EWD302 ~ 0

Design considerations in more detail.

Preceding sections -in particular "A first example of step-wise program
composition." have evoked the criticism that [have oversimplified the design
process almost to the extent of disheonesty; I don't think this criticism fully
unjustified and to remedy the situation I shall treat two examples in greater
detail. The first example is my own invention; I have tried it out in a few oral
examinations and finally I have used it at the end of my course "An Introduction
into the Art of Programmiﬁg" in the classroom. I pased the problem to an audience
of fifty students and together, with me as leader of the discussion, they solved

the problem in 90 mirutes.

We consider a character set consisting of letters, a Space(sp) and a point{pnt).
Words consist of one ar more, but at most twenty letters, An input text consists
of one or more words, separated from eachother by one or more spaces and terminated
by zero or more spaces followed by & point. With the character valued fumction
RNC (Read Next Character) the input text should be read from and including the first
letter of the first words up to and.ircluding the terminating point. An output
text has to be produced using the primitive PNC(x) (i.e. Print Next Eharacter)
with s character valued parameter, If the function of the program were to copy
the text, the following program would do (assuming character valued variables

at our disposal)

char x;

repeat x:= RNC; PNC{x) until x = pnt

In this example, however, the text is tg be subjected to the following
transformation:

1) in the output text, successive words have to be separated by a single
space

2) in the output text, the last word has to be followed by a single point

3) when we number the words G, 1, 2, %, ... in the order from left tao
right (i.e. in which they are scarned by repeated evaluation of RNC), the words
with an even ordinal number have to be copied, while the letters of the words

with an odd ordinsl number have toc be printed in the reverse order.

For instance {using " " to represent a space) the input text

"this__ is__a_silly program_ ."

../transcriptions/EWD03xx/EWD302.html

EWD302 - 1

has to be transformed into

"this_si_a yllis_program." .

My reader is cordially invited to try this program himself, hefore reading
on and to record his considerations so as ta emable himself to compare them with

the sequel. (It should take an experienced programmer much less than 90 minutes!)

The unknaown length of the non—empty input text suggested a program of the

structure

prelude;
repeat something until ready;

coda

but immediately this guestion turned up: "With how much do we deal during a single
executian of "something"?". Four suggestions turned up:
1) a single character of the inpuf text

) a single character of the output text
3) a word (af both texts)
4}

two successive words (of both texts)

The first two suggestions were rejected very quickly and without much
explicit motivation, although —or because?— it is not too difficuli to provide
it., {The first ome is unatiractive because the amount of output that can be
produced an account of the next character of the input text varies wildly; for
the second suggestion a similar objection holds. Apart from that, a prbgram with
2 loop in a loop is in gereral cleaner: this suggests to laook for larger portions.)
The audience rejected the fourth suggestian on account of the remark that the
terminating point could come egqually well after an even number of words as after
an odd number of words. To make the selection of the third suggestion explicit, we

wraote on the blackboard:

prelude;
repeat process next word wuntil point read;

cada

Everyone was satisfied in as far as this program expresses neatly that the

output words are dealt with in exactly the same order as the corresponding input

words are read, but it does not express that half of the words are to be printed

EwD302 - 2

in reverse order. When this was pointed out to them, they quickly introduced a
state variable for the purpose. A first suggestion was to count the number of
words processed and to make the processing depsndent on the odd/eveness of this
count, hut & minor hesitation from my side was enmough for the discovery that a
boolean variable would meet the situation. It was decided that the "prelude"

hould includ
shou include "forward:= true"

while in "process next word" the printing in the order dependent on the current

value of "forward" should be followed by

"forward:= non faorward" .

For me it was very gratifying to see that they introduced the variable
"forward" before bothering ashout the details of ward separation, which then became
their next worry. It took them more time to realize that a further refirement of
"process next word"” required exact specification of which characters of the input
text were going to be read and which characters aof the output text were going to
be printed at =zach execution of the repeatable statement. In fact, 1 had to pose
the question to them and, after having done so, I asked them in which of the two
texts the grouping presentéd itself most naturally. They selected the ocutput text

and chose the follawing grouping (indicating separation with a vertical bar):
|this_|si_{a_|yllis_|pragram. |

i.e. ir units of a word followsd by a proper terminator. I then asked for the
corresponding grouping of the input characters. When their attention had besn
brought to the terminators, they suggested (from right to left!} the following

separation of the input characters:
this___i|s__a|_s|illy__plrugram__.I s

as saon as one of them had remarked that the program could only "know'" that an
output word should be followed by a space after having "seen" the first letter

of the next input word. I then remairmed silent, leaving them gazing at their
grouping of the symbols until one of them discovered that the exceptional grouping
of the characters of the first input word was inelegant, that the grouping should

be t hisq“_i‘s__al_siilly__p ragram__. ’

i.e. that the first character of the first word should be read in the prelude.

Anocther variable was introduced and we arrived at

EWD302 - 3

boolean forward; char x;

forward:= true; x:= RNC;

repeat procéss next word;
forward:= non forward

until x = pnt

in which the second line represents the prelude; in the meantime it had been

decided that the coda could be empty.

The above stage had been reached after the first 45 minutes and we had our
interval for coffee. Fersonally I felt that the problem had been solved, that from
now onwards it was just a matter of routine; as it turned out, my audience was not

practised enough and it took another 45 minutes ta complete the program.

Unanimously they decided to introduce a

char array :[1:20]

to store the letters of the word. (Na one discovered that reading the letters and
printing them in the reverse order could be done by a recursive routine!) Essentially,
four things have to be done: the letters of the word have to be read, the letters

of the ward have to be printed, enough has to be read to decide which terminator

is to be printed and the terminator has to be printed. I did not list these four
actions, [did not ask for an explicit decisien on how to group and/or cambine

them. The audience decided that first all reading should bhe done and thereafter

all printing. (From their side this was hardly a conscious decision.)

Trying to refine the reading and the printing process they hit an unsuspected
barrier: they were —at least for me: surprisingly~ slow in discovering that they
still had to define an interface between reading and printing through which to
transmit the word to be processed, no matter how obvious this interface was. It
took a long time before anyone formulated that c[i] should equal the i~th character
of the word when read from left to right. Perhaps half of the audience was wondering
what all the fuss was about, but it took an equally lang time to discover that the
length af the word needed some form of representation as well. No one suggested to
do this by storing a terminator, they introduced a separate integer "1", counting
the number of letters of the word., They decided that the first word "“this" should

be represented by

:[1] = ", c[2] = "h", c[3] = "in, c[4] ="s" andl=4 .

EWD302 - 4

They still had difficulty in arriving at the reading cycle and it was only
when I had said repeatedly "so we have decided that "1" is going to represent the
number of letter of the word stored in the array" that they arrived for the beginning

of the reading process at

Li= O;
repeat li= 1 + 1; c[l]:: xj 3= RNC until x = sp or x = pnt .

(In the first draft "or x = pnt" was missing, but this was remedied quickly.) Once
this was on the blackboard they completed the reading process withaut much

hesitation:

while x = sp do x:= RNC .

When we turned our sttention to the printing process, they were more
praductive. Clearly the reading process had shown them the purpase of the interface
and suggestions came from various sides, I had never described the dilemma to them
{see EWD249 ~ 31), whether to code an alternative clause selecting between two
repetitions or a repetitive clause repeating an alternative statement. I was
waiting for the dilemma to turn up, it came and I showed it te them. Them I had
a surprise, for one of the students suggested to map the two loops on eachother with
the aid of more variables. We introduced three integers "k, inc, term" and the

printing of the letters became

if forward then begin k:= O; inci= +1; term:= 1 end
else begin k:i= 1 + 1; inci= -1; term:= 1 end;

repeat ki= k + inc; PNE(c[k]) until k = term

followed by

if x = pnt then PNC{pnt) else PNE(sp).

Thus we arrived at the following program:

boolean forward; char x; char array C[1:20]; integer 1, k, inc, term;

forward:= true; x:= RNC;
repeat li= O
repeat l:= 1 + 1; c[l]:: x; xt= RNC until x = sp or x = pnt;

while x = sp do x:= RNC;

EwWD302 - 5

if forward then begin k:= 0; inci= #1; term:= 1 end
else begin k:=1 + 1; inc:= ~1; term:= 1 end;

repeat ki:= k + inc; PNE(c[k]) until k = term;

if x = pnt then PNC{pnt) else PNC(sp);

forward:= pon forward

until x = pnt .

This section has not been included because the problem tackled in it is very
exciting, On the contrary, I feel tempted ta remark that the problem is perhaps too
trivial to act as a good testing ground for am orderly approach to the problem of
pragram composition. This section has been included because it contains a true
eye~witness account of what happened in the classroom, It should ke interpreted
as a partial answer to the question that is often posed to me, viz. ta what extent
[can teach programming style. (I never used the "Notes on Structured Frogramming"
-mainly addressed to myself and perhaps to my colleagues— in teaching. The classroom
experiment described in this section took place at the end of a course entitled
"Introduction into the Art af Programming", for which separate lecture notes -with
exercises and all that— were written. As at the moment of writing the students
that followed this course have still to pass their examination,it is for me still

an open question how successful I have been. They liked the course, I have heard

that they described my programs as "logical poems", sa I have the best of hopes.)

EwWD302 -~ 6

The problem of the sight queens,

This last section is adapted from my lecture noctes "Introduction into the
Art of Programming". I owe the example -as many other good ones=~ to Niklaus Wirth.

This last section is added for two reasans.

Firstly, it is a second effort to do mare justice to the process of invention.
(As a matter of fact I start where the student is not familiar with the concept

of backtracking and aim at discovering it as I go along.)

Secondly, and that is more important, it deals with recursion as a programming
technique. In preceding sections {particularly in ™0n a program model") I have
reviewed the subroutine concept; there it emerged as an embodiment of what I
have also called "operational abstraction". In the relation between main program
and subroutine we can distinguish quite clearly two different semantic levels. On
the level of the main program the subroutine represents a primitive action; on
that level it is used on account of "what it does for us" and on that same level
it is irrelevant "how it works". On the level of the subroutine body we are
concerned with how it works but can —and should- abstract from how it is used.

This clear separation of ths two semantic levels "what it does" and "how it works"
is denied to the designer of & recursive procedure. As a result of this circumstance
the design of a recursive routine requires a different mental skill, justifying the
inclusion of the current section in this manuscript. The recursive procedure has

to be understood and coqceived an a single semantic level: as such it is more like

& sequencing device, comparasble to the repetitive clauses,

It is requested to make a program generating all canfigurations of eight
queens on a chess—board of B*8 squares such that no queen can take any of the
others. This means that in the configurations sought, no two gqueens may be on the

same row, on the same column or on the same diagonal.

We don't have an operater generating all these configurations, this operator
is precisely what we have to make. Now there is a very general way {cf. "On

grouping and sequencing"} of tackling such a problem, which is as follows,

Call the set of canfigurations to be generated: set A. Look for a set B of

configurations with the follewing properties:

EWD302 - 7

1) set A is a subset of set B
2) given an element of set B it is not too difficult to decide whether it
belongs to set A as well

%) we can make an operator generating all elements of set B.

With the aid of the generator (%) for the elements of set B, =11 elements of
set B can then be generated in turn; they will be subjected to the decision
criterion (2) which decides whether they have io be skipped or handed over, thus
generating elements of set A. Thanks to (1) this algorithm will produce all

elements of set A.

Three remarks ars in order,

1) If the. whole approach is to make sense, set B is not identical to set A,
and as it must contain set A as a (true) subset, it must be larger than set A. For
reasons of efficiency, bowever, it is advised to choose set B "as small as possible":iy
the more elements it has, the more elements of it have to be skipped on account of
the decision criterion {2).

2) We should look for a decision criterion that is cheap to apply, at least
the discovery that an element of B does not belong to A should {on the average)
be cheap. Also this is dictated by efficiency considerations, as we may expect
set B to be an order of magnitude larger than set A, i.e. the majority of the
elerents of B will have to be rejected.

3) The assumption is that the generation of the elements of set B is easier
than a direct generation of the elements of set A. If, nevertheless, the generation
of the elements of set B still presents difficuities, we can repeat DU¥ pattern of
thinking, re-apply the trick and look for a still larger set C of configurations
that contains B as a subset etc. (And, as the careful reader will ohserve, we shall

do so in the course of this example.)

Above we have sketched a very general approach, applicable to many, very
differert problems. faced with a particular prablem, i.e. faced with a specific

set A, the problem of course is what to select for our set B.

In a moment of optimism one could think that this is an easy matter, as we
might consider the follawing technigue. We list all the mutually independent
conditions that our elements of set A must satisfy and omit one of them. Sometimes
this works but as & general technigue it is tao naive: its shortcomings become

apparznt when we apply it blindly to the prablem of the eight queens. We can

EWD302 - 8

characterize our solutians by the two conditions
1) there are 8 gueens an the board

2) no twa of the queens can take eachother,

Omitting either of them gives for set B the alternatives
Bi: 81l configurations with N gqueens on the board such that no two gueens can
take eachother

B2: all configurations of 8§ qgueens on the board.

But both sets are so ludicrously huge that they lead to utterly impractical

algorithms. So we have to be smarter. The burning question is: "How?".

Well, at this stageluf our considerations, being slightly at a loss, we are
not so much concerned with the efficiency of our final program as with the
efficiency of our own thought processes! So, if we decide to make a list of
properties of solutions, in the hope of finding a useful clus, this is a rather
undirected search and therefore we should net invest too much mental energy in
such a search, that is: for @ start we should restrict ourselves te their shvious

properties.

(I gave the puzzle as a sobering exercise to one of the staff members of the
Department of Mathematics at my University, because he expressed the apinien that
programming was easy. He violated the above rule and, being, apart from a pure,
perhaps also a poor mathematician, he started to laok for interesting, non-obvious
properties, He conjectured that if the chessboard were divided in four'squares of
4*4 fields, each sguare should contain two queens, and then he started to prave this
conjecture without having convinced himself that he could make good use of it, He
still has not solvad the problem and, as far as I know, has not yet discovered

that his conjecture is false.)

Well, let us go ahead and let us list the obvious properties we can think of.
a) No row may contain more than one queen, 8 gueens are to be placed and the
chessboard has exactly 8 rows. As a result we conclude that each row will contain
precisely cne queen.
b) Similarly we conclude that each column will contain precisely one queen,
c) There are 15 "upward" diagonals, each of them containing at most one queen,
i.e. 8 upward diagonals contain precisely one queen and 7 upward diagonals are

empty.

EWD302 ~9

d) Similarly we conclude that 8 downward diagonals contain precisely one gueen
and 7 are empty.

E) Given any non—empty configuration of queens such that no twa of them can
take eachother, removal of any one of these queens will result in a configuration

sharing that property.

Now the last property is very important. {To be quite honest: here I feel
unable to buffer the shack of invention!) In our earlier terminclogy it tells us
something about any non-empty configuration from set Bl. If we start with a
soluticn (which is an 8-gueen configuration from set B1) and take away one queen
we get a 7-queen configuration from set BY; taking away a next queen will leave again
a canfiguration from set B! and we can repeat this process until the chessboard
is empty. We could have taken a motion picture of this process: playing it back
backwards it would show how, starting from an empty board, via configurations
from set B! that solution can be built up by adding one queen at a time. (Whether
the trick of the motion picture played backwards is of any assistance for my
readers is not for me to judge; I enly mention it because I know that such devices
help me.) When making the picture, any solution could be reduced to the empty
board in many ways, in exactly the same number of ways —while playing it backwards-—
gach solution can be buil£ up. Can we exploit this freedom? We have rejected set
Bt because it is too large, but maybe we can find a suitable subset of it, such
that each non—empty configuration of the subset is a one~queen extension of only
one other configuration of the subset. The "extension property" suggests that we
are willing to consider configurations with less than 8 queens on the board and
that we would like to form new configurations by adding a gueen to an‘existing
canfiguration -a relatively simple operation presumably. Well, this draws our
attention immediately to the generation of the elements of the (still mysterious)
set B, For instance, in what order? And this again raises a question to which, as
vet, we have not paid the slightest attention: in what order are we to generate
the solutions, i.e. the elements of set A? Can we make a reasonable suggestion
in the hope of deriving a clue from it? (In my experience such a question about
order is usually very illuminating. It is not anly that we have to make a
sequential program that by definition will generate the solutions in some order,
so that the decisian about the order will have to be taken at some stage of the
game. The decision about the order usually provides the clue to the proof that

the program will generate all solutions and each solution only once.)

Prior to that we shauld ask ourselves: how do we characterize solutions once

EWD302 - 10

we have them? To characterize a solution we must give the positions of 8 queens.
The gqueens themselves are unordered, but the rows and the columns are rot: we may
assume them to be numbered from O through 7. Thanks to property a) which tells us
that each row contains precisely one queen, we can order the queens according to
the number of the row they occupy. Then each configuration of 8 queens can be

given by the value of the integer array x[0:7], where

x[i] = the number of the column occupied by the gqueen in the i-th row.

Each solution is then a "8-digit word" (x[O]...x[7]) and the only sensible
order in which to generate these words that I can think of is the alphabetical

order.

(Note. As a conéequence we ppen the way to algorithms in which rows and columns
are treated differently, while the original problem was symmetrical in rows and
columis: To consider asymmetric algorithms is precisely what the above considerations

have taught us!)

Returning to the alphabetical arder: now we are approaching familiar ground,
If the elements of set A are to be generated in alphabetical order and they have
to be generated by selection from a larger set B, then the standard technique is
to generate the elements of set B in alphabetical order as well and to procuce

the slements of the subset im the order im which they occur in set B.

First we have to generate all solutions with x[O] = 0 (if any), then those
with x[O] = 1 (if any) etc.; of the solutions with x[O] fixed, those with x[1] =0
(if any) have to be generated first, followed by those with x[T] =1 (if any) etc.
In ather words: the queen of row O is placed in column O -say the square in the
battam left corner— and remains there until all elements of A (and B) with queen
0 in that position have been generated and only then is she moved one square to the
right to the next calumn. For each position of queen O , queen 1 will walk fram
left to right in row 1 -skipping the squares that are covered by queen O-; for
each combined position cof the first two queens, gqueen 2 walks along row 2 from

left to right, skipping all squares covered by the preceding queens, etc.

But now we have found set B! It is indeed a subset of B!, set B consists of

all eonfigurations with one queen in each of the first N rows, such that no

two gueens can tske eachother.,

EwDz02 - 11

The criterion deciding whether an element of B belorgs ta A as well is that

N = 8.

Having established our choice for set B, we find ourselves faced with the
task aof generating its elements in alphabetical order. We could try to do this

via an operator "GENERATE NEXT ELEMENT OF B" with a program of the form

INITIALIZE EMPTY BOARD;
Iepeat GENERATE NEXT ELEMENT OF B;

if N = 8 then PRINT CONFIGURATION
until B EXHAUSTED .

(Here we have used the fact that the empty board belongs to B, but not to A, and
is not B's only‘element. We have made no assumptions about the existence of

Solutions.)

But for two reasons a program of the above structure is less attractive.
Firstly, we don't have a ready-made criterion to recognize the last element of B
when we meet it and in all probability we have ta generalize the operator “GENERATE
NEXT ELEMENT OF B" in such a way that it will produce the indication "B EXHAUSTED!
when it is applied to the last "true" element of B, Secondly, it is nat too
obvious how to make the operator "GENERATE NEXT ELEMENT OF B": the rumber of

queens on the board may remain constant, it may decrease and it may increase.

So that is not too attractive. What can we do about it? As long as we
regard the sequence of configurations of set B as a single, monotonous sequence,
not subdivided into a succession of subseguences, the corresponding program
structure wi be a single loop as in the pregram just sketched. If we are looking
for an slternative program structure, we must therefore ask ourselves "How can we

group the sequence of configurations from set B into a succession of subsequences?".

Realizing that the sequence of configurations from set B have to be generated
in alphabetical order and thinking about the main subdivision in a dictionary -viz,

by first letter- the first grouping is obvious: by position of gueen O.

Generating all elements of set B —for the moment we forget about the printing

of those configurations that belong to set A as well— then presents itself as

EwWD302 - 12

INITIALIZE EMPTY BOARD;
h:= O;
repeat SET QUEEN ON SQUARE[O,h];
GENERATE ALL CONFIGURATIONS WITH QUEEN O FIXED;
REMOVE QUEEN FROM SQUARE[O,h];
hi= h + 1

until h =8

But now the guestion repeats itself: how do we group all configurations
with queen O fixed? We have already given the answer: in order of increasing column

number of queen 1, i.e.

ht:= 0;
repeat if SQUARE[1, h1] FREE do
begin SET QUEEN ON SQUARE[1,n1];
GENERATE ALL CONFIGURATIONS WITH FIRST 2 QUEENS FIXED;
REMOVE QUEEN FROM SQUARE[1,h1]
&nd;
his= h1 + 1
until h1 =8

For "GENERATE ALL CONFIGURATIONS WITH FIRST 2 QUEENS FIXED" we could write
a similar piece of program and so on: inserting them inside each other would
result in a correct program with eight nested loops, but they would all be VETY,
very similar. To do so has two disadvantages
1} it takes a cumbersome amount of writing
2) it gives a program sclving the problem for a chesshoard af 8%8 squares,
but to salve the same puzzle for a board of, say, 10¥10 squares would reguirs a

new, still longer program.
We are looking for a way in which all the loops can be executed under
contral of the same program text. Can we make the text of the loops identical?

Can we exploit their identity?

Well, to start with, we ohserve that the outermost and the innermost loops

are exceptional.

The outermost loop is exceptional in the sernse that it does nat test whether

EWD302 - 13

square[O,h] is free becsuse we know it is free. But because we know it is free,

there is no harm in inserting the conditienal clause
if SQUARE[O,h] FREE do

and this gives the outermost loop the same pattern as the next six loops.,

The innermost loop is exceptional in the sense that as soon as 8 gueens
have been placed on the board, there is no point in generating all configurations
with those gueens fixed, because we have a full board. Instead the configuration
should be printed, because we have found an elemsnt of set B that is also an
element of set A. We can map the innermast cycle and the embracing seven upon

each other by replacing the line "GENERATE" by

if BOARD FULL then PRINT CONFIGURATION
else GENERATE ALL CONFIGARATIONS EXTENDING THE CURRENT ONE

for this purpose we introduce a global variable, "n" say, counting the rumber
of queens currently on the board. The test "BOARD FULL" becomes "n = 8" and the

operations on sguares can then have "n" as first subscript.

By now the only difference between the eight cycles is that each has M"its
private h". By the time that we have reached this stage, we can give an affirmative
answer to the question whether we can exploit the identity of the loaps. The
sequencing through the eight nested loops can be evoked with the aid of a
recursive procedure, "generate" say, which describes the cycle ance. Using it,

the program itself collapses into

INITIALIZE EMPTY BOARD; n:= O;

generate

while "generate is recursively defined as follows:

EwD302 - 14

procedure generate;
beqgin integer h;
hie O3
repeat if SQUARE[n,h] FREE da
begin SET QUEEN ON SQUARE[n,h]; ni=n + 1;
if n = 8 then PRINT CONFIGURATION
else generate;

ni=n - 1; REMOVE QUEEN FROM SQUARE[n,h]

Each activation of "generate" will introduce its private local variable h,

thus catering for h, b1, ... , hB that we would need when writing eight nested loaps.

Our program —although correct to this level of detail- is not yet complete,
i.e. it has not been refined up to the standard degree of detail that is required
by our programming language. In out next refinement we should decide upon the
conventions according to which we represent the configurations on the board. We

have already decided more ar less that we shall use the

integer array x| 0:7]

giving in order the colymn numbers accupied by the quesns, and also that

integer n

should be used to represent the number of queens on the board. More precisely

rn = the number of gueens on the board
x[i] for 0 < i <n = the number of the column accupied by the queen in the

i=-th row.

The array x and the scalar n-are together sufficient to fix any configuration
of the set B and those will be the only ones on the chessboard. As a result we
have no logical need for more variables; yet we shall intropduce a few more, because
from a practical point of view we can make good use of them. The problem is that
with only the above material the (frequent) analysis whether a given sqguare in
the next free row is uncovered is rather painful and time—consuming. It is here that

we look for the standard technique as described in the section "On trading storage

EwD302 = 15

space for computation speed" (EWDP49 ~ 53). The role of the stored argument is
here played by the configuration of queens on the board, but this value is not
changing wildly, oh no, the only thing we do is adding or removing & queen. And

we are looking for additional tahles (whose contents are a %unctinn of the.current
configuration) such that they will assist us in deciding whether a sguare is free
and also such that they can be updated easily when a gueen is added toc or remcved

from a configuration.

How? Well, we might think of a boolean array of 8%8, indicating for each
square whether it is free or not. If we do this for the full board, adding a
queen might imply dealing with 28 squares, removing a gueen, hawever, is then
& painful process, because it does not follow that all squares no longer covered
by her are indeed free: they might be‘covered by one or mare of the aother queens
that remain in the configuration. There is a (again standard) remedy for this, viz.
associating with each square not a boolean varisble, but an integer counter,
counting the number of queens covering the sguare. Adding a queen then means
increasing up to 28 counters by 1, remaving a queen means decreasing them by 1
and a square is free when its associated counter equals zera. We could do it
that way, but the question is whether this is not overdaing it: 28 adjustments

is indeed quite a heavy overhead on setting or removing a gueen.

Each square in the freedom of which we are interested covers a row (which
is free by definition, so we need not bother about that), covers one of the 8
columns (which must still be empty), covers one of the 15 upward diagonals {which
must still he empty) and cne of the 1% downward diagnnals (which must étill be

empty). This suggests that we should keep track of

1) the columns that are free
2) the upward diagonals that are free
3) the downward diaganals that are free.

As each column ar diagonal is covered only once we don't need a counter for
each, a boolesn variable is sufficient. The columis ars readily identified by their

column number and for the columns we introduce

boolean array 001[0:7]

where "cnl[i]” means that the i-th column is still free.

How do we identify the diagonals? Well, along an upward diagonal the difference

EwWD302 - 16

between row number and column number is constant, along a downward diagonal their
sum., As a result, difference and sum respectively are the easiest index by-which

to distinguish the diagonals and we introduce therefore
boolean array up[—7:+7], down[0:14] .

10 keep track of which diaganals are free.

The guestion whether square[n,h] is free becomes
:Dl[h]_ggg up[n“h]_gﬂg down[n+h] ,

setting and removing a queen both imply the adjustment of three booleans, one in

each array.

In the final program the variable "k" is introduced for general counting
purposes, statements and expressions are labeled'(in capital letters). Note that
we have merged two levels of description: what were statements and functions on the

upper level, now appear as explanatory labels.

With the final program we come to the end of the last section. We have attempted
to show the pattern of reasoning by which one could discover backtracking as a
technique, and also the pattern of reasoning by which one could discaver a
recursive procedure describing it. The mast important moral of this section is
perhaps that all that analysis and synthesis could be carried out before we had
decided how {and how radundantly) a configuratiaon would be represented inside the
machine., It is true that such considerations anly bear fruit when eventually a
convenient representation for configurations can be found. Yet the mental isolation
of a level of abstraction in which we allaw gurselves nat to bather about it sBems

crucial.

Finally I would like to thank the reader that has followed me up till here

for his patience,

Ewp302 - 17

e

pua

s3exauab
41 = > TILFUT | 4 » =iy mmﬂMM.H"ﬁxutznu mmmMH.H"ﬁPI#uQJ Feadax (o =iy
fg = % TETUW | 4 % =i {BAIF =:[x]{e0 FESIT {0 =t
ig =:u

(a4v0d AldiW3 3ZITWILINI

{pua

L + 4 =4
tpus
BnIy H"ﬁzgﬁou mmmMH.H«ﬁclcQaj ummmw.unﬁ£+ch30u
:[yfui3nvnNDs WoH4 NIIND IAOWIY §1 — u =:u
tajexausb asTa
pua

BUTTMaU g = x Traun p + % =3 {([x%]x)3urad 38adaz o =iy
INOILYHANSI ANOD LNIdd utbag
- AT (g = u) 704 guvod FT
u MMMAMH.H"ﬁL+:gc30U mmmMMH.HnﬁLICQQJ mmmﬂmw.ﬂnﬁﬂgﬂau fy =t[ulx
fuuizdgynbs NO N33ND 135 STbeq
P ([u4+u]umop PuE [y-uldn BB [y]To2) 13344 [u‘u]3uvnns T Fesdas
0 =ty

{y r3bazuT urbaq

¢{ajexausb 2xnpacoxd

mmﬁw"OuEBDU .ﬁh+nﬁlwaj .ﬁbquﬁUU AEIIe UEa[0O0Oq mﬁP"Oux Aexae Iabagut {y ‘u I3bazutr utbag

