EWD393 - 0

EWD393.html

On _representational abstraction.

The usual higher level programming languages provide us with the
type "integer) allowing us to prescribe "ai= b + c¢" or to assert
"a = b + c", regardless of the internally chosen interpretation. This
is great, for the alternative would have been to regard these variables
as bit strings, say; this would have been nasty in two respects: instead
of asserting "a = b + " we.wnuld find ourselves forced to write down
the equations of the binary adder --which on that level would only add
to the confusion--, secondly we would be overspecific, because we would
(presumably) not object if our program operating on integers would be
executed on a decimal machine! So much for the power of representstional
abstraction. Its power is so great that we would like to exploit it at
higher levels as well. We should, however, be awere of one vital fact,
viz. that while the highest level program does not fix a representation
for variables of type "integer”, it is fixed somewhere anyhow, viz. in

the implementation: someone has to bother!

The most innocent way of regarding "a type" is as "an attribute of
variables of that type", i.e. as the collection of different possible
values a variable of that type can have. (How this collection of different
values is defined is another matter: either by enumeration or by some
BNF-like recursive technique 1 guess.)

We should be aware.of the fact that this abstract definition of the
set of possible values is only one side of the coin: to compare it with
the proeedure concept --embodying operational abstraction-- it is as if
we have given an exiomatic definition of the semantics of the call without

--as yet-= specifying an adequate body.

To do justice to this observation we could talk faor the purpose of
this discussion about "an implemented type"i.e. a defined class of values
tdgether with 2 proposal as how to represent these different values. In
addition it should contain a proposal for the algorithmic operations
on the consituents of the representation in order to "model" the

operations aon the absiract wvalues.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD393.html

EWD393 - 1

toe In the simplest case this proposal associates with each abstract
value one or more points in a little state space which is probably regarded
as the Cartesian product of smaller --"known''-— state spaces. (One in the
case of "a unique representation", more in the case of a "mon-unique repre-
sentation”. Note that not all points in our little Cartesian state space
need to correspond to a possible value of the abstract type!) In any case

our propasal for representation needs to give the correspondence between

abstract values and points in the little state space.

Un the above level of vagueness, everything is still OK: we have not
said much yet that could contradict itself. Let us, therefore, look for

problems,

There seems to be a marked difference between operational abstraction
and representational abstraction in the following sense. Given a program
with procedures the replacement of one procedure body by a semantically
equivalent one is a straightforward operation: the choice of the body
is only reflected in the “static) program text and in the (vnlatile!)
happening when the program is executed: with modest precautions it e
even possible to replace during execution of a program one body by a
semantically equivalent one that will be exercised during the second half

of the computation.

The choice of representation, however, spreads all through the state
space of the computation: to start the execution of a program in binary
arithmetic and to switchhalf-way to decimal arithmetic is certainly not
such a trivial operation. One can even start asking oneself, whether one
could have both representations simultaneously: could we have simultaneously
"binary integers™ and "decimal integers"? The fact that there are machines
with both binary and decimal arithmetic --at least: machines that are
presented as such-- seems to make this question meaningful. It is, however,

utterly misleading.

There are rn such things as "binary integers™, nor "decimal integers",
Both hames are misnemers! The integers, according Lo Kronecker created by
the Good Lord and subsequently defined by the axioms of Peano are 8 concept

in which "a number system" has no place, let alone a specific number system.

EWD39% ~ 2

We can have as types (possibly bounded) integers, and/nr bitstrings and/or

decimalstrings. But neither a string of bits, not a string of decimals can

be an integer. We can associate --but this is at least a conceptual transfer
function!-~ with either string an integer value, but in both cases that

requires a quite distinct additional convention.

(In this connection it is illuminating that the definition of a
programming language like ALGOL 60 does not mention a thing about internal
representation of integer variables, this in sharp contrast to most machine
manuals that usually start with ... a detailed description of the number
representation, the last thing that should be of any importance for the
programmer! Instead of operating on integers, one has there to operate on
the constituents of a‘specific representation and that is, of course. one
of the reasons why machine code programming is so tricky: you really have
to know the tules for representing negative numbers on a binary machine
before you can translate the test "even(x)" into an inspection of %'s
least significant digit. As an aside: from previous confrontations with
COBOL I have retained the impression of an endless conceptual confusion

between integers and strings of decimal digits)

Similarly there is no "binary arithmetic” nor "decimal arithmetic":

Peano did not mention radix systems in his axioms!

Let us now assume for a moment that we have a binary machine with a
number of "decimal operations" as an added facility; how are we going to
use it? (ﬂgﬁg t. Tt will become apparent that such an added facility is
to a large extent an aedded nuisance --as usual?-- but we shall investigate
its use nevertheless, Note 2. The dual number representation is a rather
microscopic example of non-unigue representation: for more sophisticated
types than integers it becomes more intaresting.) Im a purely binary machine
our higher level code does know nothing about the number representation; in
our mixed machine we should stick to that same level of transparancy. I.e.
if an integer value can be represeﬁted by a string of bits or a string of
decimals (or possibly both) we should have what on that lével is called
"a tag", indicating which is the case. (A propesal could be something on
the following lines:

.. kird kinds
f) if both operands are available in one Kg®Y only and the LPPEE are equal,

produce the result of the same kind

EWD39% - 3

2) if both operands are available in one kind only and the kinds differ
perform concurrently bot transfer functions and then act as
3) if both operands are available in both kinds, produce concurrently
the result of both kinds
4) if one operand is available in both typés, the other one in one
kind only, produce a result of the latter kind, etc.
The above is not a serious proposal, it is intended as an example
how the implementation could try to choose at amy moment the most convenient

alternative.)

It could very well be that the programmers knows that for some variables
a specific representation is more adequate than another. {(This is particu-
larly true when you have variables of the type "set".) But it is my feeling
that such knowledge should be transmitted to the implementation in the form
of "a hint": a parameter of the declarastion that introduces the variable.
It is them up to the implementer to decide how much attention will be paid
to the hint. (In our example: even with hints of the form "integer {dec)”
and "integer(bin)" a program executed on the macﬁine with the decimal
facilities should be transferrable to & machine withnut the decimal fa-
cilities without any change --the purely binary machine implementation can

be expected to ignore hints to do something in a locally impossible way!

One can argue with respect‘to such a text with hints: "Is the pro-
grammer now aware of the representation or is he not?" Well, hoth of course!

He creates the major part of his text as if he could ignore the representa-

tion, but he knows full well that if such an abstraction is insufficiently
truthful, this full separation of concerns is denied to hkim and he has

to develop a controlled schizophrenia. That is what all programmers sometimes
are forced to do: we only try to assist him in controlling his schizophrenia.
What we try to achieve is that, although the program is perhaps only

realistic when the "hints" are taken into account, yet the program without

the "hints" can be regarded as "logicallv complete".

EWD393 - 4

For the sequal I take the position that we aim at a strict textual
separation between the places where the abstract variable is considered as
an unanalyzed whole and where it is considered as a composite object. Note
that this is meant to be a drastic decision, for instance damning ALGOL 60
--and many other programming languages-- where on the same level one can
equally well refer to an array as a whole as to its individual elements,
allowing procedure calls such as "P(A, A[i])“. which I would prefer to

consider as confusing horrors.

If we take such an attitude, we should pay attention to the following
question --even if we do not have complete and completely satisfactory

answers to them:

a) What are exactly the benefits that we hope to derive from such a
separation?
b) What type of interface do we suggest between the two levels?

A clear benefit is presented by the circumstance that —--provided
that the abstract variable has decent properties-- the upper level program
can be much clearer to understand and --even formally-- easier to prove
to be correct. A program operating on complex numbers becomes mystified
when you express it in real and imaginmary parts! (Most formal proof systems
that have been mechanized --King's "Verifying Compiler" and the like-- seem
to suffer from the fact that they carry out the proofs in terms of the

primitive data types handled: the proofs become very quickly unwieldy.)

A second Benefit arises as soon as not all points of the local little
state space --built up as the Cartesian product of the state spaces af the
components-- actually correspond to @ value of the abstract variable. In
that case there is redundancy, a relation in that little state space must
be kept invariant. The textual separation pins the obligation to maintain
such an invariance guite explicitly down on that part of the text that
manipulates on the individual components. As many program improvements boil
down to a trading of storage space for computatien time by stering redundant
information --that might be absorbed in the representatién of an abstract
type?--, this second benefit alsc seems to be important. (It is here where

the "unsafeness" of for instance the PASCAL record really begins ta hurt!)

EWDI93 - &

As the third benefit I see the possibility to change the representation
of an abstract type: in a sense the language "scope rules" will tell you

which parts of the program remain unaffected.

There is a fourth potential benefit of thch I am not quite sure: it
might be to far-fetched, but you never know in these days of privacy and
security. It is conceivable that we would like to be able to give partial
access to information only; and mind you, this will rot necessarily be
that certain bits are inaccessible and therefore urmable to influence the
course of the computation: while the "age of a person" might be hidden,
you may yet get permission to compare the ages of two persons: the
relational operator "older than" might be at your disposal! T think that

more convincing examples can be constructed....

Let us now turn to the guestion b), what type of interface we do

suggest between the two levels.,

We cannot only define an abstract variable{ its layout in store, so
to speak, we must define operations and functions as well. In the case
that the abstract variable is represented by an enumerated set of variables
--such as you can declare at block entry-- it has been suggested by C.A.R.
Hoare --I cannot give the exact reference, I think it was ACTA INFORMATICA--
to write a block with
a) the declarations of the components needed to represent an instance
of the abstract variable, together with their initialization
b) functions defined on a variable of such a type: the algorithm would
then refer to the components of the abstract variable
c) updaters, i.e. operations modifying the value of the abstract

variable,

In the case of, for instance, the complex number, there would be

a2

im".

certainly the two functions "re" and They ecan be regarded as
"characteristic functions"” in the sense that if you know these two values
you know all there is to know about that complex value. If "z1" and "z2"
are then two complex variables, the conditien that they have egual

values can be written "Yzl.re = 2z2.re and z1.im = 2z2.im". And for some

time I have felt that among the definition of the abstract type there must

EWD393 - 6

be enough so as to be able to write » program (on the upper leuel!) that
can determine whether two values of the abstract variable are equal. (As

I have just dore for the complex numbers.) I am ne longer so sﬁre of the
reasonableness of the requirement in view of the fourth (potential)benefit.
(In the example there is a way of establishing equality of the unaccessible
ages, because "A older than B or ﬁ older than A" is equivalent with

"A.age £ B.age".)

I em beginning to feel now, that "equality of values" is such a
fundemental property that we should allow the algorithm establishing the
equality of two values to be expressed on the lower level in terms of
the values of the composing parts. The syntax suggested by Hoare would
make this equality test an asymmetric algorithm, because he presented
these lower level algorithms as within an inner block with one instance
in the surrounding block. Also the operation "swap{a, b)", where a and b
are variables of the same abstract type that should exchange their wvalues
is only very clumsily coded in his suggestion. In other words, Hoare's
suggestion that the lower level algorithms are always executed subordinate
to one instance of the abstract variable and will have explicit access to
the components of that variable only, seems too restrictive. Up till now

I do not have a better proposal,

Finally I draw attention to the fact that the introductjon of fancy
types may be expected to increase the number of partial furctions and
operations, With the current gequencing primitives the upper level pro-
grammer has to sequence his program explicitly in such a way that none of
these functions or operations is invoked outside its domain. For robustness
sake, however, the lower level implementation will start checking ... that
the operation is not invoked outside its domain. First you give a complicated
duty to the upper level programmer, next you check dynamically that the
upper level programmer has ﬁnt violated any of the rules! I mention, hust
for the record, that my tentative notion of the "guarded command” is intended

to present a better interface,

NUENEN - toth November 1973 prof.dr.Edsger W.Dijkstra

