EwWD398 - O

EWD398.html -

Sequencing primitives revisited.

Let "db" eaqual the number of boys in the common dressing room of a
swimming pool; the initial value of db obviously equals zero. Using the
operators "inc" and "dec" respectively for increase and decrease by one of
their integer argumeﬁt(s), we can describe the life of a little boy —-omitting

all further irrelevant details-- as the cyclic process
do inc(db); dec(db) od

where the repeatable statement describes a single usage of the dressing
room. And if we have a community of a hundred of such little bhoys, we have

& hundred of such sequential processes.

There is, however, another way of looking at the usage of the dressing
room. From the point of view of the dressing room --which can be assumed
not to be awfully interested in the identity of the boys using it, there

are just two sequential processes
do incldb) od and do dec(db) od ,

describing what happens at its entry and at its exit respectively. These
two processes, however, have to be synchronized so as to maintain the

invariance of db > 0

(From the point of view of the dressing room we can even regard the physical
boys as a means for implementing this synchromization restriction: they are
very similar to the coins in one's purse!)

As a second example, consider the well-known version of Euclid's
algorithm for the computation of the greatest common divisor GCD(A, B) of two

positive numbers, using addition and subtraction only:
ai= A; bh:= B;
while 8 £ b do if a > b then at=a - b
glse b:=b - a fi od;

print(a) .

The first line establishes the relation "GCD(A, B) = GCb{a, b)" and

both operations "a:= a - b" and "b:= b - a" leave that relation --for such

are the properties of the GCD-function-~ invariant. Furthermore, the first

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD398.html

EWD398 - 1

line establishes a>0and b>0

and also this relation is kept invariant; the loop terminates whem a = b

and then, because GED(a, a) = a , we know the answer.

Also this program, however, admits another interpretation, viz. the

two cyclic processes

do a:=a - b od and dao b:

b - aod
have to be synchronized in such a fashion that the relation
P: a>0and b>0

is kept invariant.

Let us compute the synchronizing conditions that follow from this

requirement. Using the notation
wp(S, P) -

for "the weakest precondition such that its truth prior to the execution
of 5 will guarantee that the execution of 5 will ‘establish the truth of the

postcondition P",then from the axiom of assignment follows

wp("a:=a - bB", a >0 and b > 0)

(a-b>bandb>0)
wp{"b:= b - a", a>0and b >0)

(a>Oandb-—a>O).

For each of the two statements we have here the necessary and suffi-
cient precondition to establish the truth of the postcondition P. We are,
however, only interested in maintaining P, that is, for each of the
statements 5, we are interested in the additional condition £, such

that (P and C) = wp(s, P) .

The computation of C is simple, but I shall explain it slowly, as I
can only have heart-felt sympathy with any reader who, through unfamiliarity,
gets confused, (Students and staff from Aarhus, Denmark, may remember how,
early 1973, I got completely entangled during ane of my lectures, when lack

of preparation could not be compensated by experience!)

One uses the following theorems of propositional calculus
1) From P == C2 follows (P and {C1 and CZ)) = (P and C1)
2) From P => non C2 follows (P and {c1 or £2)) = (P and cl) .

EWD398 - 2

As first form of C, satisfying
(P and C) = wp(s, P)

one chooses [equal to wp(S, P) itself and if C is a conjunction, theorem 1
allows us to drop any term that is implied by P and if C is a disjunction,
theorem 2 allows us to drop any term whose negation is implied by P. In

this example we only need theorem ! and we arrive at

{f and & >b) =>up("a:=a - b", P) and
(P and b >a) = wp("b:= b - a", P)

And it is now very tempting --so tempting in fact, that I shall do it--

to write our program for the greatest common divisor as follows:

ast= A; b= B;
doa>b: air=a - b,
b >a: br=b - a od;

print(a)

We call a construct like "s >b: a:= a - b" a "guarded command" and for

the time being we suggest the following syntax

<,
< guarding head > ::= < boolean expression > : < statement >

< guarded command > ::= < guarding head >~{ 3 < statement >-}

where the braces {...} should be read as "followed zero or more times

by the enclosed --in our example above, this is zero times--

< guarded command list > ::= < guarded command 2*{ , < guarded command > }
The guarded command list is a semantically unordered list of guarded
commands, separated by commas. (We have sticked to the usual convention to
use the comma as separator in a list in which the relative order of the
elements separated is semantically irrelevant, the above program could

equally well have been written with

dob>a: bi=b - a,

a >bt ar=a - b od)

A guarded command is "executable" when its associated guard --here
the boolean expression with which the guarding head starts-- considered as

a8 function of the initial state is true.

EWD398 - 3

Basically we propose two constructs with guarded command lists. The

first is a possible form of = statement:
< statement > t:= if < guarded command list > fi

If one or more of the guarded commands is executable, the execution of the
whole construct consists of the execution of one of the executaeble guarded
commandg, If none of the gfuarded commands in the enclosed list is executable,
the program is wrong --and in attempted execution we assume program abortion.
Note that there is po point in iptroducing the default convention that, if
nane of the n alternatives mentioned in the list is e%ecutable, the whole
construct reduces to the empty statement. If we wish to provide that al-

ternative, we should add it as the n+i1st alternative and write instead of
if B1: 51, ... , Bn: 5n fi
rather

if Bt::51, ... , Bnt Sn, non{B! or ... or Bn): Slast fi

where Slast can be the empty statement. For the above wa.propnse -=but

this can be regarded as syntactic sugar-- the abreviation

if Bt: 51, ... , Bn: Sn else Slast fi ,

i.e. we also allow the format
< statement > ::= if <guarded command list > else < statement >fi .

IXXERENERXEREX R L RR RN E X YA FAUAX K EMRARAE KRB ERUXXEERX IR XU X R U N XAKXE [T one
or more guarded commands from the list are executable, one of them will

will be executed, otherwise the statement follaowing "else" .

L 4

What used to be written as if B then 51 else 52 fi «caw now be

written

="

if B: S%, non B: S2 fi
or, with our last notational extension as

if B: 51 else 52 fi .

(1n doing so, we can imagine ourselves to serve a dual purpose. On the
one hand the uée of else can be regarded as a hint to the implementation:
after the evaluation of B the value of pon B is known as well. On the
pther hand it is an explicit expression (Fnr us'!) of the fact that at least
one of the alternatives is executable, strcnger,thatif.none of the preceedirg

ones is executable, the last one is and that, if the last one is executable,

EWD398 -~ 4

it is the only one. In the following it will become apparent that the use

of else is often to be avuided.)

Note that what we used to write as

if B then S fi

should be written now as
if B: S else fi
and not as if B: 5 fi
because irf the old notation the latter would correspand to

if B then 5 else ABORT fi .

Secondly we note that in the case that more than one of the guarded
commands in the list is executable, we have left undefimed which of the ones
will be chosen for execution. This is done intentionally; in this respect
we are proposing what could be regarded as a non-deterministic machine. On
the one hand we have the duty to see to it that this non-determinacy is
only introduced "when it does not matter", on the other hand —-and that is
at this stage more important-- whenever "it does not matter" ocur notation

does not force an arbitrary or premature decision UPpON us.

The second construct with guarded command lists that we propose is

< statement > ::= do < guarded command list > od .

——

Here we do allow that the alternatives are exhausted, i.e. it is not a
fatal error if none of the guarded commands is executable: in the éfcase cP
exhaustiuj,the execution of the whole do ... od construct is regarded as
completed. The complementary rule, haowever, is that this is the only way

in which the do ... od construct can terminate and that, as lang as at
least one of the guarded commands is executable, one of the executable ones
will be selected for execution., In the case of more than one executable
coﬁmand, it is again undefined which one will be selected, we postulate,
however, that then they will be selected in "fair random order", i.e. we
disallow the non-determinacy permanent neglect af a permanently executable

guarded command from the list.

EWD398 - 5

We have to postulate this, because in the construct
do Bl: §%, B2: 52 od

we would not like to exclude --nor to advocate for that matter!-- that both
Bl and B2 might be true, while $1 has reduced itself to the empty statement
and the "possible" execution of 52 will eventually cause both guards to

become false. In that case we cannot allow the non-determinacy to be so bad

@s to choose the executable first alternative St all the time.

Again, if more than one of the guarded commands is executable we have
what we can regard as a non-deterministic machine. We have to see to it that
whenever we introduce this non-determinacy, "it does not matter", on the
other hand "whenever it does not matter" our notation relieves us from the

duty to make an arbitrary choice.

But even in the case of mutually exclusive B's --i.e. no non-determinacy--

th t
e tex do Bt:S1, B2:52 6d

seems to have advantages. In the nlder notation we would be forced to
choose between one of the following versions
1) while (B! or B2) do

if B! then S else $2 fi

od
more or less obscuring the fact that 52 will only be executed provided
B2 holds initially
2) while (Bt or B2) do
while Bt do S od;
while B2 do 52 od
od
which is not too bad, but mot too nice either --with the possible execption
of the first outer repetition, for instance, the first inner loop will
always be executed at least Ance.
3) repeat ready:= true;
while B! do S1; ready:= false od;
while B2 do S2; ready:= false od

until ready

EWD398 - 6

Clearly our alternatives are getting nastier and nastier, Besides that,
without any further information there is no reason to assume that our new
version with the guarded commands would lead to a greater number of evalua-

tions of the boolean expression Bl and B2.

* *
*

As we have poninted out, in the case of a non-deterministic choice
between two or more guarded commands, we must ensure that "the choice
does not matter" and before proceeding with more examples, we had better
be sufficiently clear about
1) what we mean by "does not matter"™ and

2) how we ensure that fact.

There is a snag about non-determinacy. We recall that we derote by
wp(S, R)

the weakest precondition such that its truth prior to the execution of §

will guarantee that the execution of 5 will establish the truth of the
postcondition P; in particular it guarantees that the execution of § will
terminate successfully, which in general could be prevented by either

endless looping --e.g. do true: 5 od-- or by abortion --e.g. if false: 5 fi--.
Proper termination is quaranteed if the initial state satisfies wp(S, T,
where "T" is used to denote the condition that is satisfied by all states.

The most important properties are

1) For any S, wp(5, F) = F , where "F" is used to dengte the condition
that no state satisfies. (This is called the "Law of the Excluded Miracle".)
2) for any S and any Q and R such that Q =R , we have

wp(s, Q) = wp(S, R) . (As a result wp(S, Q) = wp(S, T) for any Q.)

3) For any 5, and R we have (wp(S, Q) and wp(5, R))-= wp(s, Q and R)

4) For any S, Q and R we have
if § is dé%erministic: (wp(s, Q) ar wp(S, R)) = wp(S, Q or R)
r wp(5, R)) => wp(S, Q or R} .

otherwise only: (wp(s, Q)

In the fourth relation, the non-determinacy replaces the equality
by an implication. If initially wp{5, R) is not true, the truth of R after

execution of 5 is not excluded.

EWD398 - 7

Note. For a given 5, wp(S, R) is uniquely defined for any postcondition R,

even if 5 is non-deterministic!

Finally I introduce --inspired by, but possibly deviating from, C.A.R.

Hoare-- one further notation, viz,

{P} s {r}
to be read as "P is with respect to 5 a safe precondition for the postcon-
dition R" and asserting that the truth of P prior to the execution of 5 is
sufficient to guarantee that S cannot terminate without establishing the
truth of R, Note that in this assertion we do not guarantee that S5 will
terminate properly, we don't assert that 5 will produce the desired result,
we only assert that 5 won't produce the wrong result. We can relate this

assertion to our previous formalism:
{r} s {r}

|quation |Vn¥J.¢3

(wp(s, T) and P) = wp(S, R) .

There are two typical applicaticns of the concept of "a safe precondition".
Firstly, if we can establish a sage precondition and can establish separately
that the execution of 5 will terminate properly, then we have derived a
sufficient precondition --not necessarily the weakest one, but often we
don't need that, so why bother? The advantage is that the reasoning
establishing the safeness of the precondition now need not be encumbered
by arquments establishing proper termination (the, latter arguments often
being of quite a different nature). Secondly, we may be quite content with
the assertion itself as we are often content with programs that either do
the job or "give up" --e.g. a compiler refusing a source program, the
compilation of which violates some capacity limits-., prﬁvided that we can

be certain that "giving up" will be exceptional and not désastrous.

for our constructs with guarded commands we can now formulate the

following propgerties.

Let S be "if Bt:S1, .., , Bn:Sn fi' and let for 1 < i < n hold:
{P and Bi} si {R}, then we can assert about S: {P} S QR} . Note that

S may fail to terminate properly because none of the guards is true, or

EWD398 - 8

because the guarded command selected fails to terminate properly.

Let 5 be "do B1:S1, ... , Bn:Sn gd" and let for 1 <i<n hold:
{P and Bi} Si {P}, then we can assert: {r} s {P and ron(B1 or ... oz Bn)}.
Note that also this S may fail to terminate properly, but here either
because the state with no guard true fails to occur, or because a guarded

command selected fails to terminate properly,
Let 5 be "if B1:51, ... , BBaSn fi and let for ! <i<n hold:
(P and Bi) = wp(Si, R). then (P .and {81 or ... or Bn)) =2 wp(S, R) .

Here we assert termipation.

To give an example. Let S be

doy £ 1: xi= x + 1,
y £ 11 x1=x = 1,
y#’:y'=12cl

Above we have made explicitly the rule, that a loop of this type terminated.
Lﬁat, however, in the mean time has been done with x is in general undefined.
I venture the following assertions about G

wp(S, x = x0) = (y = 1 and x = x0)

wp(S, y £1) = F

wp(S, y = 1) =71

and this is _ell there is to be said about 5, we have captured its semantics

completely.

Before turning to next examples, I once mofé return to Euclid's
algorithm if A >-O,§ﬁg B > 0:
at= A; b:= B;
do a > b: at=a - b,
b>ar b:=b ~ a
od
__print(a)_ii

(By supplying "A >0 and B > 0" as a guard for our previous algorithm we
have made the condition imposed on the arguments explicit: if they don't
satisfy it, the program as a whole will be aborted.) When we did derive

the program we have already used the invariance of

P: GCD(A, B) = GCD(a, b) and 8 >0 and b >0 .

EWD398 - 9

The loop theorem just mentioned tells us that upon termination we know also
non (a >borb >'a)

from which we conclude a = b, with the consequence that "print(&a}" indeed

produces the desiéed answer. '

Does the loap terminate? Yes, for each execution of a guarded command
from the list decreases a + b by at least 1 and therefore, in view of the
invariance of P, this can happen only a finite number of times. We see
here that "termination” --i.e. all the guards false-- is here our goal;
when synchronizing cyclic processes such as in an operating sgstem, the
situation Mall the guards false" is called "a deadly embrace" and there
one aims at avoiding this situation, because the show must go on! I hope
to have shown the close connection between terminationlof sequential

processes and deadlock in parallel programming.

Let us now try another problem. For N > 0, we are requested to

assign to an integer variable "a" such a value that the relation

R: aQSN arnd (a+1)2>N

2
is established. With "a < N" as our P to be kept invariant during the

loop, the program a:=0; d (a+1)2 =< N: a:=a + 1 od

follows directly. We arrive at a more interesting program when we introduce

a local variable (as a means for weakening R) and choose as our relation

P . azsNandb2>N

Clearly, (p and a+l = b) => R, and therefore our first sketch of the
program can be (the first line is only one of the many ways in which
P can be established easily)

ai= 0; b= N+ 1;

do a+i £ b: "bring a and b closer tegether

under imvariance of P" od .

Let "d" be the amount, by which the difference b - a is going to
be decreased. Without loss of generality, we can assume that in the operation
"bring a and b closer together under invariance of P" only one of the two
variables will be changed each time, because the othef one can be adjusted

in the (or a) next execution of the repeatable statement.

EWD398 - 10

Under these life-simplifying restrictions the repeatable statement

will be somthing of the structure
if1 @a1=a + d,

Let us first find out the guards., The repeatable statement as a whole has
to maintain the invariance of P. lLet us derive in the usual manner the
corresponding weakest preconditions:

wp(Ma:=a + d", P) = ({(a + d)2 <N and b2 > N)

wp{"bi= b - d", P)

H

(aszand (b—d)2>N) .

Now our theorems about the if...fi construct tell us, that we can

drop the terms implied by P and our repeatable statement becames

diz tiieae. -
if (a + d)2 < N: a:= a +-d,
(b - d)2.'>N: bi=b - d fi .

This, howgver, would lead to abartion, if both guards were false. That must
be excluded, so the negation of the ane has to imply the truth aof the other:
e.qg. (a + d)2 >N (the negation of the first guard) must imply (b - d)2 > N.
This implication is ensured if (a +d) < (b -d) , i.e. 2d <b-a .
In order to assure termination, d should be positive, but any value
of d satisfying O <d < (b - a) div 2 will do. The larger the value of
d, the faster our program, and my final suggestion for this program is

therefore a:= 0; bi= N + 1;

do s + 1 £ bt di= (b - a) div 2;

od
(Remark. If 2d <b -a , then both guards may be true and it does not matter
which of the two guarded commands is executed. In this example they could
even be executed both, but that is not typical.) I think this example a
beauty. The assignment to "d" is to ensure that the partial operator
if ... fi is not invoked outside its domain, but, working backwards, we
can derive what obligation this implies. (In Canterbury, last September,
I have shown in essence the derivation of the same algorithm, but that was

a clumsy affair, compared with the ahove!) -

EwWD398 - 11

(26th Novemher 1973). Since I wrote the previous pages of this report last
Qeek, 1 saw that Don Knuth pointed out in a letter to Tony Hoare, that this
use of the comma yiolates all rules of interpunction: one should not use
the comma as major separator between pieces of text that internally may
contain thé semicolon as minor separator. I agree and in the following text

--this whole report is an experiment in notatiean!-- I shall use -—inspired

by the vertical bar "|" of Peter Naur's representation aof BNF-- a fat

vertical bar "[J" instead, i.e.

< guarded command list > ::= <guarded command >>{ ﬂ < guarded command >-} .

The next example I am going to code is known as "The Problem of the
Dutch National Flag". In frontof a row of buckets, numbered from 1 thraugh N,
there is a minicomputer. Each bucket containms cne pebble and each pebble is
either red, or white of blue. The minicomputer can permute the pebbles
because it has two controllable mechanical hands, controlled by the
ingtruction "swap(i, j)" (1 <i, j ng): if i = j, this is the empty command,
if 1 # j,» the pebbles in buckets nr.i and nr.j respectively are interchanged.
Alsoc the machine has a movable eye used to compute the function "look (i}"
(1;5 i §;N) of type colour: its value is the colour of the pebble in bucket
nr.i (currently in bucket nr.i, I mean). The minicomputer must be programmed
in such a way that it will rearrnge the pebbles in the arder of the Dutch
National Flag, i.e. red, white, blue. There are, however, three constraints,
1) We know nothing about the numbers of red, white or blue pebbles, the
pregram must ewven work in thé case of missing colours
2) It is a minicomputer with such 2 small store that the prmgrém may not
make use of internal arrays |
%) It is assumed that the evaluation of the function "look" is so time-

consuming that we require that each pebble is "looked at" at most once.

The argument is the following. On account of the last reguirement
we have somewhere half way the computational process four kinds of pebbles:
established red, established white, established blue and uninspected. We
have to keep track of which is what, we canmot use an internal array for
that purpose, we therefore use alsc the row of buckets snd there contents
as a memnry element. We can represent then the information with three

internal pointers, r, w and b according to the following convention,

EWD398 -~ 12

for 1

A

k < r: the pebble in bucket nr.k is established red,

for r

IA
=

=< w: the pehble in bucket nr.k is uninspected

for w k < b: the pebble in bucket nr.k is established white

A A

for b k < N: the pebble in bucket nr.k is established blue.

Once we have chosen this general intermediate state, our problem is
nearly solved, because both initial state (all pebbles uninspected) and
final state (no pebbles uninspected and the remaining ones sorted aut)
are particular cases of the above described general state. So that one
is establisbed and under its invariance the number of uninspected
pebblés is decreased one at a time. Inspection of the pebble in bucket
nT. w gives on the average less swaps to perform than inspection of the

pebble in bucket nr.r and we arrive ultimately at the following program

begin int var r, w, b; celour var v;

r:=1; w:= N; b:= N;

do r < wi: vi= look(\n);

—_—

if v = red: swap(r, w); inc(r) H
v = white: dec(w) i .
v = blue: swap(ﬁ, w); dec(b, wj
fi

and I prefer the last part over what I used to write down
if v = red then swap(r, w); inc(q}

else if v = blue then swap(b, w); dec(b) fi;

dec(w)
fi
I know that I am now talking about minute details -~-some of my readers
might slready wonder why I bother!-- but let us apalyse the difference as

completely as possible, so that we might learn from it. We have seen that
decrementing "w" is part of the reaction in rcases white and blue, s0 we
decide to group them together in our first binary cut,where we ask for
"v = red". (I have shown this example in its old version for many audiences

and I remember my "justification" more or less going as fallows "What the

repeatable statement has to do is to decrease the differerce w - r, either

EWD398 - 13

by increasing r or by decreasing w , etc". What a waste of words!) In
passing we note, that this way of partitioning becomes definitely unattractive,
if for some reasans, we may expect a minority of red pebbles, and that is
suddenly a quite different sort of consideration! If the pebble is not

red, we discover that waht has te be done in the case of a white pebble

is really & subsat of what has to be done with the blue pebhle and as

+

no programmer would think of writing

if v = white then else swap(b, w); dec(b) fi; declw)

(you may omit the else but not the then!) we "discover" that we must ask
explicitly for a blue pebble. If there happens, quite erroneocusly, to be
a grey pebble as well, it is unconsciously treated as » white one. Then
we learn by sad experience, that this is not too good from the point of
robustness, so we introduce, as element of the well-trained programmer's
competence, the notion of "defemsive programming".... It just means, that
educating him with the existence of "else" as the default case, he is
always invited to choose, in a curious mixture of static and dynamic
efficiencg considerations, which of the cases he is going to treat as the
default.... If we assume the availability of a mill with some capacity
for concurrency and if the tests can be done concurrently, the whole
argument disappears completely. As long as that is not the case, let us

at least create a mental platform where we can ignore such details!

If a number of guarded commands fram a list have a common tail,
we might wish te save writing; we can do so by introducing an abbreviation,
which syntactically can be presented as an altergative for the guarding
bhead

< guarding head > ::= [<Zguarded command list >>]: < statement >

allowing us to write

if v = red: swap(r, w}; inc(r) ﬂ

[v = white: ﬂ A

v = blue: swap(b, w); dec(b)]: dec(w)
fi

but this is now presented naot so much as something that has to do with
"seguencing eontrol"™ -decisions and the like- it is just a short-hand
notation, an abreviation. (AS the different elemenﬁs of the guarded command

list are semantically unordered, we are ahbsolutely free ta order them

EwWD398 - 12

in the case of common tails as we see fit: it is a merging tree.)

The original reason to undertake these experiments was the following

observation. Many a program shows the following phenomenon

while non null(x1) do

begin temp:= tail(k1);.....

(this is taken from an example frDm-R.M.Burstall), where the funpction

"the tail of 8 list",i.e. what remains after remaval of its first element,
is undefined if its argument happens to be an empty list. It is a clear
exémple of a partiasl function. In a program using such partial functians
or operators, it turns out that much of the sequencing control in the
upper level, using such functions or operators, is no more than ensuring
that the partial operators or functions will not be invoked outside there
domain. Now this is kind of silly: it implies that the upper level program
has the duty to reflect in its explicitly stated sequencing commands

what measures are to be taken in order to prevent inveation cutsj&e the
domain, while anybody with any experience at all will know that for
robustness sake the implementation of a thing like "tail"™ will start....
by checking that the upper level program satisfies that rule, that the
upper level programmer has indeed met his obligations! Since I saw this,
it has been hurting me, not so much for reasgns of computatiaonal (in)efficiency,
but perhaps still more for logical reasons: to present from below a partiai
function or operator does not seem to be a nice interface. I have been
looking for a long time, what we should have instead, and the idea of

the guarded command seems to come closer to it than anything I have seen
before. More precisely, from below we offer so-called "guarded primitives”
and syntactically they can be used as guarding heads, i.e. we have the

alternative form (I give the old one from page 2 as well)

< guarding head > ::= < boolean expression > : < statement >-l

< guarded primitive >

Let me show, how these can be used; I use an example that I owe to
W.H.J.Feijen. Let V be a set and let 2 be a variable of the type of the

elements aof V.

EWD398 - 15

We consider two guarded primitives

sel(V, e}: the guard of this primitive is the initial value of "pon empty(V);
the corresponding action is to select any element from V, to
remove it from V and to assign it to the variable e.

sub(V, e): the guard of this primitive is the initial value aof "e in V";

the corresponding action is to remove this element from V.

It is now requested to make a program establishing whether the set BO
is contained in the set AO., We introduce two variable sets, A and B and

maintain the invariance of the following relation
(AO contains BO) = (A contains B)

(i.e. both sides are either true or false). Now we start massaging the
sets A and B, but under invariance of the above relation. When A is empty,
the question (A contains B) is easily answered: it is true if and only if
B is empty as well, So after initidlization we try to"empty" A, which we
can do with the guarded primitive "sel". In order to maintain the inwvariance
any element removed from A has to be removed from B as well, if B contains
it. And we are led to the following program

A:= AQ; B:= BO;

do sel(A, e}; do sub(B, e) od od

answer:= empty(B)

(Remark: We have not exploited the fact that A and B are sets which, by
definition, do not contain different elements. The "do sub(B, e} od" would
old-fashionedly have been coded as if e in B then sub(B, e) fi: this
canstiruct now appears as a special case of a loop, viz, where the repeatable
statement never needs to be executed more than once. In our version the
program will alsp work for "collections of values": it will establish

whether any value occurring at leat once in B, also eccurs at least once in

ALY

We are not finished with this example yet: the only possible change
of B is that it loses an element: we are not interested in the firal value
of B, we only want to know of the final value of B is empty or rot: as a
result, if B becomes empty halfway, then we can stop te repetition, we-

can "extrapolate" the final value of B. And this suggests the following

program

EWD398 - 16

Ar= AO; B:= EO;
do non ampty(E) and sel(A, e); do sub(H, E) bod od;

answer:= emp}y(B)

where we have used yet another form aof quarding head, viz.

< guarding head > ::= < boolean expression > and < guarded primitive > ,

This might seem to be at first sight a little piec of ad-hoccery, it
is not, In order that something be evoked, in general we have two conditions:
it must be bosaible to do it --and the guarded primitive presents that
as a condition from below-~ but you must also be interested in doing it,
and that is clearly somthing that must be specified by the upper level
programmer! Once you have seen this separation of reasons why to do
something, classical p£0grams, in which these different conditions are
often lumped together in a single boolean expression, can strike you as
unnecessarily obscure.

1 shall give a final program, doing a merge sort, merging three
sets A, B;'and € into a fourth one; initially D is empty, finally
A, B and C are empty. I assume a guarded command "selmin", that I have
written in the form of a parallel assignment when used. Its guard is
non-emptiness of the sets mentioned at the right hand side; its action is
to select from eacht of the sets the minimum value and to assign this
vector of values to the vector of variables at the left hand side. The
sets are not changed. The operstor "mnve(é, V, W)" transfers -if possible-
an element with value e from V to W; if there is no such element, it is

v

the empty statement.

do (a, b, ¢):= selmin(A, B, C); d:= min(a, b, c);
if a = d: movela, A, D) [
b = d: mpve(b, B, D) ﬂ
c = d: move(c, C, D) fi
od {comment: now at least one of the three input streams is empty};
if empty(A): do (b, c):: selmin(H, E); d:= min(b, ch
if b = d: move(b, B, D) u ¢ = d: move{c, C, D) fi

od |

EWD398 - 17

empty(B): do (a, c):: selmin(A, E); d:= min(a, c);
if a = d: move(a, A, D) [¢ = d: move(c, €, D) i

empty(C): (a, b):: selmin(A, B); 1= min(a, b);

if a = d: move(a, A, D) H b = d: mnve(b, B, D) i

od
£i {now at least two of the three input streams are empty};
if empty(A) and empty(B): do (c):: selmin(t); move(c, C, D) od ﬂ
ampty(B) and empty(C): da (a):: selmin(A); mcve(a, A, D) od H
empty(E) and empty(A): do (b):= selmin(B): mnve(b. B, D) od

Fi {nnw all the three iﬁput streams are empty}
It is in this example guite clearly that the guarded primitive
controls repetition, while --some sort of-- negation of the guard is

used for selection: they express our interest.

Concluding remarks.

I regard what I have sketched as an aspect of a pragramming, language,
but it could be "an abstract programming language", i.e. a programming
language for which we don't have @ processor that, without further human
intervention, will proeess our programs with acceptable efficiency. I do
not care about that toc much, it is a very one-sided view to regard
programs as "things to execute automatically”: they are also things to
design, %o énjoy, to embellish, to talk about and to use as a means of
communication, either with yourself or with someane else. About algorithms.
It is primarily with the latter aspects in mind, that the above has been

written. Very tentatively written, even.

26th November 1973

BURROUGHS prof:dr.Edsger W.Dijkstra
Plataanstraat 5 Research Fellow

NUENEN ~4565

The Netherlands

