14 June 1967 . EwD200 - 0

The variable size machine,

Classical programming is done for a fixed size machine. The fixed size machine
consists of a constant number of components -processors, peripherals, storage locations-
all with a permanent existence, an undeniable identity. The identity is reflected in
the addressing structure, which is unique ir both ways: each address noints to a
uniqu component and, conversely, each component is identified by a unique address,

Later on, I think, I shall call such an address " an identity index",

The classical uniprogrammer has the complete machine at his disposal; he has to
decide when comoonents will be used for what purpose, decisiaons that materialize via
the addresses as they occur in and are generated by his pnrogram.

In multiprogramming the situation is drastically different. If a number of
programs co-reside within the machine, it must be known at any instant of time which
part of the machine is at the disposal of which nrogram, in order to avoid a clash
of claims (to put it mildly),

For combinatorial reasons it is unacceptable that the programmer decides during
program construction which part of the machine will be claimed by his program. (If
s0, two independently conceived programs could both,say, claim the storane locations
from O through 1000, thus prohibiting concurrent executian,

To postpone the decision until the moment af program loading is slighly better,
but only slightly. It means that the program text indicates over which areas consecu-
tivity is needed, more general: what amount of freedom is given to the lonading program.
[f addresses -as they are in classical programming- are quantities upon which arithme—
tic operationsa are performed, the allncating algorithm will need consecutive areas
in core store and the ability to use qaps may be absent,

5lightly better still is the technique, in which the prograsmer claims kemaREMEZWR
a consecutive area of store but will address the locations with indices from 0 onwards,
indices to which at rumn time a base address will be added to transform the index inta
the MNKKE machine address. As long as the program only maenipulaies indices, this tech-
nique allows reallocations of store by shifting, an oprration that has tn he accompanied
by adjustment of the apnpropriate base address,

The abone change is significant: the program itself has a local terminology
in which to idenmtify storage locaticns, viz. the identity indices, thar are amnng
the subject matter of the process, viz, the abstraction from the actual storage area
used is performed so rigidly that indeed reallocation can be done in a safe and clear
way. In practice, this salution has a number of disadvantages, due to a lack of
refinement,

For one thing: the program is still executed by a fixed size machine, be it
that the size is set at the moment of program execution,

For another thing: apart from a private terminology in terms of which a program
can identify its private objects, there are common ohjects, such as library procedures
that should be identified as well. The mixture of such terminologies is & problem
for which, as far as [know, no satisfactory %X solution has heen found.

Finally, the identification by consecutive index values has two serious disad-
vantages. (On the one hand it forces the program to do it that way, on the ather
hand, the integers are so "neutral" that the way in which the program asks for its
information (by just stating the integer index value) is most unhelpful in the case
that the enviromnment has to implement it all with multilevel storage.

EWD2O0 - 1

What we are lonking for is a process structure that defines {and mndifies) the
size of the machine as the process continues. Furthermore we refquire that it¥ nresents
its "peeds" ~i.e. in the implementation of the variable size machine- in a useful
manner. Above aims have a clear technical aspect. Simultaneously we desire a lonically
satisfactory way in which lnocal and global terminolany can br mixed.

If you wish you can regard the variable sjze machine as a "lagircal interface"
between programs to be executed and implementing susyems, At present, hardware
extensions of a configuration tend to give rise to severe adaplations problems far
the software. It is urgently haped (and to some extent even expected) that the notion
of the variable size machine will contribute tn the solution of this vital problem.

Part of the consequences nf the nation of the variable Size machine is
that it redefines not only iis size, but also its structure, in the hope that the
implementation can make good use of it, (We shaal have to give a sharper definition
af the notion "structure", but logsely speaking the obvious way in which tn increase
implementation efficiency can always be regarded as the systemalic exploitation nf %
KXXKKR structure rather than the ad hoc exploitation of discovered cvambinatorial luck.)
One of the ways in which I hape to structure can be described as "desequencing”
and I plan to apply this both to data and PIOCesSsing.

I intend to apply it to date, i.e. instead of specifying storage as a linear
sequence -a vector of consecutive elements— the variable size machine mist be able
to comprise a number of wvectors. There is no question ahaut it, that the orogrammer
will henefit from this - he has a kind of "elastic memory” that salwes [for him at
least!) a number of allocation problems. Alsa the implementation shoold he able to
benefit from it, certainly as saon as multiple storage of different Yiwels is considere:
X (In the multiprogramming system considered we saw that first the proqrammer has to
fit his variables in a linear store and that thereafter the implementatinn has to

find a long, now consecutive storage area! That seems funny!)

A next point of desequencing is, that ! intend the variability of the size
also to apply to the number of nrocesses conceptually going on in paraliel. If the
program "roes in parallel” -at present we must be content with a loase terminnlogy,
IMXAKEXY [am sorry!- this shauld he reqarded as an invitation to allocate more
protessors, if available, !

In the previously considered example {(single vector and implicit base adiress
per program) each variable of a program has an identity inder and the identity indices
are the NE¥KXXXK quantities that have a semantic function within this prongram, The
actual address associated with it has no meaning within this program, it is an
"external" value, "anly" a consequence of the embedding (as given by the base addresses)
and it has only @ meaning with Tespect to the embedding. This is verv satisfactory.

As far as the system is concerned the values of the vector elemenis are nan-~inter-—
preted: the only thing the system does with these values is moving them arcund wben
the emebdding is changed. Also this is very BELXXRNEAX satisfactory,

Remark, Twice I have used the term "satisfactory" without stating explicitly
why. [think that ! shall return to this questinn in a later letter.

