EWD578.html

Copyright Notice

The following manuscript
EWD 578: More about the function “fusc” (A sequel to EWD570)
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 230-232 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD578.html

16 August 1976 v EWDS78 -~ O

More about the function "fusc". {A sequel to EWD5TO)

In EWD5TO I introduced the function "fusc", given by
fusc(1) =1, fusc(?n) = fusc(n), fusc(2n+1) = fusc(n) + fusc(n+1)

Compatible with the second part of that definition we derive from the third part
fusc(0) = 0 , I showed there the following iterative program for the computation
of fusc{N) --with "peven" and "podd" standing for "positive and even" and

"oositive and odd" respectively--

n, a, b :=N, 1, O
do pevan(n) —-a, n:=a+hb, n / 2
podd(n) ~b, n:=b + a, (n-1)/ 2

[
od {fusc(N) = b}

On my last trip though the USA, while lecturing to a Burroughs audience, my audience
derived this program after it had decided --after only a few very modest hints!--

that a good candidate for an invariant relation would be

P: fusc(N) = a*Tusc(n) + b*fusc(n+1)

The audience arrived at this suggestion after a few simple considerations,

The first observation was that
quC(N) = fusc(n)

would be simple to initialize by means of n:= N . They quickly saw that this

was too simple, and considered
Fusc(N) = a*fusc(n)

equally trivially initializeﬂ by n, a :=N, 1 ; it was then remarked that

initialization would not be complicated by an additive term
fusc(N) = a*fusc(n) + b

as that is initialized by n, a, b := N, 1, 0 . The observatian that for n =20
the first term would disappear but that fusc(n+1) =1 would then hold suggested,
together with the third part of the definition for fusc the fully blown-up F

as given sbove. Separating the cases

n = 2k: fusc(N) = a*fusc(n) + b*fusc(n+1)

a*fusc(2k) + b¥fusc{2k+1)

i

(a+b)*fusc(k) + b¥fusc(k+t)

i

EWD578 - 1

n = 2k+1: fusc{N) a*fusc(n) + fusc(n+1)
a*fusc(2k+1) + b*fusc(2k+2)

a*fusc(k) + (a+b)*Fusc(k+1)

H

my audience quickly derived --to its pleasant surprise!-- the iterative program

given above. * " *

o

From the above program, two properties of the function "fusc" follow.
The first one is that the value of the function fusc does not change if we invert
in the binary representation of the argument all "internal" digits, i.e. all the
hinary digits between the mmét- and the least-significant ones. For instance
fusc(19) = Fusc(29) because, in binary 19 and 29 are 10014 and 11101 res-
pectively. This follows from the comparison of the a,b-pairs during those two
computations. After the processing of the least significant digit of the arguments,
both have a,b =1,1 . As a result of the inverted internal digits, the one
computation has the role of a and b interchanged with respect to the other
camputatio%. Becéusa the sum of two values is a symmetric function of its argu-
ments and, as a result of the last -i.e. most-significant-- 1 in the argument
that sum of a ‘and b is delivered (in b) as the final value, both computations

deliver the same result.

The next property is more surprising. (At least, I think so.) Let us
try to represent the pair a,b by the single value m, according to the con-
vention a = fusc(m+1) b = fusc(m)

In the case of peven(n) the operation on a,b has the form a, b := a+b, b

OEs fusc(m+l), fuscim)i= fusc(m+1)+fusc(m), Fusc(m)

fusc(2m+1), fusc(2m)

an operation that translates into mi= 2m . GSimilarly a, b :=a, ath
translates into m:= 2m+! . Substituting all this in our iterative program

t
we ge m:= N, O

peven(n) - m, n = 2%m, n/2
ﬂ podd(h) - m, n = 2%+, (n—l)/Z
od {Fusc(N) = fusc(m)}

o jun
Q -

i.e. the fusc-value does not change if we write the binary digits of the argument
in the reverse order. For example fusc(19) = fusc(ZS) because 19 and 25 are

in binary 10011 and 11001 respectively. 1 think this second property more

EWD5T78 - 2

surprising!

In a way which does not admit gerenalization I discovered the equivalence
2]fusc(n) <> 3[n

i.e. fusc(n)h is even iff n is a multiple of 3., Inspired by a recent exercise

of Don Knuth I tried to characterize the arguments n such that 3|fusc(n) .

With braces used to denote zero or more instances of the enclosed, the vertical
bar as the BNF "or", and the question mark "?" to denote eithera 0 ora 1,

the syntactical representation for such an argument {in bipary) is

{o}1{z0{1}0|71{0}1}21{0}

1 derived this by considering --as a direct derivation of my program--
the finite state automaton that computes fusc(N)mggj . It was the first time
of my life that I did what others have done many times before, i.e. relating
a finite state automaton to a grammar. The exercise is up till now only of modest
interest; it taught me that division by a fixed factor and (5imple!) syntactic
analysis are processes that are very closely related to each other, and that

insight I think somehow illuminating.

* *

Since the distribution of EWDS70 it has been discovered that more mathe-
maticians have occupied themselves with the function fusc --they only gave it
a different name!-- a fact that is not surprising in view of its properties.
J.J.Seidel and F.L.Bauer have independently pointed out to me that it is no. 56
in Sloanefs Dictionary of Integer Sequences, that refers to an article by

G.de Rham, Elemente der Mathematik, Vol.Z (1947) pg.95 . It was fun!

Plataanstraat 5 prof.dr.Edsger W.Dijkstra
NL-4565 NUENEN Burroughs Research fellow
' The Netherlands

