19th DOctober 1976 EWD590 - O

A first investigation of the crossflow computer.

Acknowledgement, This text was written while drsz.w.Bulterman, ir.W.H.J.
Feijen, ir.A.J.Martin and drs.F.J.Peeters were looking over my shoulder. It

summarizes discussions in which dr.M.Rem pariicipated as well,

The purpose of this note is to investigate an alternative to the archi-

tecture of (instructiun) pipe~lining. It has been inspired by the fallowing

objections against pipe-lining.

1. The interlocking of pipe-lined machines is very extensive and complicated.
This has several undesirable consequences.

t.1. It is very expensive to design.

1.2. It is very difficult to prove the correctness of the design.

t.3. It is expensive to meke and hard to maintain.

1.4. It violates by its very structure one of the basic assumptions of tra-
ditional sequential hardware, the assumption being that if each instruction,all
by itself, is verified to operate correctly, a sequence of instructions will be
executed correctly as well; this assumption is Justified in traditional sequen-
tial har&ware because there successive instructions can only interfere via ex-
plicitly named, discrete memory elements --storage cells and registers-- .
"Checking" the correct operation of a pipe-lined machine with its intertwined
instruction executions seems orders of magnitude more difficult, if not im-

possible.

2. THe use of a pipe-lined machine presents conflicts because at each con-
ditional jump it is hard to decide how to direct the instruction feteh. Either
we stop —--but then the effect of pipe-lining is temporarily paralyzed-- or we
guess.

2.1. Guessing is unattractive. First of all it reqdires the whole machinery
for "undoing" iﬁ the case of a wrong guess; secondly it exerts strong pressures
upon the pragrammer --or the compiler?-- to make on too detailed a level the
program text dependent on expected frequencies.

2.2, I have been told that designing an optimizing compiler for a pipe-lined
machine is fraught with unpleasant surprises.

2.3. 1 have been told that effectuating an interrupt in a pipe-lined machine

in an orderly fashion has,in many cases, been too difficult for the designers.

We intend to explore the so-called "crossflow computer" as an alternative

EWD590 - 1

machine architecture that may achieve the speeding-up effects of pipe-lining,
but hopefully without most of the complications listed above. 3Stated vEery
shortly: we would like to harvest the fruits of concurrent processing without
paying the price of extensive synchronization protocols, and without introducing
the extensive, diversified hardware. More precisely: we envisage a machine con-
éisting of a modest number --six, say-- in hardware identical components, each
component in principle not much more complicated than a traditional sequential
machine. In order to stress the fact that these components should be viewed

as executing together ~-and in rather strict synchronism-- the same algorithm,
we shall consistently refer to them as "components": the components together

constitute a single sequential machine.

In order to avoid false expectation we would like to stress, right at the
beginning, that as far as the crossflow computer can be regarded as an exercise
in concurrency, the exercise is very modest. We will be perfectly happy if we
arrive at an architecture which, by means of six times as much hardware, reduces
ekecution times by a factor two or three. We are perfectly aware of the fact
that our approach is not applicable if someone wants to reduce computation time
by a factor of ten at the possible expense of twenty or fourty times as much

equipment,

As a matter Df‘fact, preliminary investigations have indicated ~~and, as
1 have heard, this is confirmed by experience slsewhere-- that wz must be glad
if we manage to keep our, say, six components happily productive, when our
start is a traditional segquential algorithm. This upper bound has an interestin:
possibility of which we have been aware right from the start. (At thes moment
of writing it has not been explored yet.) The possibility opens up when the
machine is equipped with a few more components: if they ecannot be used to speed

up the computation, they wmay be available for run-time checking!

Note. Run-time checks are, by definition, extremely skew and, as such, yield
very little information. If run-time checks are performed at the expense of
progress speed, there is,therefore, a strong pressure to omit them during preoduct
ion runs --with all undesirable consequences-- . In practice,the dilemma has
always heen solved by building-in dedicated, concurrently active equipment, the

prime examples being the parity check and the interrupt detection. A few

EWD580 ~ 2

additional companents could perhaps be dedicated to program dependent run-time
checking, that could then be performed withcut noticeably slowing down the com-
putation proper. (End of nute.)

* *

Let us try to give and motivate a -~by necessify in this stage rough--
description of the kind of machine we intend to investigate. The machine will
consist of a modest number of identical “"components". Each component will
comprise a private high-speed memory and a purely sequential processor. In-
formatien exchange between the components is assumed to take place via a common
bus, with the fundamental assumption that during a time slot in which the bus
is used, information can be broadcast by one of the components and be picked

up by all the athers.

Note. For the time being we shall assume that the bus is very fast compared
with the processing. The extent to which this assumption is essential or a
matier of %emporary convenience --e.g. for the ease of compiling-- remains

to be seen. (End of note.)

Note. The bus is assumed to be a galvanic contact between the components, with
all the receivers "reading” simultaneously. The number of components is

assumed to be small enough so that fan-out presents no serious problems. (End

of nute.)

Note. The assumed speed of the bus and "clock skew" could present problems;

for the time being we hope that they can be solved. (End of nute.)

Lach component looks like a sequential machine operating under contraol
of the program as stored in its own store. Just as we introduced the term
"component" versus the whale "machine", we introduce, in order to avoid con-
fusion, the term "fragment" versus the whole "program". When the whole machine
executes a program, each component executes its fragment. We consider it the
task of the compiler to construct from the source program the, say, six fragments

that will control the activity of the, say, six components.

Note. The division of the total workload over the six components is decided;

EWD590 - 3

statically (if you know what I mean). We consider the six components to form
one machine: when one of the components is out of order, the machine is down.
The so-called "graceful degradation" is most definitely not our target. Every-

body who wants that, should couple & number of crossflow machines. (End of note.)

The six cUmpDnents:are assumed to work in a rather strict synchronism,
I.e. not only will they be controlled by a common cleck, but even the execution
of the six fragments is synchronized to the extent that we could, as a first
approximation, visualize the six fragment executions taking place under control
of & central ("virtual™?) instruction counter. In practice we don't expect
this to be truly the case. Firstly, instruction counters locate instructions
in the stores and dynamically corresponding fragment parts in different compo-
nents could require different amounts of store. Secondly, it is not excluded
that certain redirections of control --possibly, for instance, the return from
a procadu;e—- don't take place simultaneously in all six components: some of
them might be mildly our of phase. It should be pointed out that we expect
the pattern of flow of cantrol of the program fairly faithfully reflected in
each of the fragments: a loop on the program is practically certain to give

rise to a corresponding loop in each of the fragments.

A point of special concernm has been the problem of bus allocation; the
bus is clearly a common resourse and it seemed mandatory that the bus can be
used withouﬂany form of handshaking, either for the purpose of synchronization
or for the purpose of conflict resolution between two or wore senders, We have
therefore decided that the possible patterns of bus usage are fixed during
compilation (or rather "fragmentation") and are recorded in the fragmentis
to such an extent that for each component its fragment prescribes when to
send or to recsive what. This decision makes quite clear the extent to which
the verious fragments derived from a single program have to be derived simul-
taneously and in strong interdependence of each other: at run time the sending
of a result by one component under control of its fragment must ceincide with
the reading from the bus by one or more other components under control of
their fragments. There will be no contention, i.e. if during a time slot more
than one component sends, there must be something wrong --either component
malfunctioning or an erroneous compiler-- . A hardware check on such erroneaus

bus usage is assumed,

EWD590 - 4

For the synchronization of the bus centacts various techniques can be

I

considered. Under the assumptions that

a) each instruction takes a fixed, a priori known number of time units

b) the order code contains the instructions "SEND" and "RECEIVE™ s that
transmit information from a compeonent register to the bus and vice verse
respectively

c) the order code contains DELAY instructions, each of a fixed, e priori
known number of time units,

the fragmenis can be coded in such a way that during concurrent execution --as
if by wagic!~- each SEND coincides in time with the appropriate RECEIVE's. The
obligation of "padding out" the fragments is tedious, but not diffieult. Alter-
natively we could consider each RECEIVE to extend up to the end of the "next"
SEND. Note that also in this case the fragmentation cannot be performed without
rather detailed timing information: we would have to ensure that no SEND starts
to early.\ With the above we don't think that we have explored all possibilities:
at this stage of our investigations we would prefer not to commit ourselves beyon

the decision that during fragmentation the pattern of bus usage is determined.

Note. We have not fully committed ourselves yet on what the pattern of bus
usage may depend. It will certainly depend on the flow of control ~-which,
therefore, is largely common to all fragments--, it could in principle also
depend on intermediate values: if during a specific time slot a number of
components are going to receive the value of a[i], stored in another component,
the identity of the sender could be made dependent on the value of 1 , wviz.
when the elements of the array are distributed over more than one component.
(This is not what we emphatically envisage; on the other hand this is not the
time to exclude it.)

A second example may be provided by an implementation of (in old nntatian)

if B then xi= y glse x:= z fi ;

if x, y,and z are stored in different companents, the one containing x

may receive its new value in a sense from "an unknown sender". Both the examples

illustrate how (local) differences in flow of control may be confined to part

of the fragments. (End of note.)

Note. It might be thought that timing obligations are hard to fulfill because
execution time is not known a priori in the case of repetition, In that casga,

however, the repetition will be faithfully reflected in all fragments. (End of

note.)

EWD590 - 5

Note. If we allow nondeterminacy in our source program, E.g.
if B - 51 [B2 - 52 54

the nondeterminacy has to be resolved on the level of the total machine, and

not independently in the different components. (End of note.)

Note. In sequential programming we have already experienced the luxury of

programming as if all guards of a guarded command set are evaluated concurrently,
If the values of the different guards are formed in different components and
they have, therefore, to be broadcast, the bus, which is assumed to have many

wires, may be split up in a rumber of sub-buses. (End of note.)

* *
*

In order to describe the kind of happenings inside the working crossflow
computer as we visualize it at the moment, we relate them to what would happen
during a straightforward sequential implementation of the éame program. (The
fact that that relation is such a close one is indicative fof the modest con-
currency in our proposal.) We envisage that to each transmission via the bus
will correspond either a guard-broadcasting or an assignment from the traditional
sequential execution. Caonversely we hope that many store instructions in the
traditional sequential execution --in particular those to anonymous intermediate
results-- won't need the bus. It is envisaged that the hus contacts will take
place in exactly the same order as in which the carresponding evenis would take
place in the sequential execution, a correspondence to which we wish to stick
for two reasens, The one reason is that without more revolutionary massaging
of the program text, the design of the cumpilar/fragmenter is already difficult
enough; the other reason is that we wish our reasoning techniques about se-

quential programs to remain applicable.

(Ta be cnntinued.)

Plataanstraat 5 praf.dr.Edsger W.Dijkstra

NL-4565 NUENEN Burroughs Research Fellow
The Netherlands

