EWD640a - O
EWD640a.html

Finding the correctness proof of a concurrent program.

Introduction.

In this paper we want to do more than just giving another --be it un-
usual-- example of the utility of the first-order predicate calculus in
proving the correctness of programs. In addition we want to show how,
thanks to a systematic use of the first-order predicate calculus, fairly
general --almost "syntactic"-- considerations about the formal manipulations
involved can provide valuable guidance for the smooth discovery of an other-

wise surprising argument.

For proofs of program correctness two fairly different styles have
been developed, "operational" proofs and "assertional" proofs. Operational
correctness proofs are based on a model of computation, and the corresponding
computational histories are the subject matter of the considerations. In
assertional correctness proofs the possibility of interpreting the program
text as executable code is ignored and the program text itself is the subject

matter of the formal considerations.

Uperaf&onal proafs --although older and, depending on one's education,
perhaps more "natural”™ than assertional proofs-- have proved to be tricky to
design. For more complicated programs the required classification of the
possible computational histories tends to lead to an exploding case analysis
in which it becomes very clumsy to verify that no possible sequence of events
has been overlooked, and it was in response to the disappointing experiences

with operational proofs that the assertional style has been developed.

The design of an assertional proof --as we shall see below-~ may pre-
sent problems, but, on-the whole, experience seems to indicate that assertional
proofs are much more effective than operational ones in reducing the gnawing
uncertainty whether nothing has been overlooked. This experience, already
gained while dealing with sequential programs, was strongly confirmed while
dealing with concurrent programs: the circumstance that the ratios of the
speeds with which the sequential components proceed is left undefined greatly
increases the class of computational histories that an operational argument

would have to cover!

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD640a.html

EWD640a - 1

In the following we shall present the development of an assertional
correctness proof of a program of N-fold concurrency. The program has been
taken from the middle of a whole sequence of concurrent programs of increas-
ing complexity --the greater complexity at the one end being the consequence
of finer grains of interleaving-- . For brevity's sake we have selected here
from this sequence the simplest item for which the sssertional correctness
proof displays the characteristic we wanted to show. (It is not the purpeose
of this paper to provide supporting material in favour of the assertional
style: in fact, our example is so simple that an operational proof for it

is still perfectly feasible.)

In the following y denotes a vector of N components y[i] for
O<i<N. With the identifier f we shall denote = vector-valued function

of a vector-valued argument, and the algorithm concerned solves the equaticn

y = #{y) (1)

or, introducing fo, f1, f2,... for the components of f

v[i] = f‘i(y) for 0<i<N . (2)

It is assumed that the initial value of y and the function f are

such that repeated assignments of the form

<ylili= £ (y) > | (3)

will lead in a finite number of steps ta vy being a solution of (1). 1In
(3) we have used Lamport's notation of the angle brackets: they enclose
"atomic actions" which can be implemented by ensuring between their execu-
tions mutual exclusion in time. For the sake of termination we assume that

the sequence of i-values for which the assignments (3) are carried out is

(the proper begin nf) a sequence in which each i-value cccurs infinitely
often. (We deem this property guaranteed by the usual assumption of "finite
speed ratios"; he who refuses to make that assumption can read the following

as a proof of partial currectness.)

For the purpose of this paper it suffices to know that functions. f

exist such that with a proper initial value of y egquation (1) will be solved

EWD640a - 2

by a finite number of assignments (3). How for a given function f and
initial value y this property can be established is not the subject of
this paper. (He who refuses to assume that the function f and the initial
value of y have this property is free to do so: he can, again, read the
following as & proof of partial correctness that states that when our

concurrent program has terminated, (1) is satisfied.)

Besides the vector y there is ——for the purpose of controlling ter-
mination-- a vector h , with boolean elements h[i] for O0<i <N, all
of which are true to start with. We now consider the following program of
N-fold concurrency, in which each atomic action assigns a8 value to at most
one of the array elements mentioned. We give the program first and shall

explain the notation afterwards.

The concurrent program we are cansidering consists of the following

N components cpnti (O_S i <IN):

cpnt, :
LO: do < (E j: b[i]) >~
L1 <if y[i] = £ (y) = b[i}:= false >
0 vla] # 7. () = ylile= £ (v} >
L2js (& j: <h[i]i= true >)

In line LO , "(E NE h[j]f' is an abbreviation for
(£ j: 0= i <nN:n[5]) ;

for the sake of brevity we shall use this abbreviation throughout this paper.
By writing < (E j: h{j]) > in the guard we have indicated that the inspection

whether a true h[j] can be found is an atomic action.

The opening angle bracket ™ <" in L1 has two corresponding closing
brackets, corresponding to the two "atomiec alternatives"; it means that in
the same atomic actions the guards are evaluated and either "h[i]:= false"
or "y[i]:: fi(y)" is executed. In the latter case, N separate atomic

actions follow, each setting an h[j] to true: in line LZj we have used

EWD640a + 3

the abbreviation "(&'j: <Ih[j]:= true >)" for the program that performs
the N atomic actions < h[0]:= true > through <Ih[N—1]:= true > in some

order which we don't specify any further.

In our target state y is & solution of (1), or, more explicitly

(a 50 y[3] = 7, () (4)

holds. We first observe that (4) is an invariant of the repeatable statements,
i.e. once true it remains true. In the alternative constructs always the
first atomic alternative will then be selected, and this leaves y , and

hence (4) unaffected. We can even conclude a stfunger invariant

£ (y¥)) (5)
]

non (E j: h[j]) and (A j: y[j]

or, equivalently

o

(A j: pon h{j]) and (A 3: y[j] fj(y)) (5)

for, when (5) Lulds, no assignment h[i]:: false can destroy the truth of

(ﬁ_j: nan h[j]) . When (4) holds, the assumption of finite spesd ratios

implies that within a finite number of steps (5) will hold. But then the

guards of the repetitive constructs are false, and all components will terminate
nicely with (4} holding. The critical point is: can we guarantee that none

of the components terminates too soon?

We shall give an assertional proof, following the technique which has
been pioneered by Gries and QOwicki [1]. We call an assertion "universally
true" if and only if it holds between any two atomic acticons -~i.e. "always"
with respect to the computation, "everywhere" with respect to the text-- .
More precisely: proving the universal truth of an assertion amounts to showing
1) that it holds at initialization

2) that its truth is an invariant of each atomic action.

In order to prove that none of the ceomponents terminates too soon, i.e.

that termination implies that (4) holds, we have to prove the universal truth of

(£ iz h[3i]) oz (A 3: y[i] = fj('y)) . (6)

Relation (5) certainly holds when the N components are started because
initially all h[j] are true. We are only left with the obligation to

prove the invariance of (6); the remaining part of this paper is devoted

to that proof, and to how it can be discovered.

EWD640a - 4

We get a hint of the difficulties we may expect when trying to prove

the invariance of (6) with respect to the first atomic alternative of L1:
<:y[i] = fi(y) —- h[i]:: false >

as soon as we realize that the first term of (6) is a compact notatian for
h[0] or b[1] or ... or h{N-1]

which only changes from true to false when, as a result of “h[i]:: false"

the last true h[j] disappears. That is ugly!

We often prove mathematical thearems by proving a stronger --but,
somehow, more manageable-- theorem instead. In direct analogy: instead
of trying to prove the invariant truth of (6) directly, we shall try to
prove the invariant truth of a stronger assertion that we get by replacing
the conditions y[j] = fj(y) by stronger ones. Because pon R is stronger

\
than Q provided (Q or R) holds, we can strengthen (6) into

(E 5= (i) 2x (& 3¢ non ®.) (7)
provided @ 52 y[5] = #,(0) oz) (8)

holds., (Someone who sees these heuristics presented in this manner for the
first time may experience this as juggling, but I am afraid that it is quite

standard and that we had better get used to it.)

What have we gained by the introduction of the N predicates Rj ?
Well, the freedom to choese them! More precisely: the freedom to define
them in such a way that we can prove the universal truth of (8) -~which is
structurally quite pleasant-- in the usual fashion, while the universal truth
of (7) --which is structurally equally "ugly" as (6)—- follows more or less
directly from the definition of the Rj's : that is the way in which we

may hope that (7) is more "manageable" than the original (6).

In order to find a proper definition of the R.'s, we analyse our

obligation to prove the invariance of (8).

If we only looked at the invariance of (8), we might think that a

definition of the Rj's in terms of vy :

EWD640a - &

Ay = L £ 7,00

would be a sensible choice. A moment's reflection tells us that that
definition does not help: it would make (8) universally true by définition,
and the right-hand terms of (6) and (7) would be identical, whereas under the
truth of (8), (7) was intended to be stronger than (6).

For two reasans we are looking for a definition of the Rj's in which
the y does not occur: firstly, it is then that we can expect the proof of

the universal truth of (8) to amount to something --and, thereby, to contribute

to the argument-- , secondly, we would like to conclude the universal truth
of (7) --which does not mention vy at all!-- from the definition of the

R.'s . In other words, we propose a definition of the Rj’s which does not
refer to y &t all: only with such a definition deoes the feplacement of
(6) by (7} and\(B) localize our dealing with y completely to the proof

of the universal truth of (8).

Because we want to define the Rj's independently of y , because
initially we cannot assume that for some j-value y[j} = fj(y) holds, and

because (8) must hold initially, we must guarantee that initislly
(& j: R) (9)

holds. Because, initially, all the h[j] are true, the initial truth of

(9) is guaranteed if the Rj's are defined in such a way that we have

(E j: non h[i]) ox (A j: nj) . (10)

We observe, that (10) is again of the recognized ugly form we are trying to
get rid of. We have some slack --that is what the Rj's are being intro-
duced for-- and this is the moment to decide to try to come away with a

stronger --but what we have called: "structurally more pleasant"-- relation
for the definition of the Rj's , Trom which (10) immediately follows. The

only candidate I can think of is

(& 5z non h[j] ez R.) (11)

and we can already divulge that, indeed, (11) will be ane of the defining
equations for the Rj's .

From (11) it follows that the algorithm will now start with s11 the

.

EWD640a - 6

Rj's true. From (8) it follows that the truth of Rj can be appreciated
as "the eguation y[j] = fj(y) need not be satisfied", and from (7) it follows

that in our final state we must have all the Rj's equal to false.

Let us now look at the alternative construct

L1: <if y[i] = fi(y) - h[i]:: false >
0 vli] # ¢ (¥) = y[i):= F ly) >
L2j: (A j: <h[j]i= true >)
fi .

We observe that the first alternative sets h[i] false, and that the second
one, as a whole, sets all h[j] true. As far as the universal truth of (11)
is concerned, we therefore conclude that in the first alternative Hi is al-
lowed to, and hence may become false, but that in the second alternative as a

whole, ail Rjﬂg must become true.

Let us now confront the two atomic alternatives with (8). Because,
when the first atomie alternative is selected, only y[i] = Fi(y) has been
observed, the universal truth of (8) is guaranteed to be an invariant of the

first atomic alternative, provided it enjoys the following property (12):
In the execution of the first atomic alternative
<Cy[i] = fi(y) «-h[i]:: false >

no R for j % i changes from true to false. (12)

Confronting the second atomic alternative

<vyli] £ 7. (0) = y[i):= . (y) >

with (8), and observing that upon its completion hone of the relations

y[j] = fj(y) needs to hold, we conclude that the second atomic alternative
itself must already cause a final state in which all the R.'s are true,

in spite of the fact that the subsequent assignments h[j]:: true —~whicﬁ
would each force an Rj to true on account of (11)—— have not heen executed
yet. 1In short: in our definition for the Rj's we must include besides

(11) another reason why an Rj should be defined to be true.

As it stands, the second atomic alternative only modifies y , but we

had decided that the definition of the Rj's would not be expressed in terms

EWDE40a- 7

of vy ! The only way in which we can formulate the additional reasan for an
Rj to be true is in terms of an auxiliary variahle (tu be introduced in a
moment), whose value is changed in conjunction with the assignment to y[i] .
The value of that auxiliary variable has to force each R. +to true until the
subsequent assignment <Ih[j]:: true > does so via (11). Because the second
atomic alternative is followed by N subsequent, Separate atumic actionsg
<fh[j]:= true > -_one for each value of j - v it stands to reason that we
introduce for the i-th component cpnti an auxiliary local boolean array

s; with elements si[j] for 0<j<N. Their initial (and "neutral®)

value is true. The second atomic alternative of L1 sets them all to false,

the atomic statements L2 will reset them to true one at a time.

In contrast to the variables y and h s which are accessible to
all components w-which is expressed by calling them "global variables"--
each variable! Si is only accessible to its corresponding compenent cpnti
=-which is expressed by calling the variable S5 "loeal" to companent
cpnti—- .

Local variables give rise to so-called "local assertions”. Local
assertions are most conveniently written in the Program text of the ingi-
vidual components at the place carresponding to their truth: they state
a8 truth between Preceding and Succeeding statements in exactly the same way
8s is usual in annotating or verifying sequential programs. If a local
assertion contains only local variables, it can he Justified an account of

the text of the torresponding component only.

In the following annotated version of cpnti we have inserted local
assertions between braces. In order to understangd the local assertions about
s it suffices to remember that 5 is local ta cpnti - The local
assertion {Ri} in the second atomic alternative of (1 jg Justified by
the guard y[i] # fi(y), in conjunction with (8). We have further incor-
porated in our annotation the consequence af (12) and the fact that the
execution of a second alternative will never cause an Rj to become falge:

a true Ri can only become falge by virtue 5f the execution of the first
alternative of L1 .by cpnti itself! Hence, Ri is true all through the

execution of the second alternative of cpnti .

EWD640a -~ 8

cpnti:
L0: da < (€ j: h[j]>= {(a ;s s. [}
L1: <if y[i] = £ (y) = h[i]i= felce > a5 s (5]}
0 v[i] # oy} =
{R.} yli]:= ¥
(& 3: s [1]:= falce) > {R; 2nd (A j: nan s, [iD}s
L2 (& 5+{R; and non s [§]} < h[;]:= true; s [§]i= true >)
(A s s [3]))

5

On account af (11) Rj will be true upon completion of L2j . But
the second atomic alternative of L1 should already have made Rj irue,
and it should remain S0 until 2§ is Executed. The precondition of L2j,

8s given in the annotation, hence tells us the “other reason besides
_ (A i+ nan h[J’]ELRJ-) (11)
why an Rj should be defined tg be true":
(A i, j: non R. or si[j] or Rj) . (13)

Because it is our aim to get eventyally all the R.'s false, we define
the Rj's as the minimal solution of (11) and (13), minimal in the sense

of: as few R 1g true as possible,
J

The existence of a unique minimal solution af (11) and (13) follows
from the following construction. Start with all Rj's false ~-all equations
of (13) are then satisfied on account of the term "non Ri" -~ . If all
equations of (11) are satisfied asg well, we are regdy --no true Hj's at
all-- ; otherwise (11) is satisfied by setting Rj to true for all J-values
for which h[j] holds. Now all equations of (1) are satisfied, but some
of the equations of (13) heed no longer he satisfied; as long as an (i, i)-
Pair can be found for which the equation of (13) is not satisfied, satisfy it
by setting that Rj to true; 8s this cannot cause viclation of (11) we
end up with the Hj's being a solution of (11) and (13). But it is aleog

the minimal solutiun,-because any Rj true in this solutien must be true

in any solution,

For a value of j » for which

EWD640a - 9

& 3: s,05] ‘ (14)

holds, the above construction tells us that the truth of Hi forces nao
further true Rj's via (13); consequently, when such an Ri becomes false,

no other Rj-valuas are then affected. This, and the fact that theﬂfir$t
atomic alternative of L1 is executed under the truth of (14) tells us,

that with our definition of the Rj's as the minimal solution of (11) and (13},

requirement (12) is, indeed, met.

We have proved the universal truth of (8) by defining the Rj's as
the minimal solution of (11) and (13). The universal truth of (7), however,

is now obvious. If the left-hand term of (7} is false, we have
_ (& 5: non n[i]),
and (11) and (13) have as minimal soluticn all Rj's false, i.e.
(& j: ERJ)

which is the second term of (7). From the universal truth of (7) and (8),

the universal truth of (6) follows, and our proof is completed.

-

Concluding remarks.

This note bas been written with many purpases in mind:

1) To give a wider publicity to an unusual problem and the mathematics

involved in its solution.

2) To present a counterexample contradicting the much-propagated and hence
commonly held belief that carrectness proofs for programs are only laboriously

belabouring the obvious.

3) To present a counterexample to the much-propagated and hence commonly
held belief that there is an antagonism between rigour and formality an the

one hand and "understandability" on the other.

4) Ta present an example of a correctness proof in which the first-order

predicate caleulus is used as what seems an indispensable tool.

5) To present an example of a correctness proof in which the first-order

predicate calculus is a fully adequate tool.

EWD640a- 10

6) To show how fairly general --almost "syntactic"-- considerations abaout
the formal manipulations invalved can provide valuable guidance for the dis—r
covery of a surprising and surprisingly effective argument, thus showing how
a formal discipline can assist "creativity" instead of —-as is sometimes

suggested-- hampering it.

7) To show bow also in such formal considerations the principle of

separation of concerns can be recognized as a very helpful one.

I leave it to my readers to form their opinion whether with the above

I have served these purposes well.

Acknowledgements. I would like to express my gratitude to both IFIP WG2.3 and

"The Tuesday Afternoon Club", where I had the opportunity to discuss this
problem. Those familiar with the long history that led to this note, however,
know that in this case I am indebted to C.5.5cholten more than to anyone else.
Comments from S.T.M.Ackermans, David btries, and W.M.Turski on an earlier versicn

of this paper are greatfully acknowledged.

[1] Owicki, Susan and Gries, David, "Werifying Properties of Parallel

. Programs: An Axiomatic Approach". Comm.ACM 19, 5 (May 1976), pp.279-2865,
Plataanstraat 5 : prof.dr.Edsger W.Dijkstra
5671 AL NUENEN Burroughs Research Fellow

The Netherlands

