Copyright Notice

The following manuscript
EWD 650: A theorem about odd powers of odd integers
is held in copyright by Springer-Verlag New York.
The manuscript was published as pages 349-350 of
Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective, Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York. Any further reproduction is strictly prohibited.

- A theorem about odd powers of odd inteqers.

Theorem. For any odd $p \geq 1$, integer $K \geq 1$, and odd r such that that $1 \leq r<2^{K}$, a value x exists such that
R: $\quad 1 \leq x<2^{K}$ and $2^{K} \mid\left(x^{p}-r\right)$ and odd (x)
Note. For "a|b" read: "a divides b". (End of note.)

Proof. The existence of x is proved by designing a program computing x satisfying R.

Trying to establish R by means of a repetitive construct, we must choose an invariant relation. This time we apply the well-known technique of replacing a constant by a variable, and replace the constant K by the variable k. Introducing $d=2^{k}$ for the sake of brevity, we then get P: $\quad d=2^{k}$ and $1 \leq x<d$ and $d \mid\left(x^{P}-r\right)$ and $\operatorname{odd}(x) \quad$ -

This choice of invariant relation P is suggested by the observation that A is trivial to satisfy for $K=1$; hence P is trivial to establish initially. The simplest structure to try for our program is therefore:

$$
x, k, d:=1,1,2\{P\} ;
$$

do $k \neq K \rightarrow$ "increase k by 1 under invariance of P " od $\{R\}$.

Increasing k by 1 (together with doubling d) can only violate the term $d\left(x^{p}-x\right)$. The weakest precondition that $d:=2 *^{*} d$ does not do so is --according to the axiom of assignment-- $\left(2^{*} d\right) \mid\left(x^{P}-r\right)$. Hence an acceptable component for "increase k by 1 under invariance of p " is

$$
\left(2 *_{d}\right) \mid\left(x^{p}-r\right) \rightarrow k, d:=k+1,2 *_{d}
$$

In the case non $\left(2 *_{d}\right) \mid\left(x^{P}-r\right)$ we conclude from $d \mid\left(x^{P}-r\right)$ that $x^{P}-r$ is an odd multiple of d. Because d is even, and P and x are odd, the binomial expansion tells us that $(x+d)^{P}-x^{P}$ is an odd multiple of d, and that hence $(x+d)^{P_{-I}}$ is a multiple of $2 *_{d}$. Because also d is doubled, $x<d$ remains true under $x:=x+d$, because d is even odd (x) obviously remains true, and our program becomes:

```
\(x, k, d:=1,1,2\{p\} ;\)
do \(k \neq k \rightarrow\) if \(\left(2 *_{d}\right) \mid\left(x^{P}-r\right) \rightarrow k, d:=k+1,2^{*} d\{P\}\)
    \(\|\) non \(\left(2 *_{d}\right) \mid\left(x^{P}-r\right) \rightarrow x, k, d:=x+d, k+1,2^{*} d\{P\}\)
    fi \(\{P\}\)
od \(\{R\}\)
```

Because this program obviously terminates, its existence proves the theorem.
(End of proof.)

With the argument as given, the above program was found in five minutes. I only mention this in reply to Zohar Manna and Richard Waldinger, who wrote in "Synthesis: Dreams \Rightarrow Programs" (5RI Technical Note 156, November 1977)
"Our instructors at the Structured Programming School have urged us to find the appropriate invariant assertion before introducing a loop. But how are we to select the successful invariant when there are so many promising candidates around? [...] Recursion seems to be the ideal vehicle for systematic program construction [...]. In choosing to emphasize iteration instead, the proponents of structured programming have had to resort to more dubious (sic!) means."

Although I haven't used the term Structured Programming any more for at least five years, and although I have a vested interest in recursion, yet I felt addressed by the two gentlemen. So it seemed only appropriate to record that the "more dubious means" have --again!-- been pretty effective. (I have evidence that, despite the existence of this very simple solution, the problem is not trivial: many computing scientists could not solve the programming problem within an hour. Try it on your colleagues, if you don't believe me.)

Plataanstraat 5

5671 AL Nuenen
The Netherlands
prof.dr.Edsger W.Dijkstra
Burroughs Research Fellow

