EWD 3060-0

/ i
/, <7

On the Necessity of Corrcctness Proofs

As soon as comeone wants to use an information processing mechanism - and
in what fo'lcws we shall vegard a program as "en abziract mechanism” - he
wants to raly on it, tnat it functions preperly, he wauts Lo be convircod
that the outrut it prnduccs is indeed the propcr Tunction of the input.
On what can this confidence be founded ?

I¥ 1t is a very simnle piece of machine - e.4. when it accedts twu one-
decimal rumbers and is requested to producs the wtwo--decimal product - we
could try all 100 differeat multipiications the macnine claims to be uble

<0 perform and cneck all the anzwers. a so-called exhaustive iast.

In the case thet we are forced to consider the mechanism as a blaci box,

an exhaustive test is the best wo can do. (Aid even if we are able to
perform an exhaustive tesi, this is not fully conclusive : we must make
the assumption that at each appiication the output is only a function of
the current input and not of past history. The absernce of inte,ior memory -
elements that could record such past history cen never be estabiished by
such experiments;>

Bui cven single machine instiructions - such as the fixed-point wultipiica-
tion of two word-size integers - are already defined cn such a gigantic
domain, thai an exhaustivc test is absolutely out of the question eve.
for very fast machines it is not urusual that the total time taken by all
possible activities evoked under zontrel of the muitivniv instruction will
be well over a million years. Aie exhaustive tests out of the question ior

topreo
indiviagual machine instructions, then this holds a f%nciJan for complete

programs, where the domein is ustually orders of wagnitude more time-consuning

(PP —

N 0 BN L . A OB WY T AN R



EWD 360-1

As long as we continue to regard the mechanism as a black Hux tests are

the only things to which we can subject it. We couird raise cur confidence
by sampling on a statistical basis, but ine virtiai number ¢f possible test
runs is so negligibly se@ll compared wiZh the number ov possibie computa -
tions that not much confidence can pe gainod that way : whole classes <f

in scme sense critical cases can and will be missed. The moral of the

story is. that we cannot continue to regard the mechanism as @ biack box
we must open il and in scme way or another musi take its constructicn, its
interior structura, inio accounrt.

A usual wdy is to verify by experiment that a modest sat of cases actually
works correctly, Trom which we then conclude va account of itc structure,
that all cases must work correctly. (E.g. quality coutrol of a zamera,
which uces not force the manufactures to make "ali possible pictures”

with a camera before it can be delivered 1).

in the caze of programs, however, a vew remarks are in order

1. In general we can test far less *than one out ¢f a billion cases : for
rearly all casas we have to rely on our reasoning. In the case of pro-

grams, discrete and abstract mechanisms, not subject to wear and tear, it

¢ s not clear at alil how we can benefit by not requiring that the number
of test runs stil! needed, is reduced to zero. O0n the contrary. it seems
more siraightforward not to rely on testcases at all and to prouve the
program's correctness a priovi.

<. One of the reasons that in many programming circles correctness proofs
are uot fashionabtle is that for an arbitrary prcgram the amount of
formal labor to supply such a proof can be quite erormous. The necessary
amount of formal labor, however, is critically dependent on the struc-
ture of the program, and it is here that correctness concerns have
a strong feedback on the programs to be produced : a major function of
the structuring of the program is to keep a correctness proof feasible.

i e N &

e v s iy Y oonr s e o

e ——_— 7o s



http:c!a:::::.es

EkD 360-2

M Lhe Mathematicel Siructure of Correctness Proofs

corraeciness nrecfs can only be given, providea that the semantics of our
proaraming lfanguege are given by a formal definition, and for a long

Lime the ahcence of & good technique fecr giving suenh a formal definition
hac orevented correctness proofs : there was no foundation to build unon.

Anyone familiar with the Repori on ALGOL A0 will agree that, compared to
carviier efforts &t Tanguage definition, the introduction of BNF (Fackus
laur Torm) was @ tremendous step forward as far as the language syntax
weS concei ned. the semantics, however, were given in -~ be it @ carefully
phrascd - tngiish. And for & couple o7 years that was that.

Since then, I have seen efiorts ralling into three main classes. The first
clacs we can call "the mechanistic definition”. Here the semantics of a
programiing language 2re given in terns of an "interpreter", written for
an “abstract machin2", the idea being that tihe abstract machine - although
utterly uarealistic - could be so simnle, that no missunderstanding would
be necessairy with respect to its "order cede", and once you have gfasped
this, yuu only need to "follow" the interpreter if you want to lnow the
outnut of a given comnutatinn. (The'%ienna Definition Language for PL1

and also ALGOL 68 fall into this class). Such mechanistic definitions,
however, have & few serious dravhacks. There is the fundamental short-
coming that we are still faceq with the problem of formally defining the
serantics of the zbstract machine, and in that sense, the problem has not
been solved, it has only been pushed back. A more cerious shortcoming 1is
that, initiaily, the interpreter can only tell you what the output will
be of a specific computation : you just play the game, whereas the kind

of . assertions we would like to make about programs are assertions

about the class of all computations that can be evoked under control of
that program, Finally as the semantics is defined in terms of an (ideaiized)
implementation, the problem of the correctness of .a realistic impiementa-
tion amounts to the equivalence of programs, a hairy pr0b1ém if there ever

was one.

v v e . Y . ¢ oy R S T WAy gt o 1 i 1 ATy ST Y PO P . B 1P ST oo


http:Ol!tr:.ut

LWD 360-3

e
Y

It is not surprising that tha efiort to build upon a mechenistic defini-
tion presented grave difficulties and my impressicn is that with the
exception ¢f a few groups that have crmmitted ther-elves, the erfort

has been abandoned.

The next effort trie~ indead to capture ali possible computaticns that can
take nlace under contrel of a program, by stating axiomatically how the
“output" 1s functionally dependent on the "input". Thic function is defi-
red as a (specific) solution of a functional equation whicin can te derived
mechanically from the progran text. Such is - in very rough terms - the
approach that has been startad by Dana Scoti. In this mathematical foun-
dation tattice theory and functional analysis play a predaminant role
whether it will turn out to be a vseful tooi remains tc he szern. ifs
outstanding characteristic is that the notion of "ecutrut" has been exten-
ded to non-terminating algoriichms. ‘

The third effort has been originated by C.A.R. Hoare, who has given an
axiomatic definition in terms ¢f rules for deriving foi a given piece of
program fcr any post condition to b» satisfied after execution »f the
program the weakes?® pﬁjecnnd?ticn for the initial state., The idca i3
that if we can ¢o this fcr any postcondition, that then we know

all about the semantics of the program.

Let the weakest praeccondition for a given program S and some postcondition
P be dencted by £S(P). IT fS(r) = T (i.e. identically true). then the pro-
gram is correct, if fS(P)

i

F (i.e. identically false), then it is wrong,
in all "in between cases" it establishes the relation P as a pariial
function. Let me show for a simple language, how the method works.

s et e i 1

JE——

s b s AR



EWD 360-4

If S is of the form "X := E" then fS(P) : P§ s Where F

A
by renizcing all occurences of X in P by the expression (E).
(e.g. with S of tne torm "X := X +'1"

E . . .
S 18 obtrained

f5(a < 7,

fS(X < 10) = X <9 ).

The A<iom of 13510nment gives us the condition-ilransformer 5 {or all
programs consisting oF a single assignment statement. To dorive the coli-
agition transformar for more complicated programs we postulate, how the
{otal condition transformer is formed in terms of *he condition trans-
formers of the coumponents and the senuencing connective.

For tha somicoion, we have the

hx1om of’ (onc@tenat1on

If S is of the form "S1 ; S2", where the semantcics of the ccmponents Si
and S2 are given by the condition transfermers fSI and 7S2 respentively,
then f5(P) = fS1(FS2(P)).
From this it follows that the operatien of statement concatenation is
asscciative, i.e

(S1 5 S2) 3 S2 = S1 5 (52 5 57)

The hixicm of Alternatives

If S is of the form "if B then S1 else S2 fi"

then fS{P) = (FS1(P) and 5) or {fSz(?) and non B

ﬂ———n—-~m——-“—-v-—- 2 wm e

If S is of the form "while B dg S1 ogd" _
then fS(P) = (831 : i 2 0 : fSl1(P and non B) and (¥] : 0 < J <1 : fSlJ(B)))
where £S1°(P) = P and £S17VL(P) = £SI(fS1 (P)).




EWD 360-5

These condition transformers can be showh to satisfy four absolutely
basic properties :

Property 0 : P = Q imnlies fS(P) = 15(Q)
Property 1 : S( )
Property 2 . fS( ﬂ) = fS(P) and £5(Q)

Property 3 : fS(P ¢r Q) = fS(P) or fS(Q)

(Property 1 is called : the 1aé&of the Excluded Miracle).

And it is on account-of these four properties that we are allowed to
iaterpret any fS(P) we Torm as the weakest prgécondition for a determi-
nistic automaton with P as postconditicn.

To give a simpie example, let S be

if X < 40 then X := X + 20 fi v
(Here S2 is the empty statement, i.e. fS2(P) = P). then #S(P) = P§+2OA§E§
X < 40) or (P and X > 40) and for instance ,
tS(Xx » 50) = X + 20 > 50 and X < 40) or (X > 50 and X » 40) = (30 < x < 40)
or (x > 50).

The real trouble arises with the application of thé Axiom of Repetition :
unless we can find a clused exprescion for fSI(P), i.e. forr the i.th
iterative of S1, direct application of the axiom of revetition presents

us with a hairy problem, as untractable as the probiem of finding a

closed expression for the limit of an infinite series may be, when a
racurrence relation between successivze terms is given. Cr¢moral is that
there is no point in writing down "whi1é B do S od" for totaliy unrestric-
ted B and S : in general we have written down something entirely unmana-
aeable? But from the axioms we may derive the following theorem :




EWD 360-6

Let S be "while B do 51 od" ; el for some P and R hiold

fS1(P) =(P and B} or R (or, as we may also write, ‘et (P ana B) » fSI1(P)),
then ithere exists a relation &, such that f5(P and non B} = (P and fS(7))
(or (P and fS(T)) -~ fS(P and nun B).

In words : fS(T) is the weakest praecondition such that the repetition
will terminate ; then P and ¥S(T) is a sutficient initial condition such
that the loop will terminate zuch that P and non B is guaranteed to hola
uron termination.

The power of this theorem is that the initial condition is written as a
conjunction of two conditions, one concernad with termination only (which
is independent of the target condition P) and another, which is conzarned
with the invariance of P.
The fact that a single execution of S1 will not déstroy'the validity
of P and that upon itermination of the loop P will still hold, regardless
the number of times the repestable statement has beern oxecuted, is the
basis Tor the so-called "strategie abstraction", which enables us to map
different loops upon each other, differing in tne number of timus that
they will be executed, but leaving the same relation invariant. If we
compare |
qQ:=a;c:= 1-b;
while abs{c) > eps do a :
with '
g:=aj;c:=1~->b
while abs{c) > eps do a :

c * (I*c); ¢ := c2 od

1]
(]
Q
(@

a »x (1+c+ cz) ; C:
both programs maintain the invariance of
i g , ,

b 1-c¢
and for abs(c) < 1 they will both squé¥e c towards zero, and both can be
used to approyimate a/b without actually dividing : both loops are of the

form "while ¢ too large do squawe c under invariance of q/{(1-c) od".
- - el -

o v o g s o

SO

o i g AT A




EWD 360-7

When we are faced with the task of writing a program to fina the convex
hull for a number of points in the plane, manv different pruarams are
possible, but they arz all refinements of the fo1Tcwing general patiern

"constiruct the convex hull for a few-say two or three-points”:

while there are still points outside the currcnc hull do select a

pointg outside the current hull ;

adjust the hull to enclose the selected points as weil

od . |
and the only difference I could detect among the different zlgorithms,
was the "shrewdness" with which they selected the ™initial pcint" = and
the "next point. ocutside". At this level of details, the invariance
enables us to conszider a progrem in which the actual number of repetition
is unknown on account of the non-deterministic primitive (the "gambling"
primitive) “sclect a peint . outside the current hull". It is only by
virtue of the invariance theorem that we gain by considzring non-detarmi-
nistic machinery ; conversely when faced with non-deterministic machiner
as in the case of cooperation between sequential process with undefined
speed ratios - invariance is the thing to look for.

When two sequential processes with undefined speed ratios have to ke
synchronized, we can regard this as controlling the process patn in a
two-dimensional progress space. The classical example is the préparation
of two dishes, soup and stew, both using a ring on the stove and a mixer.
The individual usage pattern of these resources are for the soup :

claim a ring ;

claim a mixer ;

release the ring ;

release the mixer ;
and for the stew

claim a mixer ;

claim a ring ;

release the mixer ;

re]easerthe ring.




EWD 360-8

When the two dishes have to be prepared in a oqgring kitchen, this res-
triction declares a rectangle in progress space - viw the area inter-
piretabie & "both using the ring’ as disallowed area. A similar rectzcnale
can be chown when the iwo dishes havc tn be preparcd in a one-mixer
kitchen. If, however, bcth restrictions are imposed simultaneously. we
see that lie total disallowed area is iarger than just the supericsition
of those twe rectangles : when we allcw the zoup to get the ring, but not
vet the mixer and the stew tc get tiie mixer but not yvet the ring, then

we see that although the criginal restrictions have not been violated yet,
we are hopelessly stuck : they are stuck in a "deadly embrace", we have
created a deadlock situation. Tne wetl-known moral of this part of the
story, is that in order to exorcize the danger of deadlock, we must be
willing (and able 1) to oxtend the piimarily furbidden area in pregress
space with the "traps" in order to make it well-shaped. In general this
is a very tough job, as difficult as proving that an arbitrary loop does
(or does not) terminate.

When our forbidden arca is well-shaped, the ensuing control problem can
be .solved, and in a later example we shall show how this can be dcne.
scefore we tackle this example, however, the method will be extended to
cover a wider class of restrictions.

Besides restrictions that can be phraced in terms cf forbidden areas in
the‘progress space, we may have to cater for restrictions formulated in
terms of the shape of the path. Such restrictions can be translated in
restrictions of the previous type by a perfectly straightforward manier,
that goes as follows. To our state space in which (place and) shape
restrictions on thie path are given, we add a further dimension in which
we recerd, at any moment in time, encugh data about the history so that
in terms of the position in this extended space, the total restrictions
-can be formulated as "a disallowed volume". In this extended space the
Vprimari]y disallowed volume is extended with the traps in that multi-
dimensional space and in that multidimensional space the control problem
is solved in the usual manner. '




EWD 360-9

To give an example o7 how tiis works : ceonsider an ant that has to crawl
on a flat surface from point " to point-B, while the totcl nath length
is not aliowed to exceed 2 given upper brund L. We then associate with
the ant 2 butterfly with a twnrfold restriction in its movements :

1. it must romain perpendicularly above the ant - the ant's position

is the vertical projection of the ant ;

2. it is bound to ascend always under 45 degrees.
if both ant and bulterfly start their journey at point A, these conditions
guarantez that the distaince crawled by the ant is equal tc the height of
the butticrfly and the restriction on the ani's path can be transiated iato
the requirement that the butterfly is not aliowed to risc above a horizon-
tal ceiling at height L. As the ant has to arrive at point B, the hutterfly
has to arrive at the perpendicular erected at peint E.
In this case the three dimensional trap of the butterflv is the space
outside the cone with its top at the point where the perpendicular in B
cuts the ceiling at height L, which cuis the ant's surface in a circle
with centre B and radius L. If A Ties inside this cone, the ant's problen
can be solveu : as it crawls, the butterfly rises, until it hits the cone :
from that moment onwards, the butterfly has oniy one possible path inside
the cone and satisfying che 45 degree requirement, i.e. straight to the
top.

In a system Tika this, two relations must be kept invariant
1. the height of the buiterfly must remain equal to the distance travel- .
ied by the ant, :
2. the butterfly must remain inside the cone. ‘

In the case of a multi-dimensional control problem corresponding to some
synchronisation task the "state of affairs” is describad by a number of
variables, that can be inspected in order to establish whether a desired
"move" is permitted - i.2. will not violate the relations to be kept
invariant - and can be modified in order to represent that the move has
taken p?acé. ‘




EWD 360-10

Lel Si be such a move, let Bi be the condition under which it can take
place. The inspection whether a condition Bi holds and, if so, the subse-
quent execuiion of Si, are occurences that should exclude each other in
vime. i.e. o Bl - Sj succession should be allowed to tamper simalta-
reously with those common state variables. This mutual exg¢lusion is the
basis for our conclusion that, when individua’l steps maintain the invariant
relations, these relaiions will indeed continue to hold. Without the mutual
axciusion we woula be forced to consider the net erfect of all coincidences
of pairs, triples, etc as well ! In a later stage we shall return to these
matters.

g s o



EWD 360-11

On the Feasibility of Correctness Proofs

A11 this is all very well, but it is no ¢ood unless we manage to arrange
our thoughts in sucn a manner, ihat tue amcunt of reasoning necessary to
convince ourselves of the correctness of a program does noi explode with
program length ! For if that is the case, we shall never be abie to apply
these methods to anything beyond toy problem:c.

A first insiance we nave Seen at the end of the previous section. If in
a parallel programming environment, N operators can fool in a common
siate space, mutual exclusion of these oparators makes it sufficient to
study them individually : without the mutual exclusion we should have to
study the total! effect of ali combinations, and sometning like 2N cases
emerge !

But even in secuential programming, something of that sort emerges.
Consider a piece of program of the form :

“if Bl then SI11 else S12 fi ;

if B2 then $21 else S22 fi ;

if Bn then Snl else Sn2 fi "
If we take for granted that - we have to introduce some sort of measure ! -
that it takes two steps of reasoning to equate

“if Bi then Sil else Si2"
to an abstract statement "Si", then in 2, steps we have reduced cur program
to an abstract program of the form

"S1 ;825 .... Sn"
of which I will assume that it takes us another n steps to equate it to
a total program S. In this unit, it takes us 36 steps of reasoning.
If we had insisted in understanding the tctal computation in terms of
a succession of the individual Sil's Si.2's, each such succession would
need n steps for its understanding, but there are 2" possible ways of
sequencing ! The introduction of the abstract statements Si prevents this

exponential growth !.

Cme e e e e



EWD 360-12

The above observation is older than Hoare's axirmacic metacs Tor the
definition of the semantics : I would like tu point out that the intro-
duction of the cbstract statements Si is exactly wnat oune »s lcad to,
as soon as one tries to derive, according to Hoare, the "fS§" Tor the
total program ! In that respect Hoare's axiouwatic basis ceems 2 sound
one. ’

If the method is to work ot al!, the fSi, as derived fron Bi; fSil and
£Si2, should not be toc unwieldy: the net effect of the conditional
compound should lend itself to a clear and compact formuiation.

As soon as we are not able to do sc, this is a warning not to be
ignored : probabiy we are on the verge of messing things up !.

Tha "statement grouping" as.suggested by Hoare's axioms is callcd
“operétiona1 abstraction”. It has - as all our abstraction pattorns - a
dual purpose : Tirstly, it enables us to reduce the amcunt of Tlabor
involved in the understanding of a specific program, secondly, because
this piece of reasoning applies to an abstract program, as a rule admit-
ting various we have that alternative proyrams for the

same task - i.e. different refinements - may share part of the correctness
proof.

In connection with the convex hill we have mentioned "strategic abstrac-
tion", finally we would Tike to show an application of representational
abstraction.

Suppose that it is required, for giobal integer A(z1), BEO) and Z, to
program the assignment

Z =7 x A8 , R

with the aid of an inner block, not using exponéntiation. A very usefu’

overall pattern of inner blocks is the fcllowing.



EWD 3560-13

At blozk entry a local variable is inftroduced and initialized 1in such

a way thet come relation between inner and outer world holids. From then

onwards, inmer and outer world are "massaged” under invariance of that
relation. untii the local varieble has a non-interesting value, and
Yock exit folilows.

Four our purpose, we introduce at level 1 an unanalyzed local variable
"h" and write level 1

loca] h initiclized such that PL holds ;

while h unequal tc one do squeeze h under invariance of P1 od
where, if Z2' denotes the initial vaiue of Z, relation P1 is

L xh=12"x AB
and the squeezing operation, when applied tc a value of h == 1, is
guararnteed to make h = 1 in a finite number of applications. The invariznce
of P1 and the vinal value of h guarantee at the end Z = Z' x AB, as
desired.

In our next level we wish to refine these operations in sub-operatiovs,
reterring to either giobal or local world, such that Pl is guaranteed to
hold initially Z = Z', and the initialization hecones
Tevel 2 : local h initialized such that h = A® ;

while at that same level the operation "squeeze etc " becomes
Tevel 2 : set integer f to a ftactor by which h is divided ;

multiply Z by T.

It is the function of this level tc separate operations on the Toral h
and the global Z, thereby maintaining the relation P1l. We observe that
internally (at the semi colon) the relation P1 is temporarily destroyed.

e g et



EWD 360-14

ihow the tima has come to choose a proper représentation for h. As the
absence: of the exponentiation was the primary reascn for this inner block,
a single variakble of tvpe integer won't do for i We therefore introduce
representalion convention
h = xY

anc the initialization beccues
levael 3 @ integer X = A, y = B 3
the test "h unequal to cn2" becomes
level 3 : X #1andy # 0
and the setting of ¢
fevel 3 @ while even (y)

yi=y =13 f
(letting ¥ and x coincide, we could merge the three Tevels into the
ALGOL block : |

doy :=y/@; X =X xXod;
X

begin integer X,y ; X := Ay =8B
while X #1 and y # 0 do
while even {y) doy = y/2 3 X 1= X xx 0d 3
yi=y-1,37Z =7 xX

i

end

The test " X # 1" could have beer omitted).

We summarize :
in level 1 the invariance of Pl is exploited without detailed knowledge

about tho representation of ejther the outer, nor the inner world ;-

in Tevel 2 the invariance of Pl is catered for, under the assumption
that operations on outer and inner world can communicate via the
standard type "integer" ; level 2 assumes the availability of
a proper representation of h ;

in level 3 a representation of h is choosen and the assumptions madc
in Tevel 2 about h are catered for.Relation P1 is here of no
concern.



EWD 360-15

The assumption about the cuter world are
1. its ability to deliver the values A and B upon request
2. its abiiity to multiply Z by the valve f

The purpose cf this exercise was many fold. We krow that, by grouning
statemenis, we can regard cemputational processes with different grains

of Time. Also we Know , that we can group words in store : we can recgard
the state in different grains cf space. One of the purpcses was to make
the different grains of s?éée and time "interlocking" : it is for that
reason chat we have introduced Jevels 1 and 2, where "h" is still] regarded
as a non-analyzed abstract variable of some suitable type.

This seem essential : a program of a high Tevel of abstraction should
ve understoced in terms of sufficiently abstract variables, and not in
terms of a specific elaborate representation for the different possible
values of such a variable.

11

It also shows how - at the expense of a "communication level" such as
ievel 2 - we can separate the operations on the Tocal h (represented

in some appropriate fashion) and the glcbal Z (also represented in some
appiopriate fashion), whare we can do this for the price of a commonly

understood more primitive type (here the integer f).

So many progvrams slowly grow into a mess of confliicting conventions

that can no longer be disentangled. For that reason, it seems a worthy
goal to encapsulate in the system write-up the consequences of each
particular convention. It is clear that we can never make a program out
of modules each with its own conventions, for they can only communicate
via a common convention. It is suggested that many of such conventions
take the form of an nvariant relation, upon which cone module may rely,
whereas it is another's module's obligation to guarantee it.



EWD 360 - 16

1

On the Impact of Coriectnesc Concerns on "the Process of Program Composition'

The purpose of this section (as a seguel to the second sectiun) ic to
show a more clahorate example of program componsiticn, as it can be con-
itrolled by the Hoare formalism of the wzalest pw%econditioas.

We have a set of cyclic processes, cailed Peadors and Keiters, respecti-
vely, with a critical activity, called "read" and “write" respectively,
and they should he syﬁchronized in such a way tuat

i

a) a reader doing "re=d" does not exclude other readers doing "read",
but 311 writers from doing “write" ;
b) & writer doing "write" excludes all readers from dcing "read"

and all other writers from doing "write".

1 assume the nrograms to nave the following structure

cycle remainder ;- cycle remainder ;
READENTRY ; WRITEENTRY
read ; write ;
READEXIT WRITEEXIT
elcyc elcyc

Where a neutral mutual exclusion mechanism for the four cperations
denoted in capital letters - in order to prevent uncointrolled inter-
ferences - will be assumed. In order to be able to formulzte cur requi-
rements, we introduce two counters ar and aw {active readers and active
writers), with initial values = 0. If we now state

S1 : READENTRY : ar := ar + 1

S2 ¢ READEXIT : ar :=ar -1

S3 : WRITEENTRY : aw := aw + 1

S4 : WRITEEXIT : aw := aw -1
then our basic relation becomes

P(ar, aw) : {arz 0 and aw = 0) or (ar = 0 and aw = 1)



A



EWD 360-17

From the topology of our programs it follows that upon READEXIT ar = 0
must hold, therefore, its "ar := ar - 1" can unever cause violation of
P, and 2150 that upon WRITEEXIT, aw > 0 must hold, therefore on account
of P, aw = 1 must hold and also WRITELXIT can never cause violation of P,
The entries, houcver, can cause violation and ‘ere we must construct
the cendition Bl and B2 upon which they may take piace. According in
the axiom of assignieent Ci = P(ar + 1, aw) and C7 = P (ar. aw + 1),
1R, ' ‘
Cl : (ar + 1=.0 and aw
€2 : (ar= 0 and aw + 1

i

n)y or {ar+1=90and aw =1
1

0) or (ar = 0 and aw + 1 =

Because we know that P will hold, whencver the investigaticn is made,
we can simplify these expraessions replacing €1 by the simplest expression
Bl, such that P and Bl =»C{, and similarly P and B2 —:C2.

When faced with the task to find, for given P and C a simple B stch that
P and B=s>C, we use two theorems :

o~

1. if "B = Q or R" is a solution and P and R is false,

then Q is a solution
2. if "B = Q and R" 1is a solution and P=>R

then ¢ is a solution.

ror Bl our first solution is Cl ; on account of theorem 1, it can be
reduced to '

ar + 1= 0 and aw = 0
and on account of theorem 2 it reduces to Bl : aw =0

For B2 our first solution C2 reduces on account of theorem 1 !theorem 2
is then not applicable) B2 : ar = 0 and aw = 0

s 1 g S8 e

g g s 03 0



EWD 360-18

fosuming the proper mutual exclusion we can write

RCADENMTRY » when aw = 0 do ar :=ar + 1 od

WRITECHNTRY @ when ar = 0 and aw = 0 do aw := aw + 1 od
maaning nat no reader wWill be waiting when aw = 0 and no writer when
ar = 0 and aw = 0. If we want to express this in terms of variables
maripultated by the program, we must introduce additional variables, say
or and bw (blocked readers and writers), counting the number of waiters.
If we initialice them both to €, we can write

NEADERTRY ¢ br := br + 1 5 {ar := ar + 15 br 1= br - 1)
3 bw o= obw - 15
winerce the parts within the parentheses are the conditional actions, to

WRITEENTRY  wr = wr + 1 5 (aw 1= aw + 1

o

e exacuted such that P' =P and br = 0 and bw=0 be kept invariant.

A secend remark is that WRITERIXIT (aw := aw ~ 1) that will cause aw = 0
may make both READENTRY and WRTTEENTRY possible. We riow superimposa the
requirement, that wnen writers will get priority, no reader may be admit-
ted, when there is a writer waiting.

If we want to fellow the formal game, we introduce an sxplicit counter
Y (also initialized to 0}, counting the violations,and rewrite
READENTRY : br := br + 1
(ar :=ar +1 ;5 br :=br ~-1;
if bw > 0 then V 1=V + 1)

(3%

¢nd now imposing the total invariant relation P" = P' and V = 0

With the new forms of the entiies and P", the weakest praeconditions for
the conditional parts become for the READENTRY
Cl: ({ar + 1= 0 and aw = 0) or (ar +1 = 0 and aw = 1)) and
br = 1= 0 and ({bw =0 and V = 0) or (bw=0 and V + 1 = 0))
C2 : ({ar= O and aw + 1 =0) or (ar = 0 and aw + 1 = 1) and bw - 1= 0.
which, because P" is kept invariant can be reduced to
Bl : aw = 0 and br> 0 and bw = 0

1

i

B2 : ar = 0 and aw = 0 and bw=> 0


http:rni"lr.~j1uLn.ed
http:rccH".2r

EWD 260-19

Now we are in good shape becausc (on account of the last term) they
exclude each other, and therefore we have no choice any more.

Pecauss it will be the function of the ENTRY's and EXIV's Lo ensure
1. thaet the conditional do not take nlaze when they would violate P
J
2. but that they wiil take place when they don't violcte P, d.e:

whern Bl or BZ holds.

We can conclude that outside EXIT's and ERNTRY's we can make the much

stronger essertion

With semaphores (special purpose non-negative integers), the P and V
operation (where the V operaiiun increases « semapnore Hy 1 and the

P operation - representing a potential delay -) we can now veuwrite
our programs with three semaphores : R and W (initially 0) and muten,
initially 1.

The programs then taxe the form :

cycle remainder ; cycle remainder 3
READENTRY WRITEENTRY
P(R) 3 P(H)
read ; write 3
READEXIT WRITEEXIT

elcyc glcyc
and in the text of the four critical sections we can exploit that upen
entry

P" and non Bl and non B?
holds.




Without exploitation of that

READENTRY

P(rutex) 5 br = br +
READEXIT

P(mutex) , air = ar =~
WRITEENTRY

P(mutex) ; bw := bw
WRITEEXIT
P{muitex) 5 aw :

=

i

aw - 1 3
vihere TEST
Hhile Bl or B2 do

if BL then ar :
else aw := aw +

L

ar +

fi

od

EWD 360~-20

krowledye, we could write

3 TEST 5 Vimutex) ;

[y

15 TEST 5 V{mutex)

Ty TEST 5 V{mutex) ;

TEST 3 V{mutex;;

1 br:
1 3 bw .

i

br - 1 ; V(R)
bw ~ 1 5 V(W)

1

making obvious that P* is never violated and non Bl and non Bz will

hold upon exit of the critical section.

Exploitation of the initial invariant reduces the number of necessary

tests
READENTRY
P(mutex) 3
br :=br + 1 ;
if aw = 0 and bw =
ar :=ar+ 1 ; br :
V(mutex)
READEXIT
F{mutex) ;
ar = ar -1
ifar = 0 and bw >
aw = aw + 1 3 bw :
V{mutex)

0

0

then
bw - 1 5 V(W) fi


http:P(r.vt.ex

EWD 360-21

WRITEENTRY

P(mutex) ;

bw := bw + 1 3
if ar = 0 apd aw = 0 then.
aw 1=

aw v 1oy bw oi=bw - 1 5 VW) 1
V{mutex) ' '
WRTTEEXTH

P(mutex) ;

W
aw 1= aW o~ 1L g

if bw= 0 then aw = aw + 1 5 bw := bw - 1 3 V(W) Ti
vwhiie br> 0 do ar t=ar + 1 3 br
V{mutex)

s

= br - 1 ;



