EWD239 -~ Q

EWD239.html

Un trading storage against computation time.

In present day segquential computers we can distinguish two main components,
an active one (the processur) and a passive one (the sture). The active component
has the specific function to be fast, the passive one has the specific function
to be large. The following is written under the assumption that this functional
division is here to stay. (Persunally I feel that it is this functional division
thanks to which the reliable construction of both large and fast computers has
become possible.

From the point of view of the programmer storage space and computation time
are two distinct resources and I regard it as one of the responsibilities of the
programmer -rather than of the system- to allocate them, i.e. to divide the load
between them. It is to the consequences of this responsibility that the present
report is devoted. The'report is not devoted to technigues needed to estimate
the various loads, i.e. to give quantitative criteria to influence the programmer's
choice. 1t is devoted to the logical relation between the alternatives amang which
the programmer has the cheice.

I claim that the basic relation between two alternatives is given by the
following pattern.

Given & program asking regularly for the value "FUN(arg)" where "FUN" is a
given functian defined on the current value of one or more variables of the
state space called (together) Yarg".

In version A, only the current value of "arg" is stored and the value
“FUN(arg)" is cemputed whenever needed.

In version B, an additiaonal variable "fun" say, is introduced, whose sole
purpose is to record the value FUN{arg) for the current value of arg.

Where version A has
"argi=......." (i.e. assignment to "arg")
version B will have
"argi=......."; funi= FUN(arg)"
thereby maintaining the relationm
"fun = FUN{arg)" .
Where version A calls for "FUN(arg)", version B will call for the current value
af "fun".

There are two possible reasons to prefer version B above version A.
1) When the value of "FUN(arg)" is more frequently requested than assignments
to "arg" take place, version B requires less frequent computation time. (If
necessary, the technique can be refined by the introduction of a boolean
"fun up to date" indicating whether "fun = FUN(axg)" holds. Assignment to arg
is the
"argi=.......; fun up to date:= false™;

in this way ane can suppress superfluous computations of FUN(arg) as might be
generated by version B.)

2) Dften it is difficult to compute "FUN(arg)" from scratch for arbitrary
values of "arg", but is it much easier to compute the change of "FUN(arg)“

on account of the change of "arg". (often this consideration will be the VETY
bady of the algorithm, e.g. when FUN is defined in terms of a recurrence
relation; see the last example of EWDZ238, where "j" has to be taken as one aof
the arguments.)

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD239.html

EWD239 - 1

We shall now turn to an example with which we have played extensively.
Consider 32 positions arranged in a circle. Please make a program generating
all ways in which they can be filled with O's and 1's (one digit per pasitian)
such that the 32 guintuples of adjoining positions present the 32 possible
configurations of five bimary digits. Sclutions that can be mapped on each
other by rotation will be regarded as equivalent, the solutions are to be given
as strings of 32 digits with the five zeros leading and they have to be generated
in alphabetical order.

C.Ligtmans has shown that this cyclic problem is equivalent to the following
linear one. Fill a linear array of 36 positions with O's and 1's (one digit per
stition) such that the 32 quintuples of adjoining positions present the 32
configurations of five binary digits. (When the linear array contains a soclution
the sequence f¥bmed by the first four digits will be equal to the sequence
formed by the last four digits and as a result "the ring will close".) We
shall tackle the linear praoblem.

We introduce @ structured variable called "sequence" consisting of four
zeros followed by k bimary digits. When k=0 we call the sequence empty, when
k=32 we call the sequence full; k equals the numher of ways in which a quin-
tuple of five adjoining positiaons can be chosen in the sequence.

Furthermore we introduce a binary variable, called "candidate", representing
the value by which the algorithm seeks to extend the sequence. The operation
inverse to "extend sequence with candidate" is "take candidate from sequence",
by which the last digit is taken away from the sequence and is assigned to the
candidate.

The algorithm maintains the sequence in such a way that the sequence will
never contain two different quintuples presenting the same pattern of five
digits. The question "sequence extanedable with candidate" asks whether extensian
would not give rise to a sequence violsting the condition of different digit
patterns. We can make the following two remarks
1) As k equals the number of quintuples, as all guintuples on the sequence
must present different digit patterns and the number of different digit patterns
equals 32, k will satisfy "k < 32".

2) Whenever k=32 the sequence presents a solution of the linear problem and
gn account aof the equivalence established by Ligtmans the 32 leading digits of
the sequence present a solution of the circular problem.

We now give the structure of the backtracking pxekiem algorithm that prints
the solutions in alphabetical order

"set sequence empty; set candidate to zero;
repeat
if seguence extendable with candidate then
begin extend sequence with candidate; set candidate to zero;
if sequence full do print solutian
end
. else
begin while candidate set to one do take candidate from sequence;
set candidate to one
end
until sequence empty"

EwD239 - 2

The above has been described as "the structure" of an algorithm. Can we
regard it as "an algorithm"? I think we can.

The nine statements ("set sequence empty"; "set candidate to zero" etc.)
have to be regarded as names of instructions of the well-understood repertoire
(the primitive repertaira), "candidate" and "sequence" have te be understood
as coordinates of the state space.

What do we have to assume (or: to define?) about the operations and the
objects in order that this program makes sense? (1 apologize for this probably
impure guestion, for what is "making sense"? Nevertheless, I go on.)

Eandidate is a twa state object (the states being called "zero" and "one"
respectively), these states can be set and inspected.

Seguence is a finite state object.KEKK A unique state of this object is
called "empty", (Otherwise "set sequence empty" would be indeterminate.)

On a value pair seuence~candidate a boolean function "sequence extendable
with candidate" is defined; if thig function is true, the operaticn "extend
sequence with candidate" is defined, giving a new sequence, and "take candidate
from sequence" is then the inverse ocperation.

There is a boolean function "full" defined on the abject sequence; its
value on the empty sequence is irrelevant.

The object values that can be mace by further extension of the empty sequence
extended with a zeroc are scanned, whenever s value satisfying the criterion"full"
is met {a function of) it is printed.

We can regard a set of properties as the above .when more carefully defined-
as a set af axioms on objects and operatians and on this level they must be sufficient
to understand this program, ta prave that it ends, that it produces all values
satisfying "full" and all only once etc. On this same level WE Can make more
algorithms, in this sense we have "a real maching!! E.g.

Set sequence empty; set candidate to ZBTIC;
Af sequence extendable with candidate do
begin extend sequence with candidate;
repeat .
Af sequence extendable with candidate then
begin extend sequence with candidate; set candidate to zero;
Aif sequence full do print solution
end
Else
begin while candidate set to ane do take candidate from sequence;
take candidate from sequence;
if pon sequence empty do extend sequence with candidate;
set candidate to one
end

until seqguence empty
end

This program scans the object values that can be made by further extension of
the sequence value created by extending the empty sequence twice with a zero. My
question is: to what extent can we regard the particular example of the 36 positians
as a specific model, & representation? Or: can we regard the above "abstract algo-
rithm" as the abstracted ancestor of a wide class of backtracking algorithms?

And, if so, to what use?

EWD239 ~ 3

A discussion with J.M.Rutledge, IBM Research (16th July 1968) has convinced
me that the version at the bottom of EWD239 - 1 serves a purpose. Without mentioning
the quintuple prablem one can prove its correctness, provided

one gives the properties of the cperations and functions defined on ths
objects "candidate" and "sequence"
2) one gives a sharp definitions of the required behaviour, i.e. the .specifi-
cation. This is very encouraging and this is what I wanted.

To my regret I have to part from this version, because it will lead me
into difficulties that I should like to avaid. Let me sketch them.

The next step in my pracess would be the introduction of a canonical
state space in terms aof which all operations can be specified, particularly
the functions "full" and "sequence extendable with candidate". This I can do.
To make a more realistic pragram, I intend to define functions on this canonical
state space in order that I can use it to store "current values" as sketched
in EWD239 - 0.

Now one or two problems arise. I have to define a function on sequence and
candidate and the result is that I should like to introduce "extend sequence
with candidate and set candidate to zero", instead of "extend sequence with
candidate; set candidate to zerao" for, at the separating semicolon the new
functien is fairly meaningless. Also: in the statements

"while candidate set to one do take candidate from sequence;

set candidate to one"
we have a similar situation, not so much at the separating semivolon but in the
course af the repetition, Some of the new functions are "immaterial for some
time" and to impose upon the program the duty to keep these ¥¥X¥¥ tabulated
valuges up to date an such a microscopic level is irrealistic.

The next goal therefore is to give more levels, in such & way that functional
relationships that we want to introduce are guaranteed to hold at the semicolons
of a given level! (This will be the case anyhow: the relatioms do not hold at
the semicolons af the lavel making the adjustments.)

Rutledge has made a point: the fact that "candidate" is a twovalued
variable, the "seguence" has something to do with what they call the free
monoid on a binary alphabet can be concluded from the properties stated. Only
"full" and "seguence extendable with candidate" pin‘ the program down on the
quintuple problem. The moral of this remark is that no flexibility is lost
when we introduce the free manoid on this level, if it is only to define the
desired properties af the operations.

50 here we go again, this time very cautiously, for the time being not
bothering ourselves too much about the relation between successive versions.

The crudest version is
version O: "do all work" .

This, although corfect. is hardly helpfull, we cannot do much with it
either. Then comes

version 1; "generate all solutions"

EWD239 - 4

suggesting that a number (passibly zero) of "solutions" have to be generated.
The pumber must now he finite.

version 2: "generate all solutions in alphabetical order”.

This versiaon tells us more, it tells us that the solutions have an ordering
that is called alphabetical and that they have to be generated in this order.

version 3: "generate in alphabetical order all bit sequences that are solutiags "

Here we have told much more, we have said that we are looking for bitsequernces
in terms of which the alphabetical order can be defined. (We can take it for
granted that this restricts ourselves implicitly to finite bitsequences.)

We do not know whether there are solutions at all. We do not knaw a first
solution, also we do not recognize a last solutian when we encounter it, The
structure at the bottom side of EWD238 - 1 is therefore unattractive (containing
"transform current sequence to next solution".

We do know, however, a criterion "acceptable" (in cur example: containing
no quintuples presenting the same pattern) with the following properties
1) the set of acceptable sequences is not empty and finite
2) we know a first member of the set
3) we know 3 virtual last member af the set (for "wirtual" see below)
4) solutions are all acceptable sequences (axcluding the virtual Dne) satis-
fying @ further criterion "full"
5) we can transform an acceptable sequence intc the next one (next in
alphabetic Drder).

about virtual: if we are looking for the sequences with a zero leading, the
virtual last one weuld be the first acceptable sequence with a aone leading.
Alsp, if the first acceptable sequence is the empty sequence, the virtual
last one may again be the empty sequence.

We can now make the following program:

version 4:
set sequence to first acceptable ane;
repeat if sequence full do print solutiop;
transform sequence into next acceptable one
until sequence is (first or) last member

Remark: the first member is not subjected to the final test for the last
member, therefore this test needs only to distinguish between the last member
and the others, the first one excluded! There is no objection to the the first
one satisfying the test as well, but also no obligation; therefore "first or" .
has been put between parentheses.

We also know about the property "acceptable"that
6) no extension of a sequence that is not acceptable will be acceptable.

This property enables us to implement
"trnasform sequence into next acceptable ocne"
-knowing that its initial wvalue is indeed acceptable- as follows:

EWD239 - 5

section 4.1: transform sequence into next acceptable one:
"extend sequence with zera;
while non acceptable do concrease sequence"

The effect of the operation "concrease" is defined in the following way:
if the old sequence does not contain a zero the result is the empty seguence, if
the old sequence does contain a zero, the result is a copy of the old one up to
and excluding the last zero, extended with a one.

The present state is very encouraging, the important property 6 is
only exploited in a next level of detail, it is here that backtracking is
described, that the alphabetical order is catered foer.

{Few days later.)

I must apologize, for I am afraid that I have gone too fast. [am going to
modify version 4 of the previous page. The fact is that I have not expressed a
changed interpretation of the current value of sequence, I have not expressed
that the acceptable sequences fall into two different classes, those that are
solutions and those that are not. I try to remedy this by a new version 4:

set sequence to first acceptable ane;

repeat if sequence full do begin accept sequence as solution; print solution end;
transform sequence into next acceptable one

until sequence is {first or) last member

The transition from the old to the new version 4 is not striking, hecause
"accept sequence as solution” is in all probability an empty action. (For the
sake of completeness I mention that I have been hesitating between "print salution"
and "print seguence"; the statement "accept sequence as solutian” implies more

or less —is meant to indicate- that the two farmultations are equivalent.)

The transition is more marked when I give the new section 4.1 an top of
this page. In section 4 the sequence is always “acceptable", in section 4.1,
where we exploit the important property é of "acceptability" we consider for the
first time sequences that are nat guaranteed acceptable. I call them "doubtful":
a sequence is called doubtful when it is a one-digit extension of an acceptahle
sequence, property 6 tells us that when looking for acceptable seguences, we can
confine our attention {the machines attention!) to doubtful sequences.

With this definitior of doubtful, section 4.1, rew version, would be something
like

DU X 0 R X X A A X X 0 O O O X DO X2 3K X M MO R X X M K X

P XX QDX b X I XX X KK o R
"transform acceptable sequence into next doubtful one;

while doubtful sequence non acceptsble do

transform doubtful sequence into next doubtful one;
accept seguence as acceptable"

The purpaose of this new version is twofold. On the one hand it expresses

that only doubtful sequences are subjected to the test “acceptable", on the other
handit allows us to introduce different representations far doubtful and acceptable
sequences. The rules for doubtful sequences hold "at the semicolons" of this level.
The first statement makes from and¥MKEXRHXXXXHUMXXE acceptable sequence a doubtful
one, the last ane makes from a doubtful sequence an acceptable one. This allows us
to introduce for acceptable sequences a representation unfit for arbitrary doubtful
ones. I shall return to this later.

EWD239 - 6

Now I think that the time has come (experience makes me expect that I shall
regret it within a few pages!) to introduce what I have called "the canonical
state space" i.e. the variables that I need to pin the program down on the
specific problem, in this case the quintuple problem.

We introduce the integer k, satisfying 0 <k
and the array d, to represent the value of

sequence: "0 0 0 O d[0] ... dk]" .

Putting the zeros also in the array d and using the fact that k will satisfy k < 32
we can declare

array d[—4: 321.

In terms of these variables we can now give the bodies of the instructions
used in the middle of EWDR39 - §

set sequence to first acceptable one:

*d(-4 J:= d[~3]:= d[-2]i= d[-1]:= d[0]:= 0; k:= O

sequence full:
llk — 31 t

sccept sequence as solution:
P (e, empty statement)

print soelutian: .
"print the 32 leading elements of the array d" (I refuse here to go into
more detail)

transform seguence into next acceptable one , see below

sequence if (first Dr) last member:
"d[O] = 1" (only satisfied by the last member} ar
"k = O" (satisfied by first and last member),

For "transform sequence into next acceptable ore" we have a more detailed version
on the hottom of page EWD239 - 5, in which the criterion "acceptable"is mentiored.
In order to define it, we defire upon the seguence k+1 functiom values

h(i) ="binary value of bit sequence d[i-4]...d[i]" for 0 < i <k

and & sequence is called "acceptable" if all the k+1 values h(i) are different
{(this expresses the requirement that no two different quintuples present the same
bit pattern}.

At the semicolone of the detailing of "transform sequence inta next acceptable
one" the sequence is called "doubtful", i.e. a one digit extension of an acceptable
sequence. As only doubtful segquences are subjected to the test acceptable it is
sufficient to compare "h(k)" with the "h{i)" far i <k,

The next step in detailing now gives:

transform acceptable sequence into next doubtful one:
"ki= k + 15 dlk]|i= O"

doubtful sequence non acceptable:
"for all i, O <i <k holds: h(i) £ h(k)"

EwD239 - 7

A X0 K X D X KO XK
transform doubtful sequence into next doubtful ane:
"while d{k | =1 do ki=k = 1; d[k]i= 1"
(As a result of first and last member, the minimum value of k generated by this
operation will be = 0; the final assignment replaces a O by a 1.)

R X X D X KA I X M X X
accept sequence as acceptable:
"on (also empty statement).

Now at last we gat(to the subject of this report, trading storage against
camputation time. We have two alternatives, either we compute the functions h(i)
when we need them, or we tabulate them. Computing them wher we need them presents
itself as a further detailing of "dsubtful sesquence Jnon acceptable", we shall
investigate the conseguences of tabulating them.

For this purpose we introduce the
array H[O:32] and postulate that
Hi) = h(i) will hold for 0<i <k
but we have to state on which levels this will hold. It will certainly hcld for
the teweis outer level (the one of the acceptable sequences, middle of page EWD239 - 5)
[decide that it will also hold far the level of the doubtful sequences,

It implies an addition to a number of bodies
set sequence to first acceptable ane:
is extended with "H[O]:: on

transform acceptable sequence into néxt doubtful one:
is extended with "H[kJi= (2 * H[k=1]) mod 32"
(at this moment "k > 17 ig guaranteed to hold)

transform doubtful sequence into next doubtful one:
is extended with "H[k]:: H[k] +qn

In the above three extensions the particular choice for the quintuple pattern
characterizing function h(i} has found its deposit.

In terms of the tabulated values H[i] the analysis for "doubtful sequence
nan acceptable" would still require scanning. We can repeat the trick by tabulating
how often a value occurs in the sequence H[OJ....H[k].

This now can be done in two ways. We can introduce the
integer array times|0:31] such that for all J
times[j] = the number of times that the value j occurs among

RO H K]

Let us make this to hold for both acceptable and doubtful sequences. The
function is defimed on H and k, modifications are to be expected by the three
extensions just given and by modifications of k.,

The extension of "set sequence to first acceptable orme" is extended with
"times[o]:: 1; other valuss of times set to O"

The extension of "trnaform acceptable sequence into next doubtful one" is
extended with
"times[H[k]]:= times[H[k]] + 1n

EwD239 - 8

And the new version of "tramsform doubtful sequence into next doubtful one" becomes
"while d[k] do begin times[H[k]]:: times[H[k]J =15 ki= k = 1 end;
dlk]e= 1; times[H[k]]:= times[H[k] ~ 1; Wk]i= H[k] + 1; times H[k]]:=
times[H[k]] + v

KXXXXNXKXXKXNNKN&KHXXXN&X%&MX#X%NX
The test "doubtful sequence non acceptable" is now simply

"times[H[kJ]3> 1,

The introduction of the array times is somewhat awkward. One af the nasty
things is that its values are restricted to O and 1 and only "times[H[k]]" can
ever get the value = 2., And this is to be modified immediately,

Additions and subtractions from these elements are usually just setting to 1 or O.

Here we can use an alternative solution, we do not introduce the array
times, but the boolean array IN.

In the outer level (acceptable sequences)
XNBX&XMKEMXXKXX&KKEXKXK&M&EXXXKHXXNHXHKKKHK&HXHXKENHHKEE
IN[j] means "the value j cccurs (oncel) in the sequerce H[O]...H[k]"

In the inner level {daubtful seguences
IN[j] means "the value j oeccurs (once!) in the sequence H[O]...H[k-1]"

We now review all instructions.
set sequence to first acceptable one:
"d[-4 J:= d[~3]:= d[-2)i= dl-1]:z d[0]:= 0; k:= O;
H[O]:: Q; IN[OJ:: true; remaining elements of IN become false"

sequence full:
"k = 310 (unchanged)

accept sequence as salutian:
o (unchanged)

print scluticn (unchanged)
sequence is (first or) last member (unchaﬂged)

transfor acceptable sequence into next doubtful one
"ki= k + 15 dlk]i= 0; Hlk]i= (2 * H{k=1]) mod 32
(As the sequence changes from acceptable to doubtful, IN is left unchanged)

doubtful sequence nan acceptable:

"IN[H[k]

transform doubtful sequence into mext doubtful one:
"while d[k] =1 do begin ki= k - 1; IN[H[R]]:: false end;

dik]:= 15 H[k]:= HK] + 10
(Compare this with the top lines of this page!)

And finally "accept sequence as acceptable" that was empty until now, gets the form
IN[H[k]]:: true, on account of the changing definition,

By now I trust that my reader will have lost the various versions and his
way through them; this was somewhat intentional, Tt shows the need for a
clerical aid, a hierarchical assembler or possibly computer assistance!

