is really meant is, that every two values will be sufficiently
different, so that the comparator will unambiguously decide, which of the
two is the largest one. In gther words, the difference between any two musit

be large compared with "the resolving power" of our comparators,
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We shall first construct our non—sequential machine. When we assume
our given values to be represented hy currents, we can imagine a comparatsr
consistirg of a two-way switch, the position of which is schematically
controlled by the currents in the coils of electromagnets as in Fig.1 and

fFig.2.

Fig.1. x <y Fig.2. y <x

When current y is larger than current x, the left electromagnet pulls
harder than the right one and the swiich switches to the left (Fig.1} and
the input A is connected to output B; if current x is the larger one, we

shall get the situation (Fig.2) whers the input A iz connacted ta output C.

In our diagrams we shall omit the coils and shall represent such a

comparator by a small box

A
A £

only representing at the top side the imput and ét the bottom side the two
outputs. The currents toc be lead through the coils are identified in the

question written inside the box and the convention is, that the input will
be connected to the right hand side output when the answer to the guestion

is "Yes", to the left hand side output when the answer is "No".
|
la1]<a[2] 7]

[(L0<aB17]  [Hed<as17]

e o
taltl<afa] 7] [ef2]<al4] 7] [al3] < al4] 2]
Lo,
+ +

+ +
Fig.3.
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Now we can construct our machine as indicated in Fig.3. At the output
side we have drawn four indicator lamps, one of which will light up to

indicate the answer.

In Fig.4 we indicate the position of the switches whern the vaiue set
"7, 12, 2, 9" is applied to it. In the boxes the positions of the switches

are indicated, wires nat connected to the input are drawn hlotted.

Fig.4.

We draw the readers attention to the fact that now cnly the positions
of the three switches that connect output 2 to the input, matter; the reader
is invited to convinee himself that the position of the other thres switches

is indesd immaterial.

It is also good to give a moment attention to see what happens in time
when our machine of Fig.? is fed with four “walue currents®. Obviously it
cannot be expected to give the correct answer before the four value currents
are going through the cocils. But one cannoct esven expect it to indicate the
correct answer as spon as the currents are applied, far the switches must
get into their correct position and this may take some time. In other words:
as soon as the currents are applied (simultanenusly or the ore after the
other) we must wait a2 period of time ~characteristic for the machine- and
after that the correct answer will be shown at the output side. What happens
in this waiting time is immaterial, provided that it is long emough for all
the switches to find their final position. They may start switching simulta—
neously, the exact order in which they attain their final position is

immaterial and, therefore, we shall not pay any -attention ta it any more,

From the logical point of view the switching time can be regarded as
a marker on the time axis: before it the input data have to be supplied,

after it the amswer is available.
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In the use of our machine the progress of time is only reflected in
the obvious "before ~ after" relation, which tells us, that we cannot expect
an answer before the question has been properly put. This sequence relation
is so obviocus (and fundamental) that it cannot be regarded as a characteristic
property of aur machine. And our machine is therefore called a "non—sequential
machine" to distinguish it from the kind of eguipment ~or processes that can

be performed by it~ to be described now.

Up till now we have interpreted the diagram of Fig.3 as the (schematic)
picture of a machine to be built in space. But we can interpret this same
diagram ir a very different manner if we place ourselves in the mind of the
electron entering at the top input and wondering where to go. First it
finds itself faced with the question whether "a[1] <Ia[2]" bolds. Having
found the answer to this question, it can proceed. Depending an the previous
answer it will enter one of the two boxes "a[1]'< 3[3]" Gr "5[2} <Ia[3]",
i.e. it will only know what to investigate next, after the first question
has been answered. Hav£:§ found the answer to the question gelected from
the second line, it will know which guestion to ask from the third line and
having found this last answer it will now know which bulb should start to
glow. Instead of regarding the diagram of Fig.3 as that of a machine, the
parts of which are spread out in space, we have regarded it as rules of

behaviour, to be followed in time.

With respect to our earlier interpretation two differences are highly
significant, In the first interpretation all six comparators started working
simultanrously, although finally only three switch positions matter. In the
second interpretation only three comparisons are actually evaluated —the
wondering electron asks itself three questions— but the price of this gain
is that they have to be performed the one after the other, as the outcome
of the previous one decides what to ask rmext. In the second interpretatian
three questions have to be asked in sequence, the one after the other. The
existence of such an order relation is the distinctive feature of the second
interpretation which in contrast ta the first ome is therefore called "a

sequential process". We should like to make two remarks.

Remark 3. In setual fact, the three comparisons will each take a
finite amount of time (switching time", "decision time" or, to use the

jargon, "execution time") and as a result the total time taken will at least
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be egual to the sum of these three execution times. We stress once more,
that for many investigations these executions can be regarded as ordered
markars on a scaleless time axis and that it is only the relative ordering

that matters from this {logical) point of view.

Remark 4. As a small side line we note that the two interpretatians
{call them "simultanesus comparisons” and Yseguential comparisons") are only
extremes. There is a way of, again, only performing three comparisons,
in which two of them can be done independently from orne another, i.e. simuli-
tanecusly; the third cne, however, can only be done, after the other two
have been completed. It can be represented with the aid of & bax in which

two guestions are put and which, as a result, has four passible exits, as
¥ 1]

L a[1}‘< 3[2] ? , a{ﬁj <Ca[4] ? _1
NN NY YNI Y
si]<a[3) 7] sl1]<al4] 2] [ale]<e[3] 7] |al2] <al4] 2

T__ ] {

in Fig.5.

Fig.5.

The tatal time taken will be at least the sum of the comparison execution
times. The process is of the first kind in the sense that the first two
comparisons can be performed simultanecusly, it is of sequenfial nature

as the third comparison can only be selected from the second line when the

first two have both been completed.

We return 4o our purely sequential interpretation. Knowing that the
diagram is meant for purely sequentisl interpretation we can take advantage
of this circumstance make the description of the "rules of behaviour" more
compact. The idea is, that the two guestions on the second line —only one
of which will he actually asked~ are highly similar: the questions one the
same line only differ in the subscript value of the left operand of the
comparisan, And we may ask ourselves: "Can we map the guestions on the same

line of Fig.3 on a single guestion 7"

This can be done, but it implies that the part that varies alaong a

lirme =i.e. the subscript value in the left operand— must be regarded as a
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perameter, tre task of which is toc determine whizh of the guestions mapped
on each other is meant, when its turn to be executed has come. Obviously the

valie of this parameter must be defimed by the past history of the process.

Such parameters, in which past histary can be condensed for future use
are called "variables". To indicate that a new value has to be assigned to
it we use the so-called assignment operator ":=" (read: "becomes"), & kind
of directed equality sign which defines the value of the left hand side in

terms of the value of the right hand side.

We hope that the previcus patagraph is sufficient for the reader to
recognize also in the diagram of Fig.6 a set of "rules of behaviour". Qur
variahle is called "i"; if the reader wonders, why the first guestion, which
is invariably "a[?] <Ia[2] M is not written that way, be is kindly reguested

to have some patience.

afi] < a2} 7

i:= 2

Leli]<=[3] 7]

Fig.6

When we have folliowed the rules of Fig.6 as intended from top till

bottom, the final value of i will identify the maximum valuye, viz. a[i}.

The tramsition from the scheme of Fig.3 to the one of Fig.6 is a drastic
change, for the last "rules of behaviour" can only be interpreted sequentially.
And this is due 1o the introduction of ths variable "i": baving only a[1],
a[2], 8[3] and 3[4] available as values to be compared, the guestion
"a[i] < a[2] 7" is meaningless, unless it is known for which value of "i"

this compariscn has to be made.
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Remark 5. It is somewhat unhappy that the jargon of the trade calls
the thing densted by "i", a varisble, because in normal mathematics, the
concept of a variable is a completely timeless concept., Time has nothing

to do with the "x" in the reiation

"sin(2 * x) =2 * sin(x) * cas(x)";

if such a variable ever denctes a wvalue, i%t denotes "any value",

Each time, however, that a variable in a sequentlal process is used
—such as "i" in "a[i]"* it denotes a very specific value, wviz., the last
value assignad to it, and rothing else! As long as no new value is assigned

toc a variable, it derotss a constarmt value!

I am, however, only too hesitart to coin new terms: firstly it would
make this monograph unintendedly pretentious, secondly I feel that the
(fashionable!) coining of new terms often adds as much to the confusion in
one way as it removes in the other., I shall therefore stick to the term

"variable®.

Remark 6. fne may well ask, what we are actually doing, when we
introduce a variable without specifying, for instance, a domain far it,
i.e. a set of values which is guaranteed tao comprise all its future actual

values. We shall not pursue this any further here.

Now we are going to subject our scheme to a next transformation. In
Fig.% we have "wrapped up" the lines, now we are going to wrap up the scheme
of Fig.6 in the-other direction, an operation to wich we are invited by the
repetitive nature of it and which can be performed at the price of a next

variable, "j" say.

1] <4ali] 7

i= j

Fig.7
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The charge is a drematic one, for the fact that the original problem
was to idertify ths maximum value amang four given values is ro longer
reflected in the "topology" of the rules of behavisur: in Fig.7 we only
find the number "4" mentioned once. By introducing another variable, say
"n", and replacing the "4" in Fig.7 by "n" we have suddenly the rules of
behaviour to identify the maximum accurring among the n elements 5[1],
a[EJ,......., a[n] and this practically only for the price that before

application, the variable n must be put te its proper value.

I called the change a dramatic one, for now we have not only given
rules of behaviour which rust be interpreted segquentially —this was already
the case with Fig.6- but we have desvised a single mechanism for identifying
the meximum value among any number of given elemsnts, whereas our original
non—sequential machine could only be built for a previously well—-defined
number of elements. We have mapped vur comparisons in time instead of in
space, and if we wish to compare the two methods, it is as if the sequential
machine "extends itself"™ in terms of Fig.? as the need arises. It is our
last transition which displays the sequerntial processes in their full

glory.

The technical term for what we have called "rules of behaviour" is an
algorithm or a program. {It is not customary to call it "a sequential program!
although this name would be fully correct.) Equipment able ta follow such
rules, "to execute such a program" is called "a general purpose seguential
computer™ or "computer” for short; what happens during such a program

execution is called "a sequential process".

There is a commonly accepted technique of writing algorithms without
the need of such pictures as we have used, viz. ALGOL 60 ("ALGOLM being
short for Algorithmic Language). For a detailed discussion of ALGOL &Q
I must refer the reader to the existing literature. We shall use it in

future, whenever convenient for our purposas.

For the sake of illustration we shall describe the algarithm of Fig.7

(but for "a" instead of g by a sequence of ALGOL statements:
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back: if j £ n tren

begin ji:= j + 13

Ef_a[iJ <ia{j] then i:= j;

goto back
end" .
The first two statements: "i:=1; j:= 1" are -1 hape- self-explanatory.

Then comes "back:™, a so-cslled label, used to identify this place in the
pragram. Then comes “if j £n then", a so-called conditional clause. If the
condition expressed by it is satisfied, the follewirg statement will be
performed, otherwise i1t will be skipped. (Another example aof it zan ke found
two lines lower.) When the extent of the program which may have to bs skipped
presents itself primerily as & sequence of more than one statement, then ane
puts the so—called statement brackets "begin" and "end" around this sequence,
thereby making it into a singls statement as far as its surroundings are
concerned. (This is entirely analogous to the effect of parentheses in
algebraic formulae, such as "a * (b + c)" where the parenthesis pair indicates
that the whole expression contained within it is to be taken as factor.) The
last statement "goto back" means that the process should be continued at the
point thus labeled; it does exactly the same thing for us as the upward

igading line of Fig.7.
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2. Loosely Connected Processes.

The subject matter of this monagraph is the cooperation between loossly
cornected sequential processes and this section will be devoted to = tharough
discussion cof a simple, but representative problem, in order to give the

reader some feeling for the problems in this area,

In the previous section we have described the nature of a single
sequential process, performing its seguence of actions autonamously, i.e.

irdependent of its surroundings 3s saon as it has been started.

when two or more of such processes have to cooperate with each ather,
they must be cornected, i.e. they must be able fo communicate with =ach atker
in order to exchanges information. As ws shail aes below, the properties of

these means of intercommunicaticn play a vital raole.

Furthermare, we have stipulated that the processes should be connected
loosely; by this we mean that apart from the (rare} moments of explicit
intercommunication, the individual processes themselves are to be regarded
as completely independent of sach other. In particular we disallow any
assumption about the relative speeds of the different processes. {Such an
assumptinon —say"processes gesred to the sams clock"- could be regarded as
implicit intercommunication.) This independence of speed ratios is in strict
gccordance with our appreciation of the single sequential process: its anly
essential feature is, that its elementary steps are performed in sequence.
If we prefsr to observe the performance with & chronometer in our hand, we
may do so, but the proczss itself remains remarkably unaffected by this

observation.

I warn the reader that my consistent refusal to make any assumptions
about the speed ratios will at first sight appear as a mean trick to make
things more difficult than they already are. [ feel, however, fully justi-
fied in my refusal. Firstly, we may have to cope with situatiors in which,
indesd, very little is krown about the speeds. Far instance, part of the
system wmay be a manually operated input staticn, another part of the system
might be such, that it can be stopped externally for any pericd of time,

thus reducing its speed temporarily to zero. Secondly —and this is much more
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impartant~ when we think that we can rely upon certain speed ratios, we
shall discover tnat we have heen "pourd foolisk and penry wise". True that
certain mechanisms can be made simpler under the assumption of speed ratig
restrictions. The verification, howsver, that such an assumption is always
justified, 1z in genaral extremely tricky and the task to make, in & reliable
manner, a well behaved siructure out of many interlinked components is
seriously aggravated whern such "analogue intarfersnces™ have to be taken
into account as weall, (For one thing: it will make the proper working a
rather unztable equilibrium, sensitive to any change in the different
speeds, as may easily arise by replacement of a component by another -say,
replacement of a line printer by 2 faster model- or reprogramming of a

certain porticn, )

2.1. A Simple Example.

After these introductory remarks I shall discuss the first problem,

We consider two seguentizl processes, "process 1" and "prosess 2", which
for our purposes car be regarded as cyclic. In each cycle a so—called "criti-
cal section™ occurs, critical in the sense that the processes have to be
constructed in such = way, that at any moment at most one of the two is
engaged in its critical section. In arder to effectuate this mutual exclusion
the two processes have access to a number of common variasbles. We postulate,
that inspecting the present value of such a common varisble and assigning a
new value to such & common variable are to be regarded as indivisible, naon-—
interfering acticns. I.e. when the two processes assign 2 new valus to the
same common variable "simultaneausly", then the asssignments are to be regarded
as done the aone after the oﬁher, the fimal value of the variable will be one
of the two values assigned, but never a "mixture" of the twoc. Similarly, when
one process inspects the value of a common variable "simultansously" with
the assignment to it by the other one, then the first process will find

either the old or the new value, but never a mixture.

For our purposes ALGOL 6C ass it stands is not suited, as ALGOL 60
has beem designed to describe one single seguential process. We therefore -

propose the following extension to enable us to describe parallellism of

execution. When a sequence of statemsnts —separated by semicolans as usual
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in ALGCL o0~ is surrounded by the special statement bracket pair "parbegin
ard "parend", this 1s to be interpretad as parallel execution of the can-
stituent statements. The whole construction ~ist us call it "a parallel
compound"= can be resgarded as a statement. Initiatiorn of a parallel compound
implies simultaneous initiation of all its constituent statements, its
execution is completed after the completion of the execution of all its

constituent statements. £.g.:

"begin 51; parbegin 52; 53; 54 parend; S5 end"

(in which 51,52, S3. 54 and 55 are used to indicate statements} means that
after the completion of S1, the statements 52, 5% ard 54 will be executed
in parallel, and only when they ars all finished, then the execution of

statemernt 5% will be initiated.

With the above conventions we can describe our first sclution:

Phegin  integer turn; turn:= 1;

parbegin
process 1: begin L1: if +urn = 2 then goto L1;

critical section 1;
turn:= 2;
remainder of cycle !; gota LA
end;
process 2: begin L2: if +turn =1 then goto L2;
critical section 2Z;
turni= 1;

remainder of cycle 2; goto L2

parend

end" .

(Note for the inexperienced ALGOL 60 rsader. After "begin" in the first
line we find the so-called declaration "integer turn", thereby sticking to
the rule of ALGOL 60 that program text is not zllowed to refer o variables
without having introduced them with the aid of a declaraticn. As this
declaration occurs after the "begin” of the outermost statement bracket
pair it means that for the whole duration of the program a variable has

been introduced that will crly take om integer values and to which the

program texi can refer by means of the name "turn".)
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The two processes communicate with sach other via the common integer
"turn", the value of which indicates which of the two processes is the first
to perform {or rather: to finish) its critical section. From the pragram it
is clear that after the first assignment, the only possible values af the
variable "turn" are 1 and 2. The condition for process 2 to enter its
critical section iz that it finds at some moment "turm # 1", i,e. "turn = 2",
But the only way in which the variable "zurn" can get this value is by the
asszignment "turn:= 2" in process 1. As process 1 perfaorms this assignment
anly at the completion cf its critical section, process 2 can only initiate
its critical section after the completion of critical section 1. And critical
section 1 could indeed be initiated, because the initial condition "turn = 17
implied "turn # 2", so that the potential wait cycle, labeled L1, was
initially imactive. After the assignment "turni:i= 2" the roles of the two
processes are interchanged. (N.B. It is assumed that “he orly references tco

the variable "turn™ are the anes explicitly shown in the program.)

Our solution, though correct, is, however, unnecessarily restrictive:
after the completion of critieal ssction 1, the value of the variable "turn"
becomes "2", and it must be =1 again, before the next entrance into critical
section 1. As a result the only admissible succession of critical sections
is the strictly alternating cne "1,2,1,2,1,2,%,..... ", in other words, the
two processes are synchronized. In aorder to stress explicitly that this is
not the kind of solution we wanted, we impose the further condition "IT one
of the processes is stopped well outside its critical section, this is not
allowed to lead to potential blocking of the other process.". This makes

our previous sclution unacceptable and we have to loogk for another.

Our second effort works withk two integers "ei® and “e2", where c© = 0 / 1
respectively will indicate that the corresponding process in inside / outside

its critical section respectively. We may try the following construction:
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"begin integer cl, cZ;

cli= 1; c2:= 1;

parktegin
process 1: begin L1: if e2 = 0 then coto L1;

cl:= O

critical section 1;

remainder of cycle !; gaoto L1
Eend;
process 2: begin L2: if ol = O then goto L2;
cli= O
critical section 2;
cli= 1
remainder af cycle 2; goto L2

parend

end" .

The first assignments set both c's = 1, in accordance with the fact
that tHe processes are started outside their critical sectiens. Durimg the
entire execution of criticsl section 1 the relation "c! = O" halds and the
first lire of process 2 is sffectively a wait "Wait as long as pracess 1 is
in its critical section.". The trial solution gives indeed same protection
against simultaneity of critical section execution, but is, alas, toa simplae,
because it is wrong. Let first process 1 find that c2 = 1; let process 2
inspect ¢! immedistely afterwards, then it will (still) find c1 = 1. Both
processes, having found that the other is nat in its critical section, will

conclude that they can enter their own section safely!

We have been tooc optimistic, we must play a safer game. Let us invert,
gt the beginning of the parallel procassses, the inspection of the "e" of the

other and the setting of the own "c". We then get the constiruction:
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"begin integer ¢, c2;

cli= 1y c2:= 1;
parbegin
process 1: begin Al: cl:= 0;
L1: if c2 =0 then gota L1;
critical section 1;
cli= 1;
remairder of cycle 1; gotao A
end;
precess 2@ begin A2: c2:= O
L2: if el =0 then gota L2;
critical section 2;
c2:= 1;

remainder of cycle 2; goto A2

parend

end™

It is worth while to verify that this soluticn is at least completely
safe. Let us focus our attention on the moment that process ¥ finds o2 = |
and therefure decides to enter its critical section., At this moment we can
conclude

) that the relation "c! = O already holds and will cortinue to hald
until process 1 has completed the execution of its critical sectionm,

2} that, as "gp = 1" holds, process 2 is well cutside its critical
section, which it canmot enter as long as "ol = O" holds, i.=. as long
&s process 1 is still engaged in its critical section.

Thus the muiual exclusion is indeed guaranteed,

But this solutian, alas, must also be rejected: in its safety measures
it has been too drastic, for it contains the danger of definite mutual
blocking. When after the assignment "cl:= O" but yet before the inspection
of c2 (both by process 1) process 2 performs the assignment "c2:= O", then
both processes have arrived at label L1 or L2 respectively and both relations
"c! = 0" and "c2 = 0" hold, with the result that both processes will wait

upon sach other until eternity. Thersfore alsc this solution must be rejected.
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It was 0K to set one's own "c" before inspecting the "o" af the ather,
Ut it was wrong to stick to one's cwn cesetting a2nd just iz wait. This is

(samewhat) remedied in the following construction:

"begin dirteger ci, c2;

parbegin
pracess T: begin Li: cl:= C;

ﬁ cZ2 = 0 then
begin cl:= %; goto L1 end;

criticsl sectian 1;

ct:= 1;
remainder aof cycle 1; goto L1
Bnd;
process 2: begin L2: cfi= O
if et =0 zthen
begin c2:=1; goto L2 end;
critical section 2;
c2i= 1;

remainder of cycle 2; goto L2

end
parend
end"
This constructicn is as safe as the previous one and, when the assignments
"eli= O" and "c2:= Q" are performed "simultaneously™ it will not necessarily

lead to mutual blocking ad infinitum, because both processes will reset their
own "c™ back to 1 before restarting the entry rites, thereby enabling the
other process to catch the opportunity. But our principles force us o reject
also this solution, for the refusal to make any assumptions about the speed
ratic implies that we have %o cater for all speeds, and the last sclution
admits the speeds to be so carefully adjusted that the processes inspect

the other's "c" only in those periods of time that its value is = 0. To make
clear that we reject such solutions that only work with some luck, we state
our next requirement: "If the two processes are about to enter their critical
sections, it must be impossible to devise for them such finite speeds, that

the decisior which one of the two is the first to enter its critical section

is postponed until eternity.".
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In passing we note, that the solution iust reiected is qguite acceptable
in everyday life. £.g., when two people are talking over the tzlephone and
they are suddenly disconmected, as a rule both try to reestablish the conmec—
tion. They both disl ard if they get the signal "Number Engaged",.they put
down the receiver end, if not already called, thsy try "some" secaonds later.
Of course, this may coincide with the mext effort of the other party, but as
a2 rule the cannection is reestablished succesfully after very few triale.

In our mechanical circumstances, hawever, we cannot accept this pattern of

behaviour: our parties might very well be identical!

Quite 2 collection of trisl solutions have been shown to be incorrect
and at some moment people that had played with the problem started to douht
whether it could be solved at all. To the Dutch mathematician Th.J.Dekker
the credit is due for the first corresct solution. It is, in fect, a mixture
of our previous efforts: 1t uses the "safe sluice" of our last constructiong,
together with the integer "turn™ of the first one, but only to resolve
the indeterminateness when reither of the two immediately succesds. The

initial value of "turn" could have been 2 as well.

"begin integer cl, c2, tumn;

cl:i="1; e2:= 1; turn:= 1;
parbegin
process 1: begin Al: cl:= O;
L1: if c2 =0 then

begin if turn =1 then gaoto L1;

cli=1;

Bt: if +turm = 2 then goto Bl;
goto A
end;

critical section 1;

turn:= 2; cl:i= 1;

remainder of cycle 1; goto Al

&nd;
pracess 2: begin A2: cZ:=

Lz: if 1 = 0O then

begin if turn = 2 then goto L2Z;
c2i= 1
B2: if turn =1 then goio Bé;

gots A2

end;
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critical section 2%
turn:= 1; c2:= 1;

remainder of cycle 2; gota A2

parend

end"

We shall now prove the correctness of this solution. Jur first obser—
vation is that sach process only operates on its own "c". As a result process
1 inspects "c2" only while "cl = Q", it will only enter its critigal section
provideag it finds "c2 = 1"; for process 2 the analagous ohservation car be

made .

In short, we recognize the safe sluice of our last constructicns and the
seluticn is safe in the sernse that the two processes can never be in their
criticel sections simultaneously. The second part of the proof has to show
that im rase of doubt the decision which of the two will he the first to
enter cannot be postponed until eternity. Now we should pay some attention
to the integer "turn™: we nots that assignment to this variable only occurs
at the end =-or, if you wish: as part- of criticasl sections and therefore we
we can regard the variable "turn" as & constant during this decision procsss.
Suppose that "turn = 1", Then process 1 can only cycle via L1, that is with
"ol = O" and only as lang as it finds "c2 = O™, But if "turm = 1" then
process 2 can only cycle via B2, but this state implies "c2 = 1", sc that
process ! cannot and is bound ta enter its critical section. Far "turn = 2%
the mirrored reasoning applies. As third and final part of the proof we
vbserve that stopping, say, process 1 in "remzinder of cycle 1" will not
restrict process 2: the relation "¢l = 1" will then hold and process 2 can
enter its critical section gaily, quite independent of the current value of
"turn". And this completes the‘prnof of the correctmess of Dekker's solutiocn.
Those readers that fail to appreciate its ingenuity are kindly asked to
realizs, that for them I have prepared the ground by means of a carefully

selected set of rejected constructiors.
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2.2. The Gemerelized Mutual Exclusion Probler.

The problew of section 2.1 kas a matural generalizatior: given N cyclic
praocesses, each with a critical sectiorm, can we construct them in such a way,
that at any moment et mast one of them is angaged in its critical section?

We assume the same means of intercommunication available, i.z. a set of
commonly accessible variables. Furthermore our selution has to satisfy the
same reguirsments, that stcpping one process well outside its critical section
may in no way restrict the freedom af the othars, and that if more than one
process is about to enter its critical section, it must be imposzible to
devise for them such finite speeds, that the decision which ore aof them is

the firsi one to enter its critical section, can be postponed until zternity,

In order to be able to describe the solutiom in ALGOL 60, we need the
concept of the array. In section 2.1 we had tc introduce & "c" for each of
the two processes and we did so by declaring

"integer cl, c2".

Instead of enumerating the guantities, we van declare -under the assumption

that "N" has a well defined positive value-—

"integer array C[T : N]"

which means, that at crne stroke we have introduced N integers, accessible

under the names "c[subscript}“,

where "scbscript" might take the values 1, 2, .evv.., N.

The next new ALGOL 60 feature we shall use is the so-called "for clause",

which we shall use in the following form:
"for j:= 1 step 1 until N do statement 5" ,

and which enables us to express repetition of "statement S" guite conveniently,
In principle, the for clause implies that "statement S will be executed N
times, with "j" in successicn =1, = 2, ...... , = N, (We have added "in

principle", for via a goto statement as constitusnt part of statement §

o

and leading out of it, the repetition can be ended earlier.)

Finally we need the logical operstor that in this monograph is denoted

by "and". We have met the conditiormal clause in the form:



EWd123 - 20

"if conditiosn then statement"

We shzll now meet:

"if canditicn 1 and condition 2 then statement »
meaning thaz stetement 5 will anly be sxecuted if "condition 1Y and "condition

2" are both satisfied. (Once more we zhould like to stress that this monagrans
is nat an ALGOL 60 programming marual: the above —losse!= explanations of
ALGOL 60 have only been intraduced to make this monograph as self=contained

as possible, )

Witk t»e natational aids just sketched we cam describe our solution

for fixed N as follows.

The overall structure is:

"begin integer array b, c[O : N};

integer turn;
for turn:= O step 1 until N do
J2r Step b untili N da

begin h[turn]:: 1 c[turn]:: 1 end;
turn:= O;
parbegin
process 1: hegin...... rr s ter e end;
process 2: begin....... et teaaensaan end;
process N: begin...veeeevinia.n. vee..BNd
parend

End"

The first declaration introduces two arrays with N + 1 elements each,
the next declaration introduces a single inmteger "turn". In ths following
for cilause this veriasble "turn" is used toc take on the successive values
Ty 2, Byvaeeae, Ny so that the two arrays arze initizlized with ali elemerts
= 1. Then "turn" is set = O (i.a. none of the processes, numbered from 1

onwards, is privileged). After this the N processes are started simultaneously,

The N processes are all similar. The structure of the i-th process is

2z follows (1 <i= NY s
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"process i: begin  integer j;

Ai: b[i]:: O
Lis if turen £ i then

begin CEi]:: 1

if b ture ] = 1 then turm:= 1
goto Li

end;

clili= Oy

for ji= 1 step ! wntil N do

begin if j # i and c[j] = 0 then gota Li end;

critical secticn ij;
turn:= O3 c[ili= 13 bli]:= 15
remainder of cycle 1; goto Al

end”

Remark. The descripticon of the N individual processes starts with s declaration
"integer j". According to the rules of ALGOL &0 this means that each process

introduces its own, private integer "j" (a so~called "local quantity").

We leave the proof to the reader. [t has to show again:
1) that at any momert at most one of the processes is engagad in its
critical section
2} that the decision whick of tke processes iz the first to enter its
critical section cannct be postponed until eternity
2} that stopping a process in its "remainder of cycle" bas no effect

upon the others.

Of these parts, the second one is the most difficult ane. {(Hint: as soon
as one of the processes has performed the asssignment "turn:= i", no new
processes can decide to assign their number to turn before a critical section
has been completed. Mind that two processes:can decide Msimultanecusly” to

assign their i~value to turn!)

(Remark, that can be skipped at first reading.}
The program just described inspescts the value of "b[tu:n]" where both
the array "b" and the integer "turn® are in common store. We have stated

that inspecting & single variable is an indivisible action and inspecting
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"b[turn]" can therefore anly mean: inspect the vslue of "turn", and if this

happers to be = 5, well, then inspect ”b[B]". Qr, ir more explicit ALGOL:

Porecess i: begin  integer j, k;

ki= turn; if b[k] =1 ther..oooal, " y
implyirg that by the time that "b[k " is inspected, Pturn® may elready have
2 value different fraom the current one of "k",
Without the stated limitatiors in communicating with the commcn store, a
possible interpretation of "the wvalus af b[turﬂ]" would have been "the value
of the element of the array b as indicated by the current valee af turn®,
In sa-callied uniprogramming ~i.e. & singls sequential process operating
on guartities lacal ta it— the two interoretations are equivalent. In
multiprogramming, where other active processes may access and change the
seme common Infocrmation, the two interpretaticns make a great differsrce!
In particular for the reader with extensive experience in unipregramming
‘this remark has been inserted as an indicetion of the subtleties af the

games we are playing.

2.5. A Linguistic Interlude.

(This sectian may be skipped at first reading.)

In section 2.2. we described the cooperstion of N processes; in the
overall structure we used a vertical sequence of dots between the brackets
"parbegin' and "parend"., This is nothing but a loose formalism, suggesting
to the human reader how to compose in our notation a set of N cooperating
sequential processes, under the condition that the value of N has been fixed
beforehand. It is @ suggestion for ths construction of %, 4 or 5071 cooperating
processes, it does not give & formal description of N such cocperating processes
in which N occeurs as a parameter, i.e. it is nat & description, valid for amy

value of N,
It is the purpose of this sectiaon to show that the concept of the
so—called "recursive procedure" of ALGOL 60 caters for this. This concept

will be sketched briefly.

We have seen, how after "begin" declarations could occur in order to
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introduce and to name either single varibles {oy enumeration of their names
or whole ordered ss¥s of variables {viz., in the srray dsclaration)., Witk
the so-called "procedure declaration” we can define and name a certain
action; such an action may then be inwvoked hy using its name as 2 statement,

thereby supplying the parameters, to which the action should be applied.

As an illustration we consider the following ALGCL 60 program:

"begin integer a, b;

procedure square(u, v}; integer u, v;
begirn ui= v * v end;
L: sguars{a, 3); sguare(h, =); sauare(z, k)

end"

In the first line the integer named "a" and "b" ars declared. The next
line declares the procedure named "sguare", cperating on two parameters,
which are specified to be single inlegers (end not, say, complete a:rays).
This lire is called “the procedure heading®. The immediately following
statement ~the so-called "procedure body"~ describes by definition the
action named: in the third line —in which the bracket pair "begin....end"
is superfluous— it is told that the action of "sguare" is to assign to the
first parameter the square of the value of the second one, Then, labeled "L™,
comes the first statement. Before its execution the values of both "a" and
"b" are undefined, after its exscution "a = 9". After the execution of the
rext statement, the value af "b" is therefore = 81, after the execution of

the last statement, the value of "a" is =6561, the valus af "k" iz still — &1.

In the previous exampla the procsdure mechanism was essentially introduced
as a means for abreviation, & means for avoiding to have to write down the

"body" three times, although we could have dore so guite easily:

"begin integer a, b;

Lt a:= 3 % %; hiza % a; ai1= b * b

end".

When the body is much more camplicated than in this exampls, & program

alang the latter linmes tends irdeed to be muych more lengthy.
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This technique of "substituting for the call the appropriate version
of the body"™ is, however, no longer possible as soon as the procedure is a
so-called recursive one, i.e. may call itself. It is then, that the procedurs

really enlarges the expressive power of the programming language.

A simple example might illustrate the recursive procedure., The greatest
common divisor of two given natural numbers is
1) if they have the same value equal to this vaiue
2) if they have different values equal to the greatest common divisor of the
smallest of the two and their difference.
In other words, if the greatest common divisor is not trivial {first case)
the prablem is replaced by finding the greatest common divisor of tws

smaller numbers.

{In the following program the imsertion "value v, w;" can be skipped by the
reader as being irrelevant for our present purposes; it indicates that for
the parameters listed the body is only interssted in the numerical value

of the actual parameter, as supplied by the call.)

"begin integer a;

procedure GCD(u, v, w); value v, w; integer u, v, w;
Begin if v = w then u:i= v

else
begin if v <w then GCD(u, v, w - v)
else GCD(U, Vo oW, W)
&nd;
GCD{a, 12, 23)

end"

(In this example the maore eslabarate form of the conditional statement
is used, viz.:

"if condition then statement 1 else statement 2". ,

meaning that if "corndition" is satisfied,"statement 1" will be executed and
"statement 2" will be skipped, ard that if "candition" is not satisfied,

"statement 1" will be skipped and "statement 2" will be exscuted.)

The readsr is invited to fallow the pattern of calls of GCD and ta

see, how the variable "a" becomes - 3; he is also invited to convince
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himself of the fact that the (dyﬁamic} pattern cof calls depends on the
parameters supolied and that the substitution technique -replace call by

body— as applied in the previous example would lead to difficuitiss here.

We shall now write & program tc perform a matrix * vector multiplication
in which
1) the order of the M scalar * scalar products to be summed is indeed
prescribed {the rows of the matrix will be scanned from lefi to right)

2) the N rows of the matrix can be processed in parallel.

(Where we do not wish to impose the restriction of purely integer values,
we have used to declarator "real" instead of the declarataor "intsger"; fur-
thermore we have introduced an array with two subscipts im a, we hape,

obvious manner.)

It is assumed that, upon entry of this block of program, the integers

"* and "N" have positive values,

"begin real array matrix[1 : N, 1 : MJ;

real array vector[! : MJ;
real array prmduct[1 : N];

pracedure rmwmult(k); value k; integer k;

begin if k > 0 then

parbegin
begin real =; integer j;
si= QO3
for ji= 1 step 1 until M go
s:= s + matrix|k, il * vectur[jj;
product[k]z: s
end;

rownult(k - 1)

parend
end;
rowmult(N);

end"
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3, The Mytual Exclusior Problem Revisited.

We return ta.fhe problem of mutusl exclusion im time of critical secticrs,
&s introduced in section 2,1 and generalized in sectign 2.2. This section
deals with a more efficient tecknique for sclving this problem; only after
having dore so, we have adequate means for the description af examples, with
which [ hope tc convince the reader cf the rathe: fundamental importance
of the mutual exclusion problem. In ather werds, I must appeel to the patiencs
of the wendering reader (suffering, as I am, from the sequential nature of

kuman communicaticn!)

%.1. The Need for a More Realistic Soiuticon.

The solution given in sec%ion 2.2 is interesting in as far as it shows
that the restricted means of communication provided are, from a thsoretical
point of view, sufficient to solve the problem. From other points of view,

which are just as dear ta my heart, it is hopelessly inadequate.,

To start with, it gives rise to a father cumbersome description of the
individual processes, in which it is all but transpzrent that the overall
bebaviour is in accordance with the conceptually so simple requirement of
the mutual exclusion, In other-wsrds, in some waey or another this solutian
is a tremendous mystification. Let us try te isclate in our minds in which
respect this sclution represents indeed & mystification, for this investigation

could give the clue:to improvement.

Let us take the period of time during which one of the processes is in
its critical section. We 21l know, that during that pericd, no other processes
can enter their critical section and that, if they want to do so, they have to
wait until the current criticel section execution has been campleted. For the
remainder of that perind hardly any activity is required from them: they have

to wait anyhow, and as far as we are concermed "they could go to sleep".

Our solution does not reflect this at all: we keep the processes busy
setting and inspecting common variashles all the time, as if no price has to
be paid for this activity. But if our implementation -i.e. the ways in which

or the means by which these processes are carried out- is such, that "sleeping®
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is a less expensive activity than this busy way of waiting, then we are
fully justified {row alsc from an ecomamic point af view) to call aur

solution misleading.

In present day computers, there are at least two ways in which this
active way of waiting cam be very expensive. Let me skeich them briefly.
These computers have two distinct parts, usually called "the processor" and
"the store". The proeesssar is the active part, in which the arithmetic amd
logical cperations are performed, it is "active and small"; in the staore,
which is “passive and large" resides at any moment the informatior, which
is not processed at that very moment but only kept there for future reference.
In the total computational process information is transported from store tg
processar as soon as it has to play an active role, the information in store

can be changed by transportztion in the inverse direction.

Such a computer is a very flexible toal far the implementation of
sequential processes. Even a computer with only ane single processor can
be used to implement z number of cancurrent sequential processes. From
a2 macroscopic point of view it will seem, as though all these processes
are carried out simultaneously, a mors closer inspection will reveal,
however, that at any "microscopic" moment the processer helps alwong only
one single pregram, amd the overall picturs only results, because at
well chosen maments the processor will switch gver from one process to
gnother. In such an implementation the different processes share the same
processor and activity of one of the processes {i.e. a non-zero speed) will
imply a zero speed for the others and it is then undesirable, that precious

processor time is consumed by processes, which cannot go on anyhow.

Apart fram processor sharimg, the store sharing could make the unnecessary

activity of a waiting process undesirable. Let us assume that inspection af

or assigrment to a "common variable™ implies the access to an information

unit —a sn;called "word™ in a ferrite core store. Access toc a word in g

core stnrertakes a finite time and for technical reasons only one word can

be accessed at a time. When more than one active process may wish access to
words of the same cors store, the usual arrangement is that in the case of
immarent coincidence, the storage access requests from the different active

processes sre granted according to a built in priority rule: the lawer

priority process is automatically held up. (The literature refers to this
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situation when it describes "a communication channel stealing a memary
cycle from the processor.) The result is that frequent inspection of
common variables may slow down the process, the local quantities of which

are stored irn the same core store.

3.2. The Synchronizing Primitives.

The origin of the complications, which lsad to such inmtricate solutions
as the ore described in section 2.2 is the fact that the indivisible accesses
to common vari;hles are always "one-way information traffic": an individual
process can either assign a mew value ar irmspect a curremt value. Such an
ingpection itself, however, leaves no trace for the other processes and the
consequence is that, when a process want to react to the current value of a
common variable, its value may be changed by the other processes between
the moment aof its inmspection and the following effectuation of the reactian
to it. In other words: the previous set of communication facilities must be

regarded as inadequate for the problem at hand and we should laok for better

adapted alternatives.

Such an alternative is given by introducing
a) among the common variables special purpose integers, which we shall call
*semaphores!.
b) among the repertoire of actions, from which the individual processes have
to be constructed, two new primitives, which we call the "P-operation®
and the "V-operation" respectively. The latter cperations always operate
upon a semaphore and represent the only way in which the eomcurrent processes

may access the semaphares.

The semaphores are essentially non-negative integers; when only used
to solve the mutual exclusion problem, the range of their values will even
be restricted to "O"™ and "1%", It is the merit of the Dutch physicist and
computer designer Drs.C.5.3cholten to have demonstrated a considerable field
of applicability for semaphores that can also take on larger values. When
there is a need for distinction, we shall talk about "binary semaphores" and

"general semaphores" respectively. The defirition of the P- and V-operation
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that I shall give now, is insensitive to this distiction.

Definition. The V-gperation is an aperation with ore argument, which must

be the identification of a semaphore. {If "S1" and "S2" derote semaphares,
we cam write "V{51)" and "y(52)",) Its function is to increase the value of
its argument semaphore by 1; this increase is to be regarded as an indivisible

operatiaon.

Note, that this last sentence makss "V(51)" inequivalent to "Si:= §1 + {n,
For suppose, that two processes A and B both contain the statement "y(51)n
and that both shouid like to perfarm this statement at 2 moment when, say,
"S1 = 6". Excluding interfsrence with S1 from other processes, A and B will
perform their V-operations in an unspecified order —at least: outside gur
control= and after the completion of the second V-operation the final value
of 31 will be = 8. If 51 had not bzen a semaphore but just an ordinary common
integer, and if processes A and B had contained the statement "S1:= 51 + 1"
instead of the V~operationm on 51, then the followinmg could happen. Process
A evaluates "51 + 1" and computss "7"; befors sffecting, however, the assignment
of this new value, process B has reached the same stage and also evaluates
"S51 + 1", computing "7", Thersafter both processes assign the value "7" ta
S$1 and one of the desired incresses has been lost., The requiremsnt of the
"indivisible operation" is meant to exclude this occurrence, when the V-

operation is used.

Definition. The P-operation is an operation with one argument, which must

be the identification of a semaphore. (If "S1" and "S2" denote semaphores,
Wwe can write "P(51)" and "P(SE)".) Its function is to decrease the value of
its argument semaphore by 1 as soon as the resulting value would be non-
negative, The completion of the P-operation ~i.e. the decision that this is
the appropriate moment to sffectuate the decrease and the subsequent decrease

itself- is to be regarded as an indivisible operation,

It is the P-operation, which represents the potential delay, viz. when
& process initiates a P-pperation on a semaphore, that at that moment is
= 0, in that case this P-operation cannot be completed until another process
has performed a V~operation on the same semaphore and has given it the value

"". At that momert, more than one process may have initiated a P—cperation



EwD12% - 20

on that very same semaphore. The clause that completion of a P-operation is
an indivisible action means that when the semaphore has got the value "0,
only one of the initiated P-operations on it is allowed *o be completed.

Which ons, &gaim, is left unspecified, i.e. at least outside our control.

At the present stage of our discussions we shall take the implementability

of the P-and V-operaticns for granted.

3.5, The Synchronizing Primitives Applied to the Mutual Exclusion Prablem.

The solution of the N processes, each with & critical section, ths
executions of which must exclude one ancther in time (see section 2.2) is
now trivial. It can be done with the aid of & single binary semaphore, say
"free". The value of "free" equels the number of processes allawed to enter

their critical section now, or:

"free = 1" means: none of the processes is engaged in its critical section
"free = Q" means: one of the processes is engaged in its critical section.

The overall structure of the solution becomes:

"begin integer free; free:= 1;

parbegin
pracess ': begin......e..ee....Bnd;

process 2: begin..eseacearasas£Nd;

process N: begine..soeunavaas.Bnd;

parend

end"

with the i-th process of the form:

"process i: begin
Li: P{free); critical section i; V(free);
remainder of cycle i; goto Li

end"
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4. The General Semaphore.

4.1. Typical Uses of the General Semaphore.

We consider two processes, which are called the "producer™ and the
"consumer" respectively. The producer is a cyclic process and each time it
goes through its cycle it produces a certain portion aof information, that
has to be processed by the consumer. The consumer is alsoc a cyclic praocess
and each time it goes through its cycle, it can process the next portion of
information, as has been produced by the producer. A simple example iz given
by a computing process, producing as "portions of information! punched cards
images %o be punched out by a carad punch, which plays the role of the

CONsUmer.

The producer — censumer relation implies a one-way communication channel
betw=zen the two procssses, along which the portions of infarmation can be
transmiited. We assume the two processes to be connected for this purpase
via a buffer with urbounded capacity, i.e. the portions produced need not
to be consumed immediately, but they may queye in the buffer. The fact that
no upper bourd has heen given for the capacity af the buffer makes this

example slightly unrealistic, but this should not trouble us too much now.

{The origin of the mame "buffer" becomes understandable as soon as we
investigate the consecuences of its absence, viz. wken the producer can anly
offer its next portion after the prewvious portion has been actually consumed.
In the computer — card punch example, we may assume that the card punch can
punch cards at a constant speed, say 4 cards per second. Let us assume, that
this putput speed is well matched with the production speed, i.e. that the
computer can perform the cerd image production process with the same average
speed. If the comnection betwesen computing process and card punch is unbuffered,
then the couole will only work continuously at full speed when the card pro=
duction process produces a card every quarter of a second. If, howaver, the
nature of the computing process is such, that after one or two seconds vigorous
computing it produces 4 to 8 card images in a single burst, then unbuffered
connection will result in a period of time, in which the punch will stand
idle (fur lack of information), followed by a perind in which the computing

process has to stand idle, because it cannot get rid of the next card image
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before the preceding one has been actually punched. Such irregularities in
producticn speed, however, can be smoothed out by a buffer of sufficient

size and thet is, why such a queuing device is called "z buffer".)

In this section we shall not deal with the various techniques of imple-
menting a buffer. It must be able to contain successive portions of information,
it must thersfore be & suitable storage medium, accessible to both pracesses.
Furthermore, it must nct only contain the portions themselves, it wust alsc

represent their lineair ordering. (In the iiterature two well-known techniques
are described by "cyclic buffering™ and "chaining" respectively.) When the
producer has prepared its next portion to be added to <he buffer, we shall
indicats this action simply hy "add portion to buffer", without going into
further details; similarly, the consumer will "take pertion from buffer",
where it is understood that it will be the oldest pertion, still in the

buffer. (Another name of a buffer is a "First-In-First~Out=Memory.)

Omitting in the outermost bleck any declarations for the buffer, we
can row construct the two processes with the aid of a single gensral semaphore,

called "mumber of gueuing portiong®.

"begin imteger number of queuwing partions;

number of gueuing portions;= Q;

parbegin
producer: begin

again 1: produce the next porticn;
add portion to buffer;
V(number of queuing portions);
gotao again 1

end;
consumer: begin

again 2: P(number of queuing portions);

take portion from buffer;

process portion taken;

goto again 2

Earend

end"
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The first linz of the producer represents the coding of the process
which forms the next portion of information; it can be canceived —it has a
meaning- guite independent of the buffer for which this partion is interded; when
it has been executed the next portion has besn succesfully completed, the
completion of its construction cam no longer be dependent on other (unmentioned)
conditions. The second line of coding represernts the actions, which define
the finished portions as the next one in the buffer; after its execution
the new portion has been added completely to the buffer, apart from the fact
that the consumer does not know it yet. The V-operation finally confirms its
presance, i.=. sigrals it to the consumer. Note, that it is absolutely essen-
tial, that the V-operation is precede by the complete additiorn of the portion.

About the structure of the consumer analogous remarks can be made.

Particularly in the case of buffer implementation by means of chaining
it is not unusual that the operations "add portion to buffer" and "take
portion from buffer" —operating as they are on the sams clerical status
information of the buffer— could interfere with each other in = most unde-
sirable fashion, unless we see to it, that they exclude each other in time.
This can be catered for by a binary semaphore, called "buffer manipulaticn®,

the values of which mean:

=0 : either adding to or taking from the buffer is taking place

=1 : neither adding to mor taking from the buffer is taking place.

The program is as follaws:
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"begin integer number of queuing portions, buffer manipulation;
number of queuing portions:= O
buffer mandipulation:= 1;
parbegin
producer: begin

again 1: produce next portion;
P(buffer manipulation};
add portion to buffer;
V(buffer manipulation);
V(number of queuing portions);

goto again |
Eend;
consumer: begin
again 2: P(humber of gueing portiuns};
P{buffer manipulation);
take portion from buffer;
V(buffer menipulation);

process portiorn taken;

goto again 2

parend

end"

The reader is requested to convince himself that
a} the order of the two V-operations in the producer is immaterial

b} the order of the two P-operations in the consumer is essential,

Remark . The presence of the binary semaphore "buffer manipulation
has another consequence. We have given the program for one producer and
one consumer, but now the extension to more producers and/ar MOTE CONSUMEILS
is straightforward: the same semaphore sees to if €hat two or more additions
of-new portions will never get mixed up and the same applies to two or more
takings of a portion by different consumers. The reader is reguested to
verify that the order of the twe V-operations in the producer is still

immaterial.
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4.2. The Superfiuity of the Genersl Semaphore.

In this sectiorn we shall show the superfluity of the general semaphore
and we shall da so by rewriting the last program of the previous sectian,
using binary semaphores only, (Intentinnally I have written "we shall show"
and not "we shall prove the superfluity", We do not have at our disposal
the mathematical apparatus that would be needed to give such a proof and I
do not feel inclined to develop such mathematical apparatus now. Nevertheless
I hope that my show will be convincing!) We shall first give a soclutian and

pastpone the discussion till afterwards.

"begin integer numgueupor, buffer manipulation, consumer delay;

numqueupor:= O; buffer manipulation:= 1; consumer delay:= O;

parbegin
producer; begin
again ': produte next portion;
P{buffer manipulation;;
add portion to buffer;
NUMOUBUPOT := numgueupor + 1;
if mumgueupor = 1 then V{consumer delay);
V(buffer manipulation);
goto again 1
end;

consumer: begin integer oldnumquesupor;

wait: P(eonsumer delay);

go on: P(buffer manipulation);
take portion from buffer;
NUMGUEUPOT:= numqueupor = 1;
Gldnumgqueupor:= numquepor;
V(buffer manipulation);
process portion taken;

if oldnumgueupcr = QO then goto wait else goto go on

parsnd

end" .

Relsvant in the dynamic behaviour of this program are the periods of time
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during which the buffer is empty. (As long as the buffer is not empty, the
consumer £an go on happily at its maximum speed.) Suchk a period canm only be
initiated by the consumer {by taking the last portion pressnt from the buffer),
it can only be terminated by the producsr (by adding a portion to an empty
buffer}. These two events can be detected unambiguausly, thanks to the
binary semaphore "buffer manipulation", that guarantees the mutual exclusion
necessary for this detsction. Each such period is accompanied by & P= and =
V-operation on the new binary semaphore "consumer delay". Finally we draw
attention to the local variable "oldnumgueupor" of the comsumer: its value
is set during the taking of the portion and fixes, whether it was the

last portion then present. (The more expert ALGOL readers will be aware that
we anly need to store a single bit of information, viz. whether the decrease
of numgqueupor resulted in a value = 0; we could have used a lecal variable
of type Boolean for this purpose.) When the consumer decides +o go te
"wait", i.e. finds "oldnumgusupor = O", at that moment "numgueupor" itself

could already be grester than zero agsin!

In the previous pregram the relevant cccurrence was the period with
empty buffer. One can remark that emptiness is, in itself, rather irrelevant:
it anly matters, when the consumer should like to take a next portion, which
is still absernt. We shall program this version as well. In its dynamic
behavicur we may expect less P- and V-operations on "consumer delay", viz.
not when the buffer has been empty for a short while, but is filied again
in time to make delay of the consumer unnecessary. Again we shall first

give the program and then its discussion.
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"begin integer numquedpor, buffer mamipulation, consumer delay;

numqueupor:= 0; buffer manipulation:= 1; consumer delay:= O
parbegin
producer: begin
again 1: produce next portion;
P(buffer manipulation);
add partion to buffer;
numQueupor:= numgueupor + 13
if numgueupor = O then
begin V(buffer manipulation);
V( COMSUmET delay) end
Else
V(buffer manipulation);
goto again i
Bnd;
consumer: begin
again 2: P(buffer mamipulation);
numguedpar:= numgueupor — 1;
if numgueupor = - 1 then
begin V{buffsr manipulation):
P(cunsumer delay};
P(buffer manipylation) &end;
take portion from buffer;
V(buffer manipulation);
process portion taken;
goto again 2
end

parend

end™

Again, the semaphore "buffer manipulaticn" caters for the mutual
exclysion of critical sections. The last six lines of the producer could

have been formulated as follows:

"if numgueupor = O then V(consumer delay);

V{buffer manipulation); gota again 1"
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In mot doing so 1 have followed s persamal taste, viz., to avoid P~ and
V-operations within critical secticns; 2z personal taste to which the

reader should not pay teoo much attention.

The range aof possible wvalues of "numgueupor" has beer extended with
the vaiue "=1", meaning (outside critical section execution) "the buffer
is not only empty, but its emptymess has =zlready been detected by the
consumer, which has decided tc wait". This fact can be detected by the

producer whern, after the addition of one, "rumgueupor = O" holds.

Note how, in the case of "mumgueupor = - 1", the critical section of
the comsumer is dynamically broken into two parts: this is most essemtial,
for otherwise the praducer would never get the opportunity to add the

portion that is already so much wanted by the cansumer.

(The program just described is known as "The Sleeping Barber”. There is

a barbershop with a separate waiting roam. The waiting room has an entry

and next to it an exit to the rpom with the harber's chair, entry and

exit sharing the same sliding door which always closes one of them; furthermore
the antry is so small that only one customer can enter it at a time, thus

fixing their order of entry. The mutual exclusions are thus guaranteed.

Barber's Chair L\
1 -

Waiting room

Wherr the barber has finished a haircut, he apens the door tg the
waiting room and inspects it. If the waiting room is not empty, he invites
the next customer, atherwise he goes to sleep in one of the chairs in the
waiting room. The complementary behaviour of the customers is as follows:
when they find zerc or more customers in the waiting rcom, they just wait
their turn, when they find, however, the Sleeping Barber -"numgueupor = = {1"-

they wake him up.)



EWD12% - 39

The two programs given present a strong hint to the conclusion that
the general semaphore is, indeed, superflucus. Nevertheless we shaal not
try toc abolish the general semaphure: the one—-sided synchronisation
restriction expressible by it is & very common one and comparison af the
solutions with and without general semaphore shows convincingly that it

should be regsrded as an adeguate tool,

4.3, The Bournded Buffer.

I shall give a last simple example to illustrate the use of the
general semaphcre. In section 4.1 we have studied a preducer and a consumer
coupled via a buffer with unbounded capacity. This is & typically one-sided
restriction: the producer can be arbitrarily far ahead of the consumer, an
the other hand the consumer can never be ahaed of the producer. The relation
becomes symmetric, if the two are coupled via a buffer of finite size, say
N portions. We give the program without any further discussion; we ask the
reader to convince himself of ths complete symmetry. ("The consumer produces
and the producer consumes empty positions in the buffer".) The value N,
as the buffer, is supposed to be defined in the surrounding universe into

which the following program shauld be embedded.

"begin integer number of gueuing portioms, number of empty positions,
buffer manipulation;
number of quesuing portions:= O;
number of empty positions:= Nj
buffer manipulation:= 1;

parbegin
producer: begin
again 1: produce next portion;

P(rumber of empty positions);
P(buffer manipulation);
add portion to buffer;
V(huffer manipulatiun);
V(number cf queuing portions); goto again 1 end;
censumer: begin
again 2: P(number of queuing portioms);
P(buffer manipulation);
take portion from buffer;
v{buffer manipulatiun);
V{number of empty pnsitiuns);
process portion taken; goto again 2 end

parend

end" ,
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5. Cogperation via Status Variables.

In sections 4.1 and 4.3 we have illustrated the use of the general
semaphore, It proved sn adsquate toal, be it as implementation of a rather
trivial form of interaction. The rules for the consumer are VEry simple: if
there is something in the buffer, conmsume it. They are of the same simplicity
&5 the bebaviour rules of the wage earner wha spends all his money as soon

as he has been paid and is broke until the next pay day.

Im other words: whem a group of cooperating sequential processes have
to be corstructed and the overall behaviour of these processes combined
has to satisfy more elaborate requirements —the community, formed by them,
has, as a whole, to be well-behaved in some semse- we can only expect to
be able to do so, if the individual processes themselves and the ways in
which they can interact will get more refined. We can no longer expect
a ready made selution as the general semaphore to do the jab. In general,
we need the flexibility as can be expressed in a program for a general

purpose computer.

We now have the raw material, we can define the individual processes,
they can cmmﬁQﬁicate with each other via the common variables and finally
we have the synchronizing primitives. How we canm compose from it what we
might want is, however, by no means obvious. We must now train ourselves to
use the tools, we must develop a style of programming, a style of "parallel

programming" I might say.
In advance I should like to stress two points.

We shall be faced with a great amount of freedom. Interaction may
imply decisions bearing upon more than one process and it is not always
obvious, which of the processes should do it. If we cannat find a guiding
priciple (e.g. efficiency considerations), then we must have the courage

to impose some rule in the name aof clarity,

Secondly, if we are interested in systems that really work, we should
be able to convince ourselves and gnybody else who takes the trouble to

doubt, of the correctness of our constructions. In uniprogramming one is
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already faced with the task of program verificatiocn ~-a task, the difficulty
of which is often underestimated- but there one can hope to debug by testing
of the actual program. In our case the system will often have to work

under irreproducible circumstances and from field tests we can hardly expect
any serious help. The duty of verificetion should concern us right from the

start.

We shall attack a more complicated example in the hope that this will

give us some of the experience which might be used ss guiding principle.

5.1. An Fxample of a Priority Rule,

In section 4.3 we have used the general semaphore to couple a producer
and a consumer via a bounded buffer. The solution givern there is extendable
toc more producers and/or more consumers; it is applicable when the "portion®
is at the same time a convenient unit of information, i.e. when we can regard

the different portions as all beirg of the same size.

In the present problem we consider producers that offer partions of
different sizes; we assume the size of these portions to be expressed in
portions units. The consumers, again, will process the successive portions
from the buffer and will, therefore, have to be able to process portioms,
the size of which is net given a priori. A maximum portion size, however,

will be known.

The size of the portions is given in information.units, we assume also
that the maximum capacity of the buffer is given in information units: the
questian whether the buffer will be able to accomedate the mext portion
will therefare depend on the size of the portion offered. The requiremenf,
that "adding & portion to" and "taking a portion from the buffer™ are still
conceivable operations implies that the size of the buffer is not less

than the maximum portion size,

We have a bounded buffer and therefore a producer may have to wait
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before it can offer a portion., With fixed size portions this sould anly
cccur when the buffer was full to the brim, now it cam happen, because
free space in the buffer, although present, is insufficient far the poction

concerned,

Furthermore, when we have more tham one producer and ape of them is
waiting, then the other cnes may go on and reach the state that thay wish
ta offer s portion. Such z portion from a next producer may alsa be too
large or it may be smaller and it may fit in the available free space of

the buffer.

Somewhat arbitrarily, we impose on our solution the requirement,
that the producer wishing to affer the larger portion gets priority over
the producer wishing to offer the smaller portiaon to the buffer. {(When
two or more producers are offering poriioms that happen to be of the same

size, we just don't care.)

When a producer has to wait, because the buffer cannot accomcdate
its portion, no other producers can therefore add their portions until
further notice: they cannat when the new portion is larger (for them it
will also nat fit), they may not when the new portion is smaller, for then

they have a lower priority and must leave the buffer for the sarlier request,

Suppose at a2 moment = completely filled buffer and three producers,
waiting to offer porticrs of 1, 2 and 3 units respectively. When a consumer
now consumes a five—unit portiom, the priarify rule implies that the pro-
ducers with the 2Z-unit portien and the 3-unit portion respectively will get
the opportunity to go on and rot the one offering the 1-unit portion, It is
neot meant to imply, that then the 3~unit portion will actually be offered

before the 2-unit portion!

We shall now try to introduce so-called "status variables" for the
different compenents of the system, with the aid of which we can characterize

the state of the system at any moment. Let us try.
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For each producer we introduce a variable named "desire"; this variable
will denote the number of buffer units nesded for the portion it could nat
add to the buffer. As this number is always positive, we can attach to
"desirs = Q" the meaning, that no request from this buffer is pending.
Furthermore we shall introduce for each producer a private binmary "producer

semaphcre™.

For the buffer we introduce the binary semaphore "bufman", which takes
care of the mutual exclusion of buffer manipulaticns in the widest sense
(i.e. not only the adding to and taking from the buffer, but alsc inspecticn

and modification of the status variables concerned.)

Next we need a mechanism to signal the presence of a next portion to
the consumers. As soon as a next portion is in the buffer, it can be cansumed
and as we do not care, which of the consumers takes it, we can hope, that
a general semaphare "number of gqueuing portions™ will do the job. {Note,
that it counts portions guewing in the huffer and not number of filled

information units in the buffer.)

Freecoming buffer space must be signelled back to the producers, but
the possible consequences of free coming buffer space are more intricate and
we cannot expect that s genersl semaphore will be sdeguate. Tentatively we
introduce an integer status wvariable "number of free buffer units". Note,

that this variable counts units and not portiens.

Remark. The value of "number of free buffer units" will at most be
equal to the size of the buffer diminished by the total size of the porticns
counted in “number of queuing portians™, but it may be less! I refer to the

program given in sectionm 4.3%; there the sum
"number of queuing portions + number of empty positicns"

is initially {and usually) = N, but it may be = N = 1, because the P-operation
on one of the semaphores slways precedes the V—operation on the other. (Verify,
that in the program of section 4.3 the sum can sven be = N = 2 and that this
value can esven be lower, when we have more producers and/nr consumers.) Here

we may expect the same phenomenon: the semaphore "number of gueuing portions”
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will count the portions actually and completely filled and still unnoticed
by the consumers, "number aof free buffer units" will count the completely
free, unallocated units in the buffer. But the umits which have heen reserved
for fillimg, which haves been granted to a (waiting) producer, without already

being filled, will not be counmted in either of them.

Finsglly we introduce the integer "buffer blocking", the value of which
equals the number of quantities "desire"? that are positive. Obviously,
this variasble is superfluous; it bas been imtroduced as a recognition of ane
of our earlier remarks, that as svon as one of the desires is positive, nao
further additions to the buffer can be made, until further notice. At the
same time this variable may act as a warning to tke consumers, that such

a "further notice" is wanted.

We now propose the following program, writtem for N producers and M
consumers. ("N, "M", "Buffer size" and all that concerns the buffer is

assumed to be declared in the surroundings of this prngram.)

"begin integer array desire, producer semaphore [1 : N];

integer number of queuing peortions, number of free buffer units,
buffer blocking, bufman, locp;
for loop:= 1 step 1 until N da
begin desire[loup]:: 0; producer semaphnre{loop}:: O end;
number af queuing partions:= O
number of free buffer units:= Buffer size;
buffer blocking:= O; bufman:= 1;

parbegin

producer t: begin..iiceaiiiaiaiiianiiansaaeno;

T

praducer ni begirn integer portion size;

again n: produce next portiocn and set portiorn sizej
P(bufman);
Aif buffer blocking = O and
number of free buffer units > portion size

then
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number of free buffer units:=
number of free buffer units - portion size
Else
begin buffer blockini= buffer blocking - 1;
desire;n |:= portion size; V(bufman};
P{producer semaphore(n]); P(bufman) end;
add portion to buffer; V(bufman);

V(mumber of queuing portions); qota again n

consumer 1: begin..escvevareassn.and;

.
.

consumer m: begin integer portion size, n, max, rmax;

again m; P(number of queuing portions); P{bufman ) ;
take portion fram buffer and set portion size;
rumber of free buffer units:=
number of free buffer units + portion size;
test: if buffer blecking > 0 then
begin max:= 0
for ni= 1 gtep T until N do
begin iﬁrmag <Idesire[n} then
begin max:= desire{n}; nmax:i= n gnd end;
if max < number of free buffer units then
begir number of free buffer units:=
number of frees buffer units - max;
deaire{nmax]:: 0;
buffer blockirg:= buffer blocking - 1;

V(pruducer semaphore[nmax]); goto test

end;
V(bufman); process portion taken; goio again m

end;
.
.
-

consumer M: begin..i...esevecsssss.end

parend

end"
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In the outermast block the comman variables are declared and initialized;
I hope -and trust that this part of the pragram presents no difficulties to

the reader that has followed me until here.

tet us first try to understand the behaviour of the producer. When it
wishes to add a new portion to the buffer, there are essentially two cases:
either it can do so directly, or not. It can add directly under the combined

condition:
"ouffer blocking = Q and number of free buffer units > portion sizeM;

if so, it will decreases "number of free huffer units" and ~dynamically
speaking in the same critical section= it will add the portion to the buffer.
The two following V—operations (the order of whick is immaterial) close the
critical section and signal thes presence of the next pertior tc the combined

consumers. If it camnet add directly, i.e. if (either}
"buffer blocking = O or number ef free buffer units < portion size"

(ar bath), then the producer decides to wait, "to go to sleep", and delegates
to the combined consumers the task to wake it up again in due time. The Ffact
that it is waiting is coded by "dasire[n]i> O", "buffer blocking" is increased
by 1 accordingly. After all clerical operations oan the common variables have
been carried out, the otitical sectior is left (by “V(bufman)“} and the
producer initiates a P-operation on its private semaphore. When it has completed
this P-pperation, it reenters the critical sectign, merges dynamically with
the first case and adds the portion to the buffer. (See also the consumer in
the secand program of section 4.2, where we have already met the cutting

open of a critical section.) Note that in ths case of waiting, the producer
has skipped the decrease of “number of free buffer units™. Note alsp, that

the producer initiates the P-pperation om its private semaphore at a moment,
that the latter may already be = f, i.e. this F-operation, again, is only

a potential delay.

Let us now inspect, whether the combined consumers fulfill the taske
delegated to them. The preserce of a next portion is correctly signalled to
them via the general semaphore "mumber of queuing portions" and as the
P-operation on it occurs outside any critical section, there is na danger

of consumers not initiating it. After this P-operation, the consumer enters
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its critical section, takes & portion and increases thke numher af free
buffer units. If "buffer blocking = O" holds, the following compound statement
is skipped completely armd the critical section is left immediately; this is
correct, for "bhuffer blocking = O" means that none of the guantitiss "desire"
is positive, i.e. that none of the producers is waiting for the free space
just created in the buffer. If, however, it finds "buffer blocking > 0%,
it knows that at least one of the producers has gone to slsep and it will
inspect, whether one or more producers tave to be woken up. It looks for
the maximum value of "desire". If this is not too large, it decides, that
the corresponding producer has to go on. This decisicn has three effects:

the "number of free buffer units" is decreased by the number of units
desired. Thus we guarantee that the same free space in the buffer camnot be
granted to more than one producer, Furthermore this decresse is in accordance
with the producer behaviour.

"desire" of the producer in question is set to zero; this is correct,
for its request has now been granted; buffer blocking is decreased by 1
accordingly.

a V-pperation on the producer semaphore concerned wakes the slseping

producer.

After that, control of the consumer returns to "test" toc inspect,
whether more sleeping producers should be woken up. The inspection process
can end in one of two ways: either there are no sleeping producers anymore
("buffer blocking = O) or there ars still sleeping processes, but the free
space is insufficient to accommodate the maximum desire. The final value of
"buffer blocking" is correct in both cases. After the waking up of the

producers is done, the critical section is left.
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5.2. An Example of Canversatiors.

In this section we shall discuss = more complicated example, in which
one af the cooperating processes is not a machine but a buman being, the

"aperator™.

The operator is connected with the processes via a so-called "semi-duplex
channel® (say "telex connection"). It is called a duplex channel because it
conveys information in either direction: the operator can use a keybgard ta
type in a message for the processes, the processes can use the teleprinter
to type out A message for the operator. It is ecalled a semi—duplex channel,

because it can only transmit irnformaticn in one direction at a time.

Let us mow cansider the requirements to the total construction. (I admit,
that they are somewhat simplified. I hops, that they are sufficiently
camplicated to pose to us a real problem, yet sufficiently simple as not
to drawn the basic pattern of our selution in a host of inessential

details. The trees should mot prevent us from seeing the forest!)

We have N identical processes (numpered from 1 through N) and essentially
they can ask a3 single questign, called "Q1", meaning "How shall 1 go on?", to
which the operator may give one of two possible answers, called "A1™ andg "AZY,
We assume, that the operator must know, which of the processes is asking the
guestion —as his answer might depend on this knowledge- and we therefore
specify, that the i-th process identifies itself when posing the guestion;
we indicate this by saying that it transmits the question "Q1{i)". In a sense
this is & conseguence of the fact, that all N processes use the sams commu—

nication channel.

A next consequence of this channel sharing between the different processes
i1s that no two processes cam ask their guestion simultameously: beshind the
scenes some form of mutual exclusion must see to this. If only Ql-~guestions
ars mutually exclusive, the operator may meet the following situation: =
question -say "Q(%)- is pased, but before he has decided how to answer it,

a next guestion -say"Q1{7)" is put to him. Then the single answer "A1" is
no longer sufficient, because now it is nmo longer clear, whether this answer

is intended for "process 7" or for "process 3". This could be overccme by
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adding to the answers the identification of the process concerned, say,

"A1(i)" and "A2{i)" with the appropriate value of i.

But this is only one way of doing it: an alternative solution is to
make the guestion, followed by its answer, together a critical occurence:
it relieves the operator from the task to identify the process and we
therefore select the latter arrangement. So we stick to the amswers "A1Y and
"A2", We have two kinds of conversations "Q1{i), AI" and "Q1(i), A2" and the

next conversation can only be initiated when the previous one has been

completed.
We shall now complicate the requirements thressfold.

Firstly, the individual processses may wish to use the communication
channel for single-shot messages -"M(i}" say- which do not require any

answer from the operatar.

Secondly, we wish toc give the operator the possibility to postpore an
answer. Of course, he can do so by just not answering, but this would have
the undesirable effect,that the communication channel remains blocked far
the other N — 1 processes. We introduce a next answer "A3", meaning: "The
channel becomes fres again, but the conversation wiih the process concerned
remains unfinished.” Obviously, the operator must have the opportunity to
reopen the conversation again, He can do so via "A4(i)" or "A5(i)", where
"i" runs from 1 through N and identifies the process concerned, where "A4"
indicates thet the process should continue in the same way as after "Al",
while "AS5" prescribes the reaction as to "A2". Possible forms of conversation
are now:

a)  wQ1(i), Atv

b)  r@1{i), A2v

e} "Q1(i), A3" = — = mAq(i)n

d)  *Q1(i), A3" - - = mas(i)n

As far as process i is concermed a) is equivalent with :) and b} is equivalent

with d).

The second requirement has a profound influence: without it -i.e. only



"A1IM and "A2" permissible answers— the process of incoming message interpre-—
tation can always be subordinate to one of the N processes, viz. the one,

that has put the question: this can wait for an answer and can act accordingly.
wWe do not know beforehand, hawever, when the message "A4(i)" or “AS(i)" comes
and we cannot delegate the interpretation of it to the i=-th process, because
the discovery that this incoming message is concerned with the i-th process

is part of the messege interpretation itself!

Thirdly, A4~ arnd AS-messages must have priority over Q1- and M-messages,
i.e. while the communication channel is occupied (in a 01= or M-message),
processes might reach the state, that they want to use the channel, but also
the operator might come to this conclusion. As soon as the channel becomes
available, we wish, that the operator can use it and that it won't be sratched
away by ane of the processes. This implies that the operator has a means to
express this desire —a rudimentary form of input= sven if the channel

itself is engaged in output.

We assume that

s} the operator can give externally a
“V(incuming message)",

which he can use to announce a message (A1, Az, A3, A4, or A5)
b} can getect by the machines rezction, whether the messags is accepted or

ignored,

Remark. The situation is not unlike the school teacher shauting "Now
children, listen!®, If this is regarded as a normal message, it is nnnéensical:
either the children are listening and it is therefore superfluous, or they are
not listening, and therefore they do not hear it. It is, in fact a kind of
"meta~message", which only tells, that a normal message is coming and which

should alsc penetrate if the children are not listening (talking, for instance).

This priority rule may make the communication channel reserved for an
announced A4 -~ or A5 message. By the time that the cperator gets the opportunity
to give i%, the sitwation or his mood may have changed, and therefore we extend

the list of answers with "A6"™ ~the dummy cpening~ which enables the operator
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to withhold, upeon further comsideration, the A4 or A5.

A final feature of the message interpreter is the applicability test.
The cperator is a human being and we may be sure that he will make mistakes.
The states of the message interpreter ars such that at any moment, not all
incoming messages are applicable; when a message has been rejected &s norn~-
applicable, the interpreter should return to such a state that the aperator

can now give the correct version.

Our attack will be along the following lines:
1) Besides the N processes we introduce another process, called "message
interpreter”; this is dome becauss it is difficult to make the interpretation
of the messages "A4", "AG" and "AG™ zubordinate to one of the N processes.
2) Interpretation of a message always implies, besides the message itself,
a state of the interpreter.(ln the trivial case this is a constant state,
viz. the willingness to understand the message.) We have seen that not all
incoming messages are always acceptahle, so our message interpreter will be
in different states. We shall code them via the {common) state variable
"comvar", The private semaphore, which can delay the action of the message
interpreter, is the semaphore "incoming message™, already mentioned.
3) Far the N pracesses we shall iniraduce an array "procsem” of private
semaphores and an array "procvar" of state variables, through which the
the different processes can communicate with each other, with the message
interpreter and vice versa.
4) Finally we introduce 8 single binary semaphere "mutex" which caters
for the mutual exclusion during inspection and/nr modification of the
cammen variables.
5) We shall use the binary semaphore "mutax" only for the purpose just
described and never, say, will "mutex = C" be used to code, that the channel
is vccupied. Such a convention would be a dead alley in the sermse that the
technique used would fall into pieces as soon as the N processes would have
two charnels {(and two Dperaturs) at their disposal. We aim to make the
critical sectians, gowverned hy "mutex" rather short and we won't shed a teax

if some critical section is shorter than necessary.

wWell, the above five points, articles of faith, I might say, are of some
help and | hope that in view of our previous experiences they seem a set of

reasonable principles. I do one part of my job if I present a solution along
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the lines just given and show that it is correct. I would do a better job
if T could show as well, how such a solution is found. Admittsdly by trial
and error, but even so, we could try to mske the then prevailing gquiding
priciple {(in mathematics usually called "The feeling of the geniusn)
somewhat more explicit. For we are still faced with problems:

a) what structure should we give to the N + 1 procssses?

k) what states should we imtroduce (i.e. how many possible values shauld

the state variables have and what should be their meanings)?

The problem (both in constructing and in presenting the solutiom) is,
that the two poimis just mentioned are imterdependent. For the values of
the state variables have only an unzmbiguous, describable meaning, when
"mutex = 1" bolds, i.e., none of the processes is inside & critical section,
in which they are subject to change. In other words: the conditions under
which tre meaning of irte state variakle valiess should be aprlicable is
only known, when the programs are finished, but we can orly make the programs
if we know what inspections of and operations on the state variables are
to be performed. In my experiemce one starts with a rough picture of both
programs and state variables, one ther starts to enumerate the different
states and then tries to build the programs. Them two different things
may happen: either crne finds that one has irtroduced too wany states or
cne finds that -having overlooked a need for cutting & critical sectian
into parts— cne has not introduced enough of them. One modifies the states
and then the program and with luck and care the design process converges.
Usually I found myself content with a workimg solution and I did not bather

to minimize the number cof states introduced.

In my experiemce it is sasier to conceive first the states {being
statically interpretable} and then the programs. In conceiving the states

we have to bear three points in mind.

a) State variables should have a meaning when mutex is = Q; arn the other
hand a process must leave the critical section before it starts to wait for
a private semaphore. We must be very keen on all those points where a process
may have to wait for something wore complicated than permission to complete

"p(mutex)",
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b}  The combinsd state variahles specify the total state af the system.
Mevertheless it helps a great deal if we can regard some state variable as
"belenging to that and that process". If some aspect of the total state
increases linearly with N, it is easier to conceive that part as egually

divided among the N processes.

c) 1f a process decides to wait on account of a certain (partial) state,
each process, that makes the system leave this partial state should inspect
whether on account of this chamge, some waiting process shauld go on. (This

is only a generalizatian of the principle, already illustrated in The Sieeping

Barher.)

The first two points are mainly helpful in the conception of the different

states, the last one is an 2id, to wmake the programs correct.

Let us now try to find a set of appropriate states. We starts with the

element ”procvar[i]", describing the state of process i.

procvarii] = O
This we call "the homing position", Tt will indicate that none of the
following situations spplies, that process i does not require any special

service from either the message interpreter or one of the other processes.

procvar[i] =1

"On account of non—availsbility of the communicaticn channel, process
i has decided to wait on its private semaphore." This decision can be taken
independently in each process, it is therefore reasanable to represent it
in the state of the process. Up till now there is no obvious reason to
distinguish between waiting upon availability for a M-message and for a

1 ~guestion, so let us try to do it without this distinctien.

procvar[i] = 2

"uestion "Q1(i)“ has been answered by "AZ", viz. with respect to
process i the operator has postponed his final decision." The fact of the
postponement must be represented because it can hold for an undefinitely

long period of time (observatien a); it should be regarded as a state variable
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af the proeess in question as it can hold in N=fald (mbservation b). Simul-
taneously, "procvar[i] = 2" will act as applicability criteriorn for the

operator messages “A4[i]" and "ABEi]“.

procvar[i] =3

mil i has been answered by "A1" or by "AZ"— - ~ wpg[i]r.w

procvar[i] =4

""D1[i]“ has been answersd by "A2" or hy "A%"- - - “A5[i]","

First of all we remark, that it is of no concern to the individual
process, whether the operator has postponed his final answer or not. The
reader may wonder, however, that the answer given is coded in "procvar", while
only one answer is given at & time, The reason is that we do not know how
‘long it will take the individual process to resct to this answer: before it
has done so, a next process may have received its final answer to the Qf-

question.

Let us mow try to list the possible states of the communication
organisation. We introduce a single variable, called "comvar" to distinguish
between these states. We have to bear in mind three different aspects
) availability of the communication possibility for M-messages, J1-gquestions
and the spontaneous message of the operator.

2}  acceptability -more general: interpretability~ of the incoming messages.
3) pperator priority for incoming messages.

In arder not to complicate matters immediately too much, we shall start

by ignoring the third point. Without cperator priority we can see the

following states.

camvar = O

"The communication facility is idle", i.e. egually available for both
pracesses and operator. For the processes "comvar = O" means that the commu-—
nicatiom facility is availsble, far the message interpreter it means that

an incoming message need not be ignored, but must be of type A4, A5 or AB.

comvar = 1

"The communication facility is used for & M-message or a Rf-guestion".
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In this period of time the value of "comvar" must he # 0, because the
communication facility is not available for the processes; for the message

interpreter it means, that incoming messages have to be ignored,

comvar = 2

"The commumication facility is reserved for sn A1-,AZ- or A3~answer."
When the M-message has been finished, the communication facility becomes
available again, after a Q1-guestion, however, it must remain reserved. During
this period, characterized by "comvar = 2", the message interpreter must
know to which prgcess the operator answer applies. At the end of the answer,

the communication facility becomes again svailable.

Let us now take the third requirement into considerstion. This will lead

to a duplication of {certain} states. When "comvar = Q" holds, an incaming
message is accepted, when "gcomvar = 1Y, an incoming wessage must be ignored.
This cccurence must be noted down, because at the end of this occupatign

of the communication facility, the operator must get his pricrity. We can

introduce a new state:

comvar = 3

"As "cpmvar = 1" with operator priority requested.”

Whan the transition to "comvar = 3" pccurred during a M-message, ths
operator could get his opportunity immediately at the end of it; if, however,
the transition to "comvar = 3" took place during a Ql-question, the priority
can only be given to the operator after the answer toc the Ql—question. Therefore,

also state 2 is duplicsted:

comvar = 4

"As "comvar = 2", with operator priority reguested."

Finally we have the state:

comvar = 5
"The communication facility is reserved for, or used upon instigation of
the operator." For the processes this means non-avasilability, for the message

interpreter the acceptability of the incoming messages of type A4, A5 and A6.
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Usually, these messages will be announced to the message interpreter while
"comvar" is = 0. If we do not wish that the entire collecticn and interpre-
tation of these messages is done within the same critical section, the message
interpreter can break it apen.It iz then necessary, that "comvar" is # 0. We
may try to use the same value 5 for this purpuse: for the processes it just
means non—avsllability, while the control of the message interpreter knows
very well, whether it is weiting for @ spontanecus cperator message (i.e.
"reserved For..") or interpreting such a message (i.s. "used upon instigation

DF.JQ.

Before starting to try to make the program, we must bear in mind peint
c: remembering that availability of the communication facility is the great
{and only; bottleneck, we must see ig it, that every process that ends a
communication facility occupation decides upon its future usage. This is
in the processes at the end of the M-message {(and not so much at the end of
the Q-question, for then the communication facility remains reserved for
the answer) and in the message interpreter at the end of each message inter-—

pretation.

The proof of the pudding is the eating, let us iry, whether we can
make the program. (In the program, the sequence of characters starting
with "comment" and up to and including ths first semicolon are inserted
for explanatory purpases only. In ALGOL 60, such a comment is only admitted
only immediately after "begin" but I do not promise, to respect this
(superfiuous) restriction. The following program should be interpreted to
be embedded in a universe in which the aperator, the commurtication facility

and the semaphore “incoming message” -initially = O~ are defined.

begin integer mutex, comvar, asknum, lcop;

comment The integer "asknum" is a state variable of the message
interpreter, primerily during interpretation of the answers A1, A2
and A3. It is a common variable, as its value is set by the asking
pPToCESS.

. integer array procvar, procsem [1 : NJ;
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for loop:= 1 step 1 until N dao

begin procvar[loop]:: 0 procgem[loop]:: Q end;

comvar:= ) mutex:= 1;

parbegin

process 1: bEgin...c.cuveveerarsnses.oends

process n: beqin integer i; comment The integer "i" is a local variable,

very much likes "loap”.;

M message:P(mutEX);

Af comvar = 0 then

begin

begin

comment When the communication facility is available,

it is taken.;
comvars= 1; V(mutex) end

else

comment Otherwise the process books itself as sleeping

and goss to sleep.;

prccuar[n]:: 13 V(mutex); P(procsem[n}}

camment At the completionm of this P-operation,

"procsem[n]" will again be = O, but comvar =-still

untouched by this process~ will be =1 or =3.; end;

send M message;

comment Now the process has to analyse, whether the operatar

(First!) or ene of the other processes should get the commu-

nication facitity or not.; P(mutex);

if comvar = 3 then comvar:=

else

begin caomment CGtherwise "comvar = 1" will hold and process n

end

has to look whether ane of the other processes is waiting.
Note that "procvar[n] = 0" holds.;
for i:= 1 step 1 until N do
begin éf_prucvar[i] =1 then
begin procvar] i 1= O; V(prucsem[i]); goto ready
end
end;

comvar:= Q

ready: V(mutex);
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Q1 Question: P{mutex);
if comvar = O then
begin comvar:= 1; Vi{mutex) end
Else
begin prncvar{n]:: 15 V{mutex); P(procsem[n]) end;
comment This entry is identical to that of the M message.
Note that we are out of the critical section, nevertheless
this process will set "asknum", It can do so safely, for no
g ‘other proeess, nor the message interpreter, will access
"asknum" as long as "comvar = 1" holds.;
asknum:= n; send question {n);
P(mutex);
comment "camvar" will be = 1 9r = 3.;
Aif comvar = 1 then comvar:= 2 £lse comvar:= 4;
Vi{mutex); P(procsem[n]);
comment Afisr completion of this P-operation, procvar[n]
will be = 3 or = 4. This process can now inspect and reset
its procvar, although we are outside a critical secticn.;
if procvar[n] = 3 then Reaction ! else Reaction 2;
procuar[n]:: 0;

comment This last assignment is superfluous.;

.
)
-

end;

process Ni begife.isiesssersssenasaaaend;
message interpreter:
begin integer i;
wait: F(inccming message);-
P(mutex);
if comvar =1 then comvar:= 3;
if comvar = 3 then
begin comment The message interpreter ignores the inceming
message, but in due time the operator will get the
opportunity.;

V(mutex); goto wait end;
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Aif comvar = 2 or camvar = 4 then
begin comment Only A1, A2 and A3 are admissible. The inter-—
pretation of the message nmeed not be dome inside a
critical sectiaon;
V(mutex);
interpretation of the message coming in;
if message = Al thern
begin pracuar[asknum}:= 3; V(procsem[asknum]};
goto after correct answer end;
if message = A2 then
begin procvar{:sknumj:: 4; V(prccsem[asknum]);
goto after correct answer end;
if message = A3 then
begin prucvar[asknum]:: 2; goto after correct answer end;
comment The cperator has given an erroneous answer
and should repeat the message; goto wait;
after correct answer: P(mutex);
if comvar = 4 then
begin comment The operator should now get his oppartunity;
comvar:= 5; V{mutex); goto wait end;
perhaps comvar ta zeraifor it= 1 step 1 until N do
begin if prncvar[i] = 1 then
begin procvar i j:= O; comvar:= 1;
V(procsem[i]}; goto ready end
EBnd;
comvar:= Q;
ready: V(mutex); goto wait
end;
comment The cases "camvar = Q" and "comvar = 5" remain.
Messages A4, A5 and A6 are admissible.;
if comvar = O then comvar:= 5;
comment See Remark 1 asfter the program.;
V(mutex};

interpretation of the message coming in;
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P(mutex);
if message = A4Epr0ce55 number} then
begin i:= "process number given im the message";
if pracvar[i] = 2 then
begin procvar[i]:: s V(procsem[i]);
gote perhaps comvar to zerc end;
comment Jtherwise process not waiting for postponed
answer.; goto wrong message
snd;
Af message = A5[process number] Xhen
begin ii= "process number given in the message";
if procvar(i] = 2 then
begin procvar[i}:: 43 U(prmcsem[i]);
gotc perhaps comvar to zero end;
comment Otherwise process not waiting for postponed
answer.; goto wrong message
end;
if messags = A6 tben goto perhaps comvar to zero;
wrong message: comment'comvar = 5" holds, giving priority to the operator
to repeat his message.;
V(mutex); goto wait

end

parend -

Remark 1. If the operator, while "eomvar = Q" or "comvar = 5"
criginally holds, gives an uninterpretable (or inapprmpriate) message, ths

communication facility will remsin ressrved for his next trial.

Remark 2. The final interpretation of the A4 and A5 messages is
done within the critical section, as their admissibility depends on the state
af the process concerned. If we have only one communication chamnel and opne

operator, this precaution is rather superfluous.
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Remark 3. The for-loops in the program scam the processes in
order, starting by process 1; by scanning them cyclically, starting at an
arbitrary process (selacted by means of a (pseudo) random number generator)

we could have made the solution more symmetrical in the N processes.

Remark 4. In this section ws have first given a rather thorough
exploraticn of the possible states and then the progrem. The reader might
be interested to kmow that this is the true picture -"a lifs recording®-
of the birth of this solution, When I started to write this section, the
problem posed was for me as new as far the reader: the program given is
my first version, constructed on account of the considerations and
explorations given. I hope that this section may thus give a2 hint as how

one may find such scluticns.

5.2.1. Improvements of the Previous Program.

In sectian 5.2 we have given a first version of the program; this
version has been included in the text, not because we are content with it,
but because its inclusion completes the picture of the birth of a solution.
Let us now try to embellish, in the name of greater conciseness, clarity and,
may be, efficiency. Let us try to discover in what respecis we have made a

mess af it.

Let us compare the informatian flows from a process to the message
interpreter and vice versa. In the one direction we have the common variable
"asknum" to tell the message interpreter, which process is asking the
guestion. The setting ard the inspection of "asknum" can safely take place
cutside the critical sections, governed by "mutex", because at any moment
at most one of the N + 1 processes will try to access Masknum". In the inverse
information flow, where the message interpreter has to gsignal back to the
i-th process the nature of the firmal aperator answer, this answer is coded
in "proevar". This is mixing things up, as is shown

a) by the "pracvar“-irspection (Whether procvar is = 3 or = 4), which is
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suddenly allowed to take place outside a critical secticn

b) by the superfluity of its keing reset to zero.

The suggestion is to introduce a new
"integer array Dperanswer£1:N]"
the elements of which will be used in a similar fashion as "asknum®. (Am
attractive conseduence is that the number of possible values of "orocvar!
=the more fundamental quantity(see below)- does not increase any more, if

the number of possible answers to the question Q! is increased. )

I should like to investigate whether we can achieve a greater clarity
by separating the common variables into two (or perhaps mors?) distinet
groups, in order to reflect an observable hierarchy in the way in which they

are vused. Let us try to order them in terms of "basicress".

The semaphore "incoming message" seems at first sight & fairly basic
one, being defined by the surrounding universe. This is, howevar, an illusion:
within the parallel compound we should have programmed (as N + 2nd process)
the operator himself, and the semaphore "incoming message" is the private
semaphore for the message interpreter just as "procsem[i]" is for the i-th

prncess.)

Thus the most basic guantity is the semaphors "mutex® taking care of the

mutual exclusion of the critical sections.

Then come the state variables "comvar" and "procvar" which are inspected

and can be modified within the critical sections.

The guantities just mentioned share the property that their values
must be set before entering the parallel compound. This property is alsa
shared by the semaphores "procsem" [and "incoming message", see abave), if
we stick to the rules that parallel statements will access common “semaphores

via P~ and V-operations exclusively.

(Without this restriction, request for the communicatian facility

by process n could start with:
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"P(mutex);

if comvar = 0 then

begin comvar:= 1; V{mutex) end

begin procvar[n ]i= 1; procsem(n J:= 03
V(mutex); P(procsem{n]) endg" .

We reject this solution an the further observation, that the assignment
"procsem{n]“ is void, except for the first time that it is executed; the
initialization of procsem's ocutside the parallel compound seems therefore

apprapriats).

For the common variables, listed thus far I should like to reserve the
name "status variables", to distinguish them from the remaining ones,

"askrum" and "operanswer", which I should like to call "transmission variables".

I call the latter "transmission variables" because, whenever one of
the processes assigns a value to such a variable, the information just stored
is destinated for a well known "receiving party". They are used to transmit

information between well-known parties.

Let us now turn our attentien frem the comman variables towards the
programs. Within the programs we have learnt to distinguish the so=called
"critical sections", far which the semaphore_"mutex" caters for the mutual
exclusion. Besides these, we can distinguisb regions, in which relevant

actions occur, such as:

in the i-th process:
Regiasn 1: sending an M-message
Region 2: sending a Q1 (i)~gquestion

Regicn 3: reacting to opsranswer{i] (this region is somewhat open=ended)

and in the message interpreter:

Region 4: ignoring incoming messages
Region 5: expecting A1, A2 or A3
Region 6: expecting A4{i), A5(i) or A6
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We come now to the following picture. In the programs we nave critical
sections, mutually excluded by the semaphore "mutex". The purpose of the
critical sections is to resolve any ambiguity in the inspection and modification
of the remaining state veriables, inmspection and modification performed fer
the purpose of more intricate “sequencing patterns® of the regions, sequencing
patterns, that make the unambiguous use of the transmission variables possible,
{1 one process has to transmit information to anpther, it can now do sa
via 2 transmission variable, pravided that the execution of the assigning
region is always followed by that of the inspecting region befeore that of the

next assigning region!)

In the embellisbed version of the program we shzll stick to the rule
that the true state variables will anly be accessed in critical sections
{if they are not semaphores) or via P- and V-operatians (if they are sema-—
phares),_while the transmission variables will eonly be accessed in the
regions. {In more camplicafad examples this rule might prove too rigid and
duplication might be avoided by allowing transmission variables at least
to be inspected within the critical section. In this example, however,

we shall stick tc it.)
The remaining program improvements are less fundamental.

Coding goes more smoothly if we represent the fact of requested
operator prierity not in additional values of "eomvar" but in an additional
two~valued state variable:

"Boolean operator priority"
{Quantities of type "Buolean™ can take on the two values denated by "true"
and "false" respectively, viz. the same domain as "conditions™ such as we

have met in the if-clause.)

Furthermore we shall introduce two procedures; they are declared
outside the compound and therefore at the disposal aof the different

constituents of the parallel compgund.

We shall first give a short description of the new meanings of the

values: gf the state variables "procvar" and "comvar':



procvar[i]

pracvar[i]

prncvar[i]

comyar =

comvar = 1

camvar = 2

comyar = 3

N
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homimg positicn
waiting for availability of the communicetion Facility
for M or Q1(i)

waiting for the answer "A4(i}" or was{i)r.

heming position {communication facility free)
communication facility for M or Q1
commurricatiaon facility for A%, A2 or A3

communication facility for A4, A% or A6.

We give the program without comments and shall do it in two stages:

first the program outside the parsllel compound and then the constituents

of the parallel compound,

begin integer mutex, comvar, asknum, loop;

Boolean operator priority;
integer array procvar, proCsen, Dperanswer£1:N];
procedure M or Q entry(u); value uj integer uj

begin P(mutex);

if comvar = O then
begin comvar:= 1; V(mutex) and
else
begin procuar[u}:: 1; V(mutex); P(prucsem[u}) end
Eend;
procedure select new comvar value;
begin integer 1i;
if operator priority then
begin operator prigrity:= false; comvar:= 3 end
else
begin for i:= 1 step 1 until N do
begin if procuar[i] =1 then
begin pra:var[i]:: ; comvar:i= 1;
V(procsem[i}); goto ready end
end;
comvar:= J;
ready: end

end;
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for loop:= 1 step 1 until N do
begin procuar[luop]:: 0; prccsem[loop}:: 0O end;

comvar:= O; mutex:= 1; operator priority:= false;

Darbegin
process 1: BEgin..iieeieeiriinnanenas. end;
process N: begin.eeeivervaserinnneas end;

message interpreter:

BEgiN.ssesvrasvvrcnsnnnaas end
parend

end

Here the n—th process will be of the form

pracess n: Bbegin
.

-

M message: M or Q entry(n);
Region 1: send M message;

P(mutex); select new comvar value; V(mutex);

LR

VN guestion:M or Q entry(n};

Region 2: asknum:= n;
send Q(n);

P(mutex); comvari= 2; V(mutex); P(procsam[n]};

Region 3: if DperaﬂSWEr[n} = 1 then Reaction 1

else Reaction 2;

[4/]
3
O awsess

When ths message interpreter decides to enter Region 6 it copies, before
doing so, the array "procvar": if an answer A4{i} should he aceceptable,
then "procvar[i] = 2" should already hold at the moment of annourmcement of

the answer.



walt:

EWD12% - &7

message interpreter:

begin integer i; integer array pvcopy[1:N];

P(incuming message ) ; P(mutex);

if comvar = 1 then

Region 4: begin operator priority:= true;

leave: V(mutex); goto wait end;

if comvar # 2 then goto Region &;

Regien 5: V(mutex); collect message;

if message % Al and message # A2 and message # A% then goto wait;

ir= asknumy

Aif message = Al then DperansWer[iJ:: 1 else

if message A2 then Dperanswerfi]:= 23

1l

P(mutex);

if message = A3 then procvar[i]:: 2 else

signal to i: V(prmcsem[i]);

preleave: select new comvar value; goto leave;

Regien 6: if comvar = O then comvar:i= 3;

for i:=1 step 1 until N do pvcopyl i Ji= proevar[i];

V(mutax); collect message;

if message = Ab then begin P(mutex); goto preleave end;

if message # A4(pr0cess number) and message # AS(process number) ther
goto wait;

i:= "process number given in the message";

if_pvcapy[i] £ 2 then goto wait;

Dperanswer[i]::.if message = A4 then 1 else 2;

P{mutex); procvar[i|:= O; gotg signal to 1

end

As an exercise we leave to the rsader the version, where pending requests
for Q1-guestions have priority over thoss for M-messages. As a next extension
we suggest 2 two console configuration with the additional restriction that
an A4- or Ab-message is only acceptable via the console gver which the conver-
sation has bzen initiated. {Otherwise we have to exclude simultaneous, contra—
dicting messages "A4(i)" and "A5(i)" via the two different consclss. The soluticn

without this restriction is left for the really fascinated reader.)
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5.2.2. Proving the Carrectress.

In this section title I have used the word “proving" in an informzl way.
! have not defined what formal conditions must be satisfied by a "legal
proof" and I do net irtend to do so. When I cam find a way te discuss the
program of section 5.2.1, by which I can convince myself —and hopefully
anybody else that takes the trouble to doubtl- of the correctness of the

overall performance of this aggregate of processes, I am content.

In the following "state picture" we make 2 diagram of al the states in
which a process may find itself "for any length of time", i.e. aoutside
sections, critical to mutex. In arrows we describe the transitions taking
place within the critical sections; accompanying theses arrows, we give the
modifications of comvar or the conditians, under which the transitian

from pne state to annther is made.

Calling the neutral region of a process before entry into a Region 1

or Region 2: "Region O", we can give the state picture

Region ©

procvar =

comvar O — 1§ comvar £ 0

procvar = 1

comvar — 1

Region 1 or 2

procvar = 0

Leaving Region 1 can be pictured as:

Region 1, procvar = Q

comvar 1 = 3 -1 t—0
operator procvar all procvar #£ O
priority 1 =0 X

Region 0, procvar = Q
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Leaving Region 2, with the possibility aof a delayed answer, can be pictured

as:
Regian 2, procver = O ]
I
L1—~2
waiting for answer, procvar = O
At, A2 A3
comvar 2 =3, 1, O comvar 2 =3, 1, 0

waiting for answer, procvar = 2

i T
' comvar Q,3 — C,1

i AL, AS

X Region %, pracvar = 0 ’

Reaction to the answer '

4

Region Q, procvar = O l

We can try to do the same for the message interpreter. Here we indicate
alang the arrows the relevant occurrences, such as changes of a precvar
and the kind of message, We use "WIM" as sbreviation for "Waiting for

Incoming Message".
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&

procvar 1 — 0
Region C — 1, 2

WIM
comvar = 1
no prierity

all procvar # 1

N
| fAegion ? —

. WIM
Region Q —
c9ton comvar = O
Region 1, 2 na priority
T
| message

message rejected

Region O
Region 4
=
WIM
comvar = 1
priprity
|- 3 —_
end of Regiaonm 2 end of Region 2 } HEQ%UH !
Region O
WIM WIM
camvar = 2 comvar = 2
no priority priority
mesgage A mesisage
Region 5 Region 5
camvar = 2 comvar = 2
no priority priority
Al, AZ, A% wIong Al, . wrong
Region 2 — message AZ, message
2, 3 AB; \L .
N
WIM

camvar = 3
mo priarity

message ~

\

Region 6
comvar = 3
no priority

wTong
message

A, A5 (Region 23, procvar 2 — O)
or A&
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These schemes, of course, teach us nothing new, but they may be a

pawerful =zid ir the program imspection.

We verify first, that "comvar = O" represents indeed the homing
position of the cammunication facility, i,e, available for either entrance
into Regien ! ar Region 2 (by cne of the pracesses) or entrance into
Region & (by the message interpreter, as result of ar incoming message

for which it is waiting).

If camvar = C and one of the processes wants to entsr Region 1 ar
Region 2, or a message comes from the operator, Region 1, 2 or € is entered;
furthermore this entrance is accompanied by either "comvar:= 1" or "comvar:= 3"
and in this way care is tsken of the mutual axclusion of the Regions 1, 2

and 6.

The mutual exclusion implies that processes may fail to enter Regiaon
1 or 2 immediately, or that am incoming message must be rejected, coming
at an inacceptable moment. In the first case, the process sets "procvar:= 1",
in the second case (in Region 4) the message interpreter sets "cperator

pricrity:= true".

These assignments are only performed under the condition "comvar # o,
furthermaore the assignment "ecamvar:= O" —only occurring in ths procedure
"select new comvar valus"- is only performed provided "nan operator priority
and all procvar f 1", From these two cbservations and the initial values,

we can conclude:

"comvar = O" excludes "operator priority" as well as the occurrence of one

or more "procvar = 1",

As all ends of accupation of the communication facility {(i.e. the
end of Region 1, 5 and 6) call "select new comvar value" we have established
a) that entrance into the Region 1, 2 and € is only delayed when necessary

b) that such a delay is guaranteed to be resolved at the earliest opportunity.

The structure of the message interpreter shows clearly that



EwD123 - 72

a) it can =xscute Region 5 only if "comwvar = 2"
b) it can only sxecute Region 5 if "comvar = 2"

C) execution of Region 5 is the only way to mske comvar again # 2.

The only assignment "comvar:= 2" occurs at the erd of Region 2. As
a result each Region 2 can only be followed by a Region 5 and, conversely,
each Region 5 must be preceded by a Region 2. This seguencing zllows us
to use the transmission variable "asknum", which is set in Region 2 and

inspected in Region 5.

For the uses of the transmission variables "operanswer" an an=logous
analysis can be made. Region 2 will be followed by Region 5 (see abave);
if here the final answer (A1 ar A2) is interpreted, Uperanswer[i} is set
before “V{procsem[i])", so that the transmission variable has been set
praperly before the process can (and will) enter Region 3, where its
"operanswer" will be inspected., If in Region 5 the answer A3 is detected,
the message interpreter set for this process "procvar[i}:: 2", thus allowing
once in Region § the answer A4 or AS for this process. Again "V{prucsem[i})”
is only performed after the assignment to operanswer. Thus we have verified
that
a) operanswer is only set once by the message interpreter after a request
in Region 2.
b) this ocperanswer will only be inspected in the following Region % after
the request to set it has been fulfilled (in Region 5 or Region ).

This completes the soundness of the use of the transmissicn variables

"aperanswer".

Inspection of the message interpreter (particularly the scheme of its
states) shows
a) that a rejectzd message (Regiun 4) sconer or later is bound to give
rise tc Region &
b) that wrong messages are ignored, giving the operator the opportunity

to correct.

By the above analysis we hope to have created sufficient canfidence
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in the correctness of our construction. The amalysis followed the steps
glready hinted at in section 5.2.1: after creation of the critical sections
(with the aid of mutex), the latter are ussd to sequence Regions properly,

thanks to which seguencing the transmission variables can be used unambiguously,

6. The Prohlem af the Deadly Embrace.

In the introductery part of this section I shall draw attenticn to a
rather logical problem that arises in the cooperaticn betwesn various
processes, when they have to share the same facilities. We have selected
this prablem for various reasons, Firstly it is a straightforward extension
of the sound principle that po two persons can use a single compartment of
a revolving door simultsnecusly. Seondly, its sclution, which I regard as
non~trivial and that will be given in section 6.1, gives us a nice example
of more subtle cooperation rules than we have met kbefore, Thirdly. it gives
us the opportunity ta illustrate (in section 6.2) a programming technique

by which a further gain in clarity can be achieved.

Let me first give an example of the kind of sharing I have in mind.

As "oprocesses" we might take "programs", describing some computational
process to be performed by a computer. Execution of such a computational
process takes time, during which information must be stored in the computer,
We restrict curselves to thoses processes of which is known in advance
1) the maximum demand on storage space and
2) that the computational process will end, -provided that storage space
requested by the process will be put at the disposal of the computational
process, The ending of the computational process will imply that its demand

on storage space will reduce to zero.

We assume that the available store has heen subdivided into fixed size
"pages" which, from the point af view of the programs can be regarded as

eguivalent.

The actual demand orm storage space, needed by a process, may be a function



EWD12% ~ 74

varying in time as the process preceeds -subject, of course, to the a priori
known upper bound. We assume that the individual processes reguest from
and return to "available store" in single page units. With "equivalence"
{see the last word of the previous paragraph) is meant that s process,

requiring 3 new page only asks for "a new page" but never for a special ane

ar one out of a special group.

We now request that a process, once initiated, will get the opportunity
~sooner or later— to complete its action and rejesct any organization in
which it may hsppen that a process may have to be killed half way its
activity, thersby throwing away the computation time already invested in

it.

If the computer has to perform the gdifferent processes ane after the
other, the only condition that must he satisfied by a process is that its

maximum demand does not exceed the total storage capacity.

If, however, the computer can serve mare than one process simultaneously,
one can adhers to the rule that cne only admits programs as long as the sum
of their maximum demands does not exceed the total storage capacity. This
rule, safe though it is, is urmecessarily restrictive, for it means that
each process effectively occupies its maximum demand during the complete
time of its execution. When we consider the following table (in which we

regard the processes as "borrowing" pages from avasilable stors)

process maximum demand present loan further claim

Pt 80 40 40

p2 6C 20 + 40
available store = 100 - 60 = 40

(a total store of 100 pages is assumed), we have a situation in which is
still rothing wrong. If, however, both process request their nex:i page and

they should bpth get it, we should get the following situation:

process maximum demand present loanr further claim
1 80 41 39
P2 60 2t + 39

available store = 100 - 62 = 38
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This is an unsafe situastion, for both processes might want to realize
their full further claim before returning a single page toc available store.
30 ezch of them may first need a further 39 pages, while there are only 38

available.

This situation, when one process can only ceontinue provided the other
one is killed first, is called "The Deadly EmbraceM. The problem to be solved
is: how can we avoid the danger of the Deadly Emhrace without being unrneces=-

sarily restrictive,

£.1. The Barker's Algorithm.

A banker has & finite capital expressed in florins. He is willing ta
accept customers, that may borrow florins from him on the follewing conditions.
t. The customer makes the loan for a transastion that will be completed
in a fimite period of time.

2. The customer must specify in advarce his maximum "meed" for florins
for this transaction.

3. As long as the "loan" does not exceed the "need" stated in advance,
the customer can increase or decrease his loan florin wise.

4. A customer may not complain, if he asks for amn incrzase of the

current loan and receives from the banker the answer "If I gave you the
florir you ask for you would not exceed your stated need and therefore you
are entitled to a next florin. At present, however, it is somewhat inconvenient
for me to pay you, but I promise to send you the florin in due time."

5. His guarantee that this moment will indeed arrive is founded on the
banker's cautiousness and the fact that his co-customers are subjected to
the seme condition as he: that as soon as a customer has got the flarin ke
asked for he will proceed with his transacticns at a mon-zero speed, i.=.
within a fipite period of tims he will ask for a next flarim or will return
a florin or will finish the tramsaction , which implies that his complete

loan has been returned (florin by floxin).

The primary guestions are
a) under which conditicns can the banker make the contract with a new

customer?
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5} under which conditions can the banker pay a (next) florin to a requesting

customer without rumning into the danger of the Deadly Embrace?

. N\ - . "
The armswer to gquestion a) is simple: he can accept any custamer, whose

stated need does not exceed the banker's capital.
To answer gquestion b} we introduce the following terminology.

The banker has a fixed "capital” at his disposal; sach new custamer

states in advance his maximum "need" and for each customer will hold

"need[i] < capital” (for all i.

The current situation for each customer is charactesrizad by his "laan®,

Eack loan is initially = O and shall satisfy at any instant

"0 < loan|i] =< need i]" (far all i).

A useful guantity to be derived from this is the maximum further "claim",

given by "claim[ij = need[i] - loan[i]" (for all i),

Finally the banker notes the amount in "cash", given by
"cash = capital - sum of the loanis".

Obviously "o S cash _<: capital"

has to hold.

In order to decide, whether a requested florin car be paid to the
customer, the banker sssentially inspects the situation that wauld arise
if he had paid it. If this situation is "safe", then he pays the florin,

if the situation is not "safe", he has to say: "Sorry, but ysu have to wait.",

Inspection, whether a situation is safe amounts to inspection, whether
gll customer transactions can be guaranteed to be able to finish. The algorithm
starts to investigate whether at least one customer has a claim not exceeding
cash. If so, this custamer can complete his transactions and therefare the
algarithm investigates the remaining customers as if the first are had finisbed
and returned its complete loan. Safety of the situation means, that all

transactions can be finished, i.e. that the banker sees a way of gettimg all
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his money back.

If the customers are numbered from 1 through N, the routine inspecting

a gituation carn be written as follows:

"integer free money; Boolean safe; Boolean array finish doubtful[1:N];

free money:= cashj

for i:= 1 step 1 until N do finisk doubtful{ili= true;
for 3:= 1 step ! until N do

begin if finish doubtful| i} and claim|i] < free money then
Lbegin it and = ¥y xhen
begin finish doubtful[i:= false;
free money:= free maney + loan[i]; gato L

end

end ;

if free money = capital then safe:= true else safe:= falge" .

The above routine inspects any situation. An improvement of the
Algorithm has been given by L.Zwanenburg, who takes into account that the
only situations ta be investigated are those, where, starting from a safe
situstion, a florin has beern tentatively given to custamer[j]. As soon as
"finish doubtful[j]::_ﬁg&gg" can be executed the algorithm can decide
directly on safety of the situation, for apparently this tempted payment
was reversiblel This short cut will be implemented in the program in the

next section.

6.2, The Banker's Algorithm Applied.

In this example, the florims are processes as well. {Each florin, say,
represents the use of a magnetic tape deck; the loan of a florin is then the

permission to use cone of the tape decks.)

We assume, that the customers are numbered from 1 through N and that the
florins are numbered from 1 through M. Each customer has a variable "flarin
number" in which, after each granting of a florin, it car find the number of
the florin it has just borrowed; also each flgrin has a variable "customer

number” in which it can find by which customer it has been horrowed.
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Each customer has a state variable "cusvar", where "cusvar = 1" means
"T am anxious to borraw." (otherwise "cusvar = 0}; each florin has a state
variable "flovar", where "flovar = 1" means "I am anxious to get borrowed,
i.ez. T am in cash." {otherwise "flovar = O"). Each customer has a binary
semaphore "cussem", each florin has a bimary semaphore "flaosem", which

will be used in the usual manner.

We assume that each florin is borrowed and returned upon customer indi-
cation, but that he cannot finish the loan of a florin immediately. After the
customer has indicated that he has no further use for this florin, the florin
may not be instamtaneously available for a next use. It is, as if the
customer can say to a borrowed florin "run home to the banker", The actual
loan will only be ended after the floris has indeed returnsd into cash: of its
return into the banker's cash it will signal the customer from which it came
‘via a customer semaphore "florin returned". A P-operation on this semaphore
should guard the customer for an inconscious overdraft. Before each flarin
request the customer will perfaorm a P-operation on its "florin returned”; the

initial value of "flgrin returned" will be "= need".

We assume that the constant integers "N and '"MY (:capital) and the
constant integer array "need" are declared and defined in the universe in

which the following program is embedded.

The procedure "try to give to" is made into a Boolean procedure, the
value of which indicates whether a delayed request for a florin has been
granted. In the florin program it is exploited that returning a florin may
at most give rise to a single delayed request now being granted. (If more than
one type of facility is shared under control of the banker, this will no longer
hold. Jumping out of the for loop +to the statement labeled "leave" =t the

end of the florinm program is thern not permissible.)
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begir integer array loan, claim, cussem, cusvar, florin number, florin

returned[1:N],

flosem, flovar, customer number[!:M];

integer mutex, cash, k;

Boolean procedure try te give to (j); value j; integer j;

begin if cusvar[j] = 1 then
begin integer i, free money;
Baplean array finish dDubtful[1:N];
free money:i= cash -~ 1;
claim[j]:: claim[j] -1 loan[j]:: lnan[j] +1;
for ir= 1 step 1 wntil N do finish doubtful[i]i= true;
LO:  for i:= 1 step 1 until N do
begin if finish doubtful[i] and claim[i] < free money then
begin 3f i # j then
begin finish doubtfuilil:= false;

free money:= free money + lnan[i];

gata L0

else

begin comment Here more sophisticated ways for

selecting a free fleri,m may be implemerted;

it= 0;

L1:  i:= i +1; if flovar[i] = O then goto L1;
florin number[j]:: i;
custamer number[i]:: jt
cusvar| j |:= 0; flavar[i]:= 0:
cashi= cash - 1;
try to give to:= true;
V(cussen[j]); v(flosem(i]); goto L2
end

end;
claim jJ:= claim[j] +1; luan[j]:: loan[j] = 1
End;

try to give to:= false;
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mutex:= 1; cash:i= M;

for ki=1 step 1 until N do

begin loan[k]:= 0; cussem[k Ji= 0; cusvar[k]:= 0; claim[k]:= need[k |;
florin returned[k |i= need[k ]

end;

for ki= 1 step ? until M da

begin flosem[k ]:= O; flovar[k]:= 1 end;

parbegin
customer 1: begiMieecesvessennnnrnnes end;
customer Ni begimevivecesssssacacnaas end;
flarin 1: beginsesssvensvsenvinenss end;

-
.
.

-

florin M begin......sivsiiiveveaanend
parend

end

In custamer "n", the request for a2 new florin consists of the following
sequence of statements:
"P{florin returned[n});
P(mutex);
cusvar[n]:: 1; try to give to (n);
Vimutex);
P(eussemn )" ;
after completion of the last statement "florin number[n]" gives the identity
of the florin just borrowed, the customer has the opportunity to use it and

the duty to return it in due time to the hanker.
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The structure of & fiorin is as follows:

florin m:

begin integer h;

start:P(Flasem[m]);
"Now "customer number[m]“ identifies the customer that has borrowed it.
The florin carm serve that customer until it has finished the task
required from it during this loan. To return itself to the cash, the

florin proceeds as follows:"

:laim[:ustnmer nuthI[m]]:: claim[customer number[m]] +1;
lcan[customer numher[m]]:: laan[customer number[mj] -1
flovar[m]:: 1; cash:= cash + 1;
V(florim returned[customer number[m}}};
for hi= 1 step 1 until N do

begin if try to give to{h) then goto leave end;

leave:V(mutex);

goto start
end
Remark., Raughly speaking a succesful loan can only take place whan two

conditions are satisfied; the florin must be requested and the florin must
be available. In this program the mechanism of cusvar and cussem is also
used (by the customer), when the requested florin is immediately available,
likewise the mechanism of flovar and flosem is also used (by the florin)
if, after its return to cash, it can immediately be borrowed again by a
waiting customer. This programming technique has bsen suggested hy C.Ligtmans
and P.A.Voarhoeve, and I mention it because in the case of more intricate
rules of cooperation it has given rise to a simplificatiorn that proved to
be indispensable. The underlying cause of this increase in simplicity it
that the dynamic way through the topological structure of the program no
longer distinguishes between an actual delay or not, just as in the case

of the P-operation itself.
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7. Conluding Remarks.

In the literature ome sometimes finds a sharp distirction between
"concurrent programming" -more than cre central processor aoperating an the
same job— and "multiprogramming"™ -a single processor dividing its time
between different jobs—. I have zlways felt that this distinction was
rather artificial and therefore cornfusing., In both cases we have, macros-
copically speaking, a number of seguemtisl processes that have to cooperate
with each other and our discussions on this cooperation apply equally well
to "eoncurrent pragramming® as to "multiprogramming™ or any mixture of the
two. What in concurrent programming is spread cut in space (c.q. equipment)
iz in multiprogramming spread out in fime: the two present themselves as
different implemerntations of the same logical structure and 1 regard the
development of a topl to describe and form such structures themselves, i.e.
independent of these implementational differences, as one of the major
contributiaons of the work from which this momograph has beern born. As s
specific example of this unifying train of thought I should like to mention
—for those that are only meekly interested in multiprocessors, multiprogram—
ming and the like— the complete symmetry bhetween a mormal sequential computer
on the one hand and its periferal gear on the other (as displayed, for instance,

in Section 4.3: "The Bounded Buffer").

Finally I should like to express, once more, my concern abgut the
correctness of programs, because I am not too sure, whether all of it is

duly reflected in what I have written,

1f I suggest methods by which we could try to attain a greater security,
then this is of course mere psychology than, say, mathematics. I have the
feeling that for the Human Mind it is just terribly hard to think in terms
of processing evolving in time and that our greatest aid in controling them
is by attaching meanings to the values of identified quantities. For instance,

in the program sectian ni:i 10
= H

LO: xi= sqrtx); ii= i = 1;
if i > C then goto LO"
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we conclude that the operation "x::sqrt(x)" is repeated ten times, but I
have the impression that we can do so by attaching to "i" the meaning of
"the number aof times that the operation "xi=sgrt(x}" still has to be re—
peated". (I know that in discussing program verificatien, Dr.P.Maur has
introduced the term "the general snapshot"; im all probability we have hers
a trivial example of it.) But we should be aware of the fact that such a
timeless meaning {a statement of fact or relation) is not permanently
correct: immediately after the execution of "x:=sgrt(x)" but before that of
the subsequent "i:= i — 1" the value af "i" is "one more than the number of
times that the operation "x:= sqrit{x)" still has to be repeated"”. In other
words: we have to specify at what stages of the process such a meaning is
applicable and, of course, it must be applicable in every situation where
we rely on this meaning in the reasoning that convinces us of the desired

cverall performance of the program.

In purely sequential programming, as in the above example, the regions
of applicability of such meanings are usually closely connected with places
in the program text (if not, we have just a tricky and probably messy pragram).
In multiprogramming we have seen —-im particular ir Section 5.2.1- that it is
a worth-while effort to create such regians aof applicability of meaning very
consciously. The recognition of the hierarchical difference between the
presence of a message and the message itself, here forced upon us, might give

a clue even to clearer uniprogramming.

For example. if I am married to ore out of ten wives, numbered from
1 thraugh 10, this fact may be represented by the value of a variable "wife
number", associated with me. If I may alsc be single, it is a commonly used
programmer's device to code the state of the bachelor as an eleventh value,
say "wife mumber = O". The meaning of the value of this variable then becomes
"If my wife number is = O, then I am single, otherwise it gives the number
of my wife." The moral is that the introduction of a separate Booclean variable

"married" might have been more honest,

We know that the von Neumann type machine derives its power and flexihility
fram the fact that it treats all words in store on the same footirmg. It is

often insufficiently realized that, thereby, it gives the user the duty to
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impose structure wherever recognizable,

Sometimes it is. It has often been quoted as The Great Feature of the
von Neumann type machine that it can modify its own instructions, but most
modern algorithmic translators, however, create an ohbject program that
remains in its entire execution fase just as constant as the original
source text. Instead of chactically modifying its awn instructions just
before or after thelir execution, creation af instructions and execution af
these instructians now occur in different sequencesd regions: the tramslation

fase and the exscution fase. And this for the benefit of us all.

It is my firm belief that in esach process of some complexity the
variables occurring in it admit analogous hisrsrchical orderings and that,
when these hierarchies are clearly recognizable in the program text, the
gain in clarity of the program and in- efficiency of the implementation
will be considerahle. If this monograph gives amy reader a clearer indication
of what kind of hierarchical ordering can be expected to be relevant, 1
have reached ane of my dearest goals. And may we not hope, that a confram-
tation with the intricacies of Multiprogramming gives us a clearer under-—

standing of what Uniprogramming is all about?



