EWD23T7 - O

A preliminary investigation into Computer Assisted Programming

This is a very tentative document on an effort to increase our programming
ability.

I feel that this problem will become very urgent: the programmer finds his
task in the field of tension between the available machines and the computations
we want to have performed by them. As available machines become more and more
powerful, mankind will become more and more ambitious in their applications and
programs will grow in size and complexity. It takes no great prophet to forecast
that in the years to come the mechanical execution of the program once it is there
will be the minar problem, whereas the major problem will be the process of
program compgsition itself,

1 accept that the intellectual effort needed to compose a program (measured
in some loose sense) is an increasing function of program length (measured in an
equally loase sense). The point is to what functional dependence we are aiming!

I accept a programming technique such that the effort needead is proportional to
the length. As long as we only have a programming technique such that the effort
needed is propartional to, say, length squared, we had better admit defeat. (I am
afraid current programming technigues are often even worse than that: sometimes I
suspect an exponential growth of the effort needed!)

Over the past ten years we have witnessed an explosive increase of our
programming ability as embodied by the advent of the so-called "hagher level
programming languages". Yet I have the feeling that they have done more to decrease
some rates of proportionality than to change the functisnal dependence itself. We
all know that the use of higher level programming languages made the construction
of larger pragrams feasible; but we also know that at a certain stage a praogram
written in a higher level programming language becames just as intricate as the
machine code programs aof ten years ago. When one hits ones head at the ceiling
it is a meagre consolation to know that it was at the ceiling of the next floor:
the pain is just the same!

In the past year 1 have done a number of experiments, They were non-mechanical
in the sense that I still viewed the programmer's task as producing a handwritten
program text. In other words: I have been looking for a mental discipline. As yet,
I do not regard these investigations as closed.

Amang ather things I have tried to behave, consciously, as "the ideal programmer"
as | saw him at that moment. Without recording the experiments in detail now, I
should like to give the core of some observations made.

First, the effort has been non—empty in the sense that I am appalled now
by programs I made only three years ago. (This is a very strong observation, for
among the appalling programs is the first one occurring for illuminating purposes(!)
in an introductory(}!) course on "Algorithms". At the time of writing =1 remember
quite well- I was delighted by its clarity!)

Second, the experiments have convinced me that "first making the program and
then debugging it" is like putting tha cart before the horse. The more I think about
"debugging" in this sense, the more hopeless it becomes; in actual fact it now
strikes me as a dead alley. And [am now much more in favour of a constructive
approach to the problem of program correctness, i.e, to contral the process of
pragram composition in such a way as to prevent bugs from entering the construction.

EWD237 - 1

I know that this goal strikes many as impossible to achieve, particularly those

who never tried it seriously. I will not deny that it is hard work -making a large
and complicated program will be hard work anyhowl=; my claim is that when ane makes
a conscious effort at it, it is more feasible than trying to get a program correct
when the problem aof correctness has been left to the debugging phase.

Third, I have ohserved that hy the time the program was completed, so was its
"documentation”, Here I use the term "documentation” in a completely infarmal sense,
as a guide to understanding the program, Approaching the program through this
documentation is reading the proof of its correctness,

Finally, the cbservation that even in the construction of very small programs
the production of this documentation (or should I say "prae-documentation" ta drive
the message home?) is already a very rewarding exercise, In the last year [have
taken oral examinations of the course "Introducticn into the Art of Frogramming®,
(The oral examinations took more of my time than the actual lecturing, but as far
as I am concerned the time has been well-spent, I got the feedback necessary to
improve the lectures; above that it gave me an opportunity for direct observation
of programmer's misbehaviour!) Lately, a student left open the boolean expression
controlling a repetition clause and he had not made the prae~documertation explicit,
neither in writing nor in his mind; when he had to fill in the correct boolean
expressiaon 1 saw him reading, statement after statement, the interior of the
clause five(!) times and then he filled in the boolean expression (Erroneuusly,
by the way), whereas two lines aof reasoning would have been sufficient. It was
a most convincing affirmation of my fear that many a programmer losses much time
and energy in trying to read the meaning of what ke has written.

Summarizing, I can state without exaggeration that a very promising discipline
is emerging; even when the project of Computer Assisted Programming does not
materialize, this line of thought will be pursued.

The purpase af this paper is to raise the question whether it is sufficient
to regard documentation purely as a human guide to the program or whether we must
try to regard it as an essential part of it, It is ‘mpassible to give a motivated
answer to the guestion "How" before we have an idea of the kind of benefits we hape
to derive from it,

Why is it so hard, at present, to force programmers to make the appropriate
prae-dogumentation? There is a historical reason: they have not been trained to
do so. There is a psychological reasan: they overestimate their powers and think
that they can do without it and experience the making of prae-documentation as an
additional burden, There is a practical reasan, justifying this latter point of
view; whatever documentation they prepare about the program they are making, it
remains a guide for humans and it cannot be mechanically used in the actual compo-
sition of the program (unless one regards an ALGOL-text as "documentation" about
the corresponding abject program).

The next remark is related to the fact that every large program will have
to exist in a number of versions. (A first version may be logically correct,
but its performance may be unsatisfactory; above that the demands made upon
it wil vary during its lifetime.)

The naive approach to this situation is that we must be able to modify
an existing program (prngram maintenancu); the task to be performed is then
presenied &s one of text manipulation.

EwWD237 - 2

I would like to approach this prablem from another angle and would like
to treat the task of program compositien and that of program modification as
essentially the same.

In the process of program composition many "small® decisions have to bs
taken: some of these decisions can be taken in.parallel (i.e, independent af
each nthar), other decisions must be taken one after the other (i.a. it is
the one decision that makes the other relevant). It is certainly the task of
the prae-documentation to record the intermediate stages. ’

If a program has to exist in two versicns I do not like to regard (tha
text of) the one as a modification of (the text of) the other, I should like to
relate them both to their common ancestor that (hnpefully!) accurs already in
the prae-documentation. The first intention is that the two versions share
their respective correctness proofs as much as possible; the second intention
is that they share mechanically as much as possible of the common (or "equal")
coding,

In making a program I want to regard the target program no langer as an
isolated object, I wish to treat it as a member of a structured class of
similar programs (either alternative programs for the same task or different
programe for similar taaks). And I wish to express this explicitly.

At firet sight this mey seem to impose a considerabls additicnal burden
on the shoulders of the poor programmer: instead of requiring the construction
of & single program we require at least the conception of a whole class of
programs. But I am not so sure. If you have to prove that the three perpendiculars
of a given triangle pass through one point, you prove it for any triangle! That
is what sbstraction does for you and abstraction permeatss the whole subject.
To have a specific computation performed one writes an algorithm that could
perform a whole class of computations and one proves theorems about the whole
class although finally perhaps only one of the class will be performed!

Similar remarks apply to the design process itself, which by its (or "our"!
very nature is a sequential one. At a certain intermediate stage one does nat
have an incomplete program that has to be completed to make sense, one has a
program that at a certain level of detail (or, viewing it from the.other side,
"at & certain level of abstraction") is complete and correct. As such one has
abstracted from the decisions that are still to be made!

Much of the programmer's wisdom will be reflected in the choice of programs
he includes in the class considered. As said before: later program modifications
should be anticipated already in the pras-documentetion which should already
contain a (hopafully) close ancestor for the next version. This is already now
@ vital part of the programmer's duty; a system of Computer Assisted Programming
may act as a reminder to this obligation.

I myst mention two other considerations that suggest that some form of
documentation about the progrem should be regarded as an integral part of it. At
present we feed the machine with programs and this is the bare minimum, because
the machine can execute & progrem "without understanding it". But as long as
only the bare program and nothing else is inside the machine we are faced with
two problems -already urgent now- that are pretty hopeless,

EWD237 - 3

The one problem is the design of a proper resction to a detected malfunctioning
of & piece of selfchecking machinery -parity check, say. We have no scale along
which to measure the size of the calamity: in our system the sffect of a machine
error may be confined to a single program or the system as a whole may derail.

I feel that the present asbsence of a grip on the structure of the computations
iz one of the main causes of the current failure to construct dual systems for
larger safety,

The second problem -one that attracts me much more than partial fault
recovery- is to modify a program while it is working. Although the need is
obvious we don't sven have the concepts in terms of which the problem can be
clearly stated.

To keep in mind that in future the computer itself may play an sctive (ar to
use the present OK terminology: "interactive”) role in the process of program
composition has the following motivation. If it does not materialize, it will
nevertheless be a constant reminder to lock for a formal method to give the
prae-documentation. Being rather verbal such & constant reminder will be very
useful, If it does materialize, there are many potential benefits, apart from
the final pruducf.

To start with, the system itself will be "a large, complicated program" and
it should assist in its own construction., A kind of logical bootstrapping. The
constructicn of the system itself will be the first testcase of the methods! A
next consideration is that using the system to construct itself will provide
in a nut shell the laboratory conditions for a program to be changed while it is
in action!

Finally, why should I try to do it? I think it safe to say that the relevance
af the project is beyond question, Then two gquestions remain: is no one ¢lse
already doing it and am 1 sufficiently equipped to try it? To get some kind of
answer to the first part of the gquestion I have pumped Brian Randell but as far
as he knew what he had seen of my approach seemed ta him rather unique, Industrial
cancern seems to center on a PERT-like speeding up of & specific design and an
the timely discovery {by simulation) where bottlenecks are to be expected in the
performance more than on a classification of the possible designs on account of
the degrees of freedom. Correctness proofs are certainly "in the air® (McCarthy,
Naur, Floyd, Hoare in "The Axiomatic Method"), to use them as guiding principle
in the process of program composition I have only seen by Floyd (“Assigning
Meanings to Programs"), but as far as I know, Floyd has no actual experience in
designing large programs,

This leaves the question "Why 17", I have, I think a claim to priority. I
quote myself (1962) "In particular I would require of a programming language that
it should facilitate the work of the programmer as much as possible, especially
in the most difficult aspects of his task, such as creating confidence in the
correctness of his program. This is already difficult in the case of a specific
program that must produce a finite set of results. But then the programmer only
has to show (afterwards) that if there were any flaws in his program they apparently
did not matter (e.g. when the converging of his program is not guaranteed beforehand),
The duty of verification becomes much more difficult once the programmer sets
himself the task of constructing algorithms with the pretence of general applicability,

EwWD237 - 4

But the publication af such algarithms is precisely onme of the important fields
af application for a generally accepted machine independent pragramming language.
In this connection, the dubious quality of many of the ALGOL 60 algorithms
published so far is a warning not to be ignored.,"

Then came the multiprogramming system in the asynchronous part of which the
design hac heen heavily influenced Ly correctness cancerns; and this to our great
advantage. In its connection three remarks are in order. First that the very high
Fame/publicity ratic can be taken as an indication that such an approach is (still)
fairly exceptional, Secand, that although this was not our primary aim, the approach
brought with it in a very natural fashion a fair amount of modularity (whatever
that may mean exactly). Finally, and this is now very important, that the final
product shows where we have failed: the last ~I would like to say: "extensive"-
production phase has been too primitive and the resulting system is monolithic.

It is an unmanageable, tnmodifiable program, not in principle but for the labour
involved. T feel that this is mainly the result of our manual production technique.
It is, I think, also caused by the fact that at the end our self-discipline failed
and we did not stick to our principles: at the lowest level —and there is so

much lowest levell~ we just programmed.

To the question "Why I?" I am inclined to answer the following., It is the
natural cansequence af my concerns over the last six or more years, extensive
experiences gained are relevant and, reviewinrg them, [am beginning to get a
feeling where 1 succeeded and where | failed, where and why,

Two final remarks about the possible scope of the praject. In my more
optimistic moments I do not exclude the possibility that the techniques will
evolve to such a point that I can trensform in a number of well understood
steps an interpreter for an algebraic language into 2 compiler for that same
language. If this turns out to be possible, the bootstrapping technique be-
comes more realistic. The second remark is that I may make the impression of
.reinventing flowdiagrams, Perhaps this impression is correct; there may be
a point in doing so! The technique of flowdiagrams has been conceived at a
time that programs were several orders of magnitude smalley than the programs
we have to meke now and may very well be in need of revision.

