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Termination detection for diffusing computations.

by

Edsger W.Dijkstra and LC.5.5cholten

The following seems tao capture the guintessence of a situation that
is not unusual in distributed processing. Consider a finite, directed
graph. (I1f the graph containg an edge from node A +to node B , we call
B "a successor of A " and A "a predecessor of B ".} UOne node is called
"the gate" and we may assume that each node is "reachable from the gate", a

concept defined by the (usual) postulates:

1) the gate is "reachable from the gate"
2) if A is "reachable from the gate", so are all successors of A
3) only those nodes are "reachable from the gate" that are so on account

of 1) and 2) .
In addition, the gate has an extra incoming edge, leading to it, so to speak,

from "the environment" --a symbolic predecessor of the gate-- .

A so-called "diffusing computation" is started when, via that extrs
edge, the environment injects a "message" into the gate. (Prior to that all
nodes are assumed %o be in their neutrasl state.) Upon reception of a message
from one of iis predecessors, a node reacts typically in one of two ways:

a) either it absorbs the message, or
b) it sends a message to each of its successors.
A node, originally without successors, is modeled as a node with at least

one successer --for instance: itself!-- that always opts for reaction a)

It is the possibility of reaction b) that inspired the name "diffusing com-
putations”, From now onwards we shall confine our attention to such computetions
for which it can be proved that easch node will opt for reaction b) a bounded
number of times. For such computations eventually each node will reach the
state that all messages it had opted to transmit to its successors have been
transmitted, each node is "waiting" for & next message that doesn't come and
the whole graph is as dead as a doornail; when this stable state has been
reached the diffusing computation is defined to have terminated. Our problem
is the design of a signalling scheme --to be superimposed upon the diffusing
computation proper-- such that, when the diffusing computation proper has

thus terminated, the gate will eventually signal the fact of this completion

back to the environment. Besides a node's ability to receive messages
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from its predecessors and to send messages to its successors, we assume each
node also sble to receive "signals" from its successors and send "signals" to
its predecessors; in other words, each edge is assumed to be able to accommodate
two-way traffic, but only messages of the computation proper in the one di-
rection and signals in the opposite direction. We shall impose that in the
total computation --i,e. from the moment that the initial message was injected
into the gate until the gate emits the completion signal towards the environ-
ment-~ each edge will have carried as many messages in the one direction as

it has carried signals in the opposite direction,

The implementation of the signalling scheme we propase requires for
each node an integer variable called "count", initially and finally zero,
and what we have dubbed "a cornet", initially and finally empty. {The name
"cornet" has been chosen because, like in a pointed bag, one element conteained
in it enjoys a special status: whereas in a traditional bag all elements
contained in it enjoy the same status, one of the elements contained in a
non-empty cornet occupies the special position of being "the oldest element",
Whereas & stack is characterized by "last in, first out", & cornet is charac-

terized by the much wesker "very first in, very last out".)

Each reception by B of a message from A causes the name of A ‘tD
be added to B's cornet, which by this mechanism can be filled with names
of predecessors of B . Note that, because the directed graph may contain
merging, and even cyclic paths, the cornet of B may contain the name of
B's predecessor A several times. When the name of A is added to B's
empty cornet, this occurrence of A's name in B's cornet is marked as

"the oldest element".

The transmission of a signal from B to its predecessor A is accom-

panied by the removal of one occurrence of A's name from B's cornet.

As reception of a message from a predecessor and transmigssion of a
signal to & predecessor correspond --in the way just described-- to the only
changes of the contents of a node's cornet, and because a node has to return
to each of its predecessors a signal for each message received from that

predecessor, the current contents of a node's cornet summarize its signalling
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obligations. The choice of predecessor to receive a signal is, by definition,
constrained by the condition that the name of the predecessor chosen occurs
still at least once in the cornet of the signalling neode (because otherwise
it would be impossible to remove an occurrence of that name from that cornet).

The additional constraint —-which distinguishes a cornet from a standerd bag--

is that from a cornet the element marked as "the oldest element" may only be
removed provided it was the only element in the cornet (which, as & result of

the removal, then becomes empty).

In order to determine when a node will return a signal to one of its
predecessors the variable "count", which is initially equal to zero, is
manipulated in the following fashion. Let a node receive a message and, as
a result, send a message to x of its successors: in reaction a) x =0,
in reaction b) x =k 1if k denotes the number of its successars. (WE
can regard reactions a} and b) as extreme cases and admit values of x
such that 0 <x <k as well, i.e. the reaction in which a node sends a
message to some of its successors.) Whenever a node rescts thus upan a
message received from one of its predecessors, it increases its count by
k = x ; when it receives a signal from one of its successors, it increases
its count by 1 ., These are thé only mechanisms that increase the count .
The count is only decreased in wultiples of k , more precisely, when the
count > k and the cornet is non-empty, the count will be decreased by k

and the node will return s signal to & predecessor, the name of which is

removed from the node's cornet as described in the preceding paragraph.

This completes the description of the signalling scheme. Note that
@ node neither records to which successors it has sent messages, nor from

which successors it has received signals.,

* *
*

For each edge we define the "deficit" as the number of messages
transmitted along that edge, minus the number of signal returned alaong it.
In its role of message receiver and signal sender, the node to which an edge
points guarantees that the deficit of that edge is non-negative. Furthermore,

for each node the relation

P1: the size of its cornet = the sum of the deficits of its incoming edges
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which is true to start with, is left invariant: when the node receives &
message both sides are increased by 1 , when the node sends a signal both

sides are decreased by 1 .

For each node we define the "stock" as the number of messages, the
transmission of which it has decided but not yet performed; by definition
also stocks are non-negative. This concept enables us to formulate for

each node the relation

p2: k *(the size of its cornet) = the sum of the deficits of its k out-

going edges + count + _stock

which is clearly true to start with; of its inveriance we can convince our-
selves vis the following table of increments, in which the rows correspend

to the quantities incremented and the columns to the events:

I 11 111 1v
k *(the size of its cornet) k 0 0 =k
sum of the deficits 0 +1 -1 0
count k = x 0 +1 -k
stock X -1 0 0
with I: receiving a message
II: sending a message
iIl: receiving s signal

Iv: sending & signal.

From P2 we conclude, stocks and deficits being non-negative and k >0 ,
that count >z k implies that the cornet is non-empty. Hence, a count =k

is, all by itself, s sufficient conditien for the transmission of a signal

to & predecessor. Hence, when the diffusing computation proper has died out
—-i.e. all stocks = 0 -- , each count will eventually become less than the

k of its node. (If & count is > k , it will be decreased by k and, be-
cause also a signal is sent, the count of one of its predecessors is increased
by 1 ; +this process, however, is bound to terminate, because each time the

sum of all the deficits is decreased by 1 .} Let us call the state in which
all stocks are zero and all counts less than the corresponding k's --i.e.

the state in which neither messages, nor signals are anymore sent-- the "ul-

timate state™. From P2 we conclude that in the ultimate state --because then



EWDEB4 - 4

we have count <k and stock = 0 ~-

k *(the size of its cornet) < the sum of the deficits of its k

outgoing edges + k
holds for each node. Because the right-hand side is at most equal to
k *(the maximum deficit of its outgoing edges + 1 )
we can now, thanks to P! and because k >0 , formulate our

Lemma . In the ultimate state each node has at least one outgoing edge with

a deficit at least equal to the sum of the deficits of its incoming edges.

Up till now we have not made use of the fact that a node has = cornet:
for the above a standard bag insteasd of & cornet would have been sufficient.

We shall now exploit the difference between a cornet and a bag.

We call a node without "oldest element", i.e. one with an empty cornet, a
"neutral node", Relation P1 tells us that the deficits of the incoming
edges of a neutral node are 8ll = 0 , relation P2 tells us that the deficits
of the outgoing edges of a neutral node, snd its count and its stock are all
=0 . A node that is not neutral is called "engaged". We can now fnrmuléte

the invariant relation

P32 the set of edges, each of which leads to an engaged node from its
predecessor named by the oldest element of that engaged node, form
a rooted tree --the so-called "engagement tree"-- for which the en-

vironment acts as the root.

Because only the gate can have the environment's name as its oldest
element, the gate is the only possible descendant of the environment. Relation
P?3 is certasinly true at the beginning, when the environment injects a message
into the gate. It ohviously remains true when node B becomes engaged: B
does so by receiving & message from one of its predscessors, node A say, but
at that moment, node A was certainly engaged, and the engagement tree is exw
tended with a branch from A to B ., Finally we have to show that, when B
returns to neutral, B was a leaf of the engagement tree. As long as B re-
meains engaged, its cornet contains an occurrence of A's name as "the oldest

element" and the deficit of the edge from A to B remains positive. When
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that deficit returns to zero, also the size of B's cornet returns to zero;
from P2 we conclude that at that moment all B's outgoing edges have a
deficit equal to zero. Because branches of the engagement tree correspond

to edges with a positive deficit, none of B's outgoing edges can correspond
a8t that moment to a branch of the engagement tree, and, hence, B was at that

moment a leaf.

Having thus established the existence of the engagement tree, we are,

at last, ready to prove our two theorems.

Theorem 1. When the gate returns a signal to the environment,.the diffusing

computation has died out.

Proof. When the gate returns & signal to the environment, it returns itself
to the neutral state; as the gate was the environment's only descendant, the
engagement tree is now empty, i.e. all nodes are in the nsutral state. (End

of proof,)

Theozem 2. When the diffusing computation has died out, the gate will eventually

return a signal to the environment.

Proof. We have already shown thet, when the diffusing computation Has died
out, the system will reach the ultimate state. Let in the ultimate state

y be the maximum value of all the deficits on the whaole graph. Consider an
edge with deficit y . Its target can hsve no other incoming edges with a
positive deficit, fuf then the sum of the deficits of its incoming edges would
exceed y and, according to our Lemma, it would have an outgoing edge with
a deficit exceeding y , something which is impossible because y has been
defined to be the maximum deficit., According to our Lemma and on account of
our definition of y , that target has at-least one outgoing edge with e
deficit =y . As a result edges with deficit = y form at least one cyclic
path, such that none of the nodes on that path has other incoming edges with
& positive deficit. Therefore, no node of such a cyclic path can be reached
from the environment vis branches of the engagement tree, which all have a
positive deficit. Hence the nodes on such a cyclic path are all neutral,

y therefore eguals zero, therefore all nodes are neutral, and therefore the
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environment has received the signal from the gate when the ultimate state

has been reached. (End of proof.)

Remark. On account of the close similarity of the diffusing computation and
deadlock, it seems likely that our solution can be adapted to the purpose of
deadlock detection in networks. As we are more in favour of deadlock prevention,

we did not pursue this possibility. (End of remark.)
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