EWD268 - O

Structured Programming.

Edsger W.Dijkstra
Technological University
EINDHOVEN, The Netherlands

0. Introduction.

This warking document reports on experience and insights gained in programming
experiments performed by the author in the last year. The leading question was if
it was conceivable to increase our programming  ability by an order of magnitude
and what technigues (mental, organizational or mechanical) should then be applied
in the process of program composition. The programming experiments were undertaken
to shed light upon these matters.

!. Program size.

1.0) My real concern is with intrinsically large programs. By Mintrinsically
large" I mean programs that are large due to the complexity of their task, in contrast
to programs that have expladed (by inadequacy of the equipment, unhappy decisions,
poar understanding of the problem, etc.). The fact that, for practical reasons, my
experiments had thus far to be carried out with rather small programs did present
a serious difficulty; I have tried to avercome this by treating problems of size
explicitly and by trying te fing their consequences as much as possible by analysis,
inspection and reflection rather than by (as yet too expensive) experiments,

In doing so I found & number of subgoals that, apparently, we have to iearn
ta achieve (if we don't already know. haw to do that).

1.1) If a large program is a composition of N "program components", the confidence
level of the individual components must be exceptionally high if N is very large.
(If the individual components can be made with the probability "p" of being correct.
the probability that the whaole program functions properly will rot exceed

P=pN H
for large N, p must be practically equal to one if P is to differ significantly
from zera, Combining subsets into larger components from which then the whale
pragram is composed, presents as such no remedy: )

N N .

p /2 * p /2 still equals pN !)

As a consequence, the problem of program correctness (confidence level) was one af
my primary concerns.

1.2) The effort —be it intellectual or experimental- needed to demonstrate the
correctness of a program in a sufficiently convincing manner may (measured in some
loose sense) not grow more rapidly than in proportion to the program length
(measured in an equally loose sense), If, for instance, the labour involved in
verifying the correct composition of a whole program out of N program components
(each of them individually assumed to be correct) still grows exponentially with N,
we had better admit defeat.

1.3) Any large program will exist during its life-time in a multitude of different
versians, i.e. in composing a large program we are not so much concerned with s
single program, but with a whole family of related programs, containing alternative
programs for the same job and/or similar programs for similar jobs. A program
therefore should be conceived and understood as member of a family; it should be so
structured out of components that various members of this family, sharing components,
do not anly share the carrectness demonstration of the shared companents but also

af the shared substructure.



EWD268 - 1

So much for the large size af the individual programs and the large number
of (patential) members of their family.

2. Program correctrness.

2.0) An sssertion of program correctness is an assertion about the net effects of
the computations that may be evoked by this program. Investigating haw such
assertions can be justified, I came to the following conclusions.

2.1) The number of different inputs, i.e. the number of different camputations for
which the assertions claim to hold is so fantastically high, that demonstration of

2.2) By a number of people it has been shown that program correctness can he
proved. Highly formal correctness proofs have been given; also correctness proofs
have been given for "normal pragrams", i.e. not written with a proof procedure in
mind. As is to be expected (and nobody is to be blamed for that) the circulating
examples are concerned with rather small programs, and unless measures are taken,
the amount of labour involved in proving might well (c.q. will) explode with
program size.

2.3) Therefore, I have not focussed my attention on the guestion "How do we prove

the carrectness af a given program?" but on the questions "For what program structures
can we give correctness proofs without undue labour, even if the programs get large?"
and, as a sequel, "How do we make, for a given task, such a well-structured program?",
My willingness to confine my attentien to such "Well-structured programs” (as a

subset of the set of all possible pragrams) is based on my belief that we can find
such a well-structured subset satisfying our programming needs, i.e. that for each
programmable task this subset contains enough realistic programs,

2.4) This what I call "constructive approach to the problem of program correctness®
can be taken a step further. It is not restricted <o general considerations as to
what program structures are attractive from the point of view of provability: in a
rumber of specific, very difficult programming tasks I bave finally succeeded in
constructing a program by analysing how a praof could be given that a class of
computstions would satisfy certain requirements: from the requirements of the

proaf the program followed.

3. The relstion between program and computation,

3.0) Investigating how assertions about the possible computations (evolving in time)
can be made on account of the static program text, I have concluded that adherence
to rigid sequemcing disciplines is essentizal, so as to allow step~wise abstraction
from the possibly different routings. In particular: when programs for a sequential
computer are expressed as a lirmear sequence of basic symbols of a programming
language, sequencing should be eontrolled by alternative, conditional and repetitive
clauses and procedure calls, rather then by statements transferring control to
labelled points.,

3.1} The need for step—wise abstraction from local sequencing is perhaps most

convineingly shown by the following demonstration.
Let us consider a "stretched" program of the form

"Syi Sy5 eee 3 S (1)

and let us introduce the measuring convention that when the net effect of the
execution of each individual statement 5, has been given, it takes N steps of
reasoning to establish the correctness of program (1), i.e. to establish that the



EWD268 - 2

cumilative net effect of the N actions in succession satisfies the requirements
imposed upon the computations evoked by program (1).

For a statement of the form

"if B then 51 glse 52" (2)

were, again, the net effect of the execution of the constituent statements 5. and
52 has been given, we introduce the measuring convention that it takes 2 steps of
reasaning to establish the ret effect of program (2), viz. one for the case B and
one for the case non B. -

Consider now a program of the form

"if B, then S . else S

127

f‘ .

B2 then 521 elge 522,

. " .
if BN then SN1 else SN2 (3)

According to the measuring convention it takes 2 steps per alternative
statement to understand it, i.e. to establish that the net effect of

"if B, then 5., eise 5. "
L/ i i i2

1
is equivelent to that of the execution of an abstract statement 5, . Having N such
alternative statements, it takes us 2N steps to reduce pragram L3i to one of the

form of program (1); to understand the latter form af the program takes us another

N steps, giving 3N steps in toto.

If we had refused to introduce the abstract statements 5. but bad tried to
understand program (3) directly in terms of executions af the étatements S.., each
such caomputation would be the cumulative effect of N such statement executigns and
would as such require N steps to understand it. Trying to understand the algorithm
in terms af the 5. _, however, implies that we have to distinguish between 2 different
routings through the program and this would lead to N*2° steps of reasoning!

I trust that the above calculation convincingly demonstrates the need far the
introduction of the abstract statements S.. An aspect of my censtructive approach
is not to reduce a given pragram (3) to an abstract program (1), but to start
with the latter.

4. Abstract deta structures.

4.0) Understanding a program camposed from a modest number of abstract statements
again becomes an exploding task if the definition of the net effect of the constituemt
statements is sufficiently unwieldy. This can be overcome by the irmtroduction of
suitable abstract data structures. The situation is greatly analogous to the way

in which we can understand an ALGDL-program operating on integers without having

to bother abaut the number representation of the implementation used. The only
difference is that now the programmer must invent his own cancepts (analogous to

the "ready-made" integer) and his own operations upon them (analogous to the "ready-
made™ arithmetic Dperatiuns).

4.1) In the refinement of an abstract program (i.e. composed from abstract statements
operating an abstract data structures) we observe the phenamenon af "joint refinement".
For abstract data structures of a given type a certain representation is chosen in
terms of new (parhaps still rather abstract) data structures. The immediate consequence
of this design decision is that the abstract statements operating upon the original
abstract data structure have to be redefined in terms of algorithmic refinements
operating upon the new data structures in terms of which it was decided to represent
the ariginal abstract data structure. Such a joint refinement of data structure and
assaciated statements should be an isolated unit of the program text: it embodies

the immediate consequences of an (independent) design decision and is as such the
natural unit of interchange for program modification. It is an example of what I

have grown inte calling "g pearl".



EWD268 - 3

5. Programs as necklaces strung from pearls.

5.0} I have grown to regard & program as an ordered set of pearls, a "necklace".
The top pearl describes the program in its most abstract form, in all lower pearls
one or more concepts used above are explained (refinad) in terms af concepts to

be explained (refined) in pearls below it, while the bottom pearl eventually
explains what still has to be explained in terms of a standard interface (:machine).
The pearl sesms to be a natural program module,

5.1) As each pearl embodies a specific design decision (or, as the case may be, a
specific aspect of the ariginal problem statement) it is the natural unit of inter—
change in program modification (or, as the case may be, program adaptation %o a
charge in problem statement).

5.2} Pearls and necklace give a clear status to an "incomplete program", consisting
of the top half of a necklace: it car hbe regarded as a complete program to be
executed by a suitable machine (of which the bottom half of the necklace gives a
feasible implementation). As such, the correctness of the upper half of the necklacs
can be established regardless the choice of the bottom half.

5.3) Between two successive pearls we can make a "cut'" which is a manual for a
machine, provided by the part af the necklace below the cut and used by the program
represented by the part of the necklace shove the cut. This manual serves as an
interface between the two parts of the necklace. We feel this form of interface
more helpful than regarding data representation as an interface betwesn operations,
in particular more helpful towards ensuring the combinatorial freedam required for
program adaptation.

5.4) The combinatorial freedom Jjust mentioned seems to be the only way in which

we can make a program as part of a family or "in many (potential) versions" without
the labour involved increasing proportional to the number of members of the

family. The family becomes the set of those selections from a given collection aof
pearls that cam be strung into a fitting necklace. '

6., Concluding remarks,

6.0) Pearls in a necklace have a sirict logical order, say "from tap to bottom".
I would like to stress that this order may be radically different from the order
{(in time) in which they are designed.

6.1} Pearls have emerged as program modules when I tried to map upon each other
as caompletely as possible, the numerous members of a class of related programs,
The abstraction process involved in this mapping turns out (rot amazingly, as an
afterthought!) to be the same as the one that can be used to reduce the amount of
intellectual labour involved in correctness praafs. This is very encouraging.

£.2) As said before, the programming experiments have been carried out with relatively
small programs. Although, personally, I firmly believe that they show the way towards
more relisble composition of really large programs, I should like to stress that as

yet I have no experimental evidence for this. The experimental evidence gained sa

far shows an increasing ability to compose programs of the size I tried. Although

I tried to do it, I feel that I have given but little recognition to the requirements
of program development such as is needed when one whishes to employ a large crowd; I
have no experience with the Chinese Army approach, nor am I convinced of its virtues.

August 1969



