Ewn703 - O
EWD703.html

A tutorial an the split binary semaphore.

The purpose of this note is threefold. It has been written to intro-

duce the student to

1} the technigue of the so~called "split binary semaphcore" --originally

discovered, but at the same time not recommended, by C.A.R.Hoare--
2) the use of fommal techniques in the develapment of multiprograms

3) the now canonical example of "“"The readers and the writers", which the
student must know anyhow; it will be used as a carrier for the other two
purposes. The problem of the readers and the writers was designed by D.L.

Parnas.

We consider two classes of cyclic processes, called "readers" and
"writers" respectively. With "ncs"™ standing for "nonwcritical section",

they can be described by the programs

readex: do true — ncs; READ od | {1)
writer: do true — ncs; WRITE od

respectively. HBere "READY and "WRITE" denote their respective critical
sections, critical in the sense that when a writer is engaged in its critical

section, it must be the only procsss engaged in its critical section. This

problem can be saclved in many different ways --the problem is canonical in
the sense that everybody proposing new synchronization primitives has solved

it in his way-- , we shall now solve it using a2 split binary semaphore.

Our first step is the introduction of variables, in terms of which we

express our synchronization requirement formally; we call them "ar"™ and

" "

aw ~~short for "number of active readers"™ and "number of active writers"

respectively—- and consider the following multiprogram:

initial state: ar = 0, aw = O, mutex =1 (2)

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD07xx/EWD703.html

EWD70% - 1

reader: do true — ncs; [Dont.(Z)]

Plmutex); ar:= ar + 1; V(mutex);
READ:

P(mutex); ar:= ar - 1; V(mutex)

writer: do true — ncs;
P(mutex); aw:= aw + 1; V(mutex);
WRITE;

P(mutex); aw:i= aw ~ 1; V{mutex)

For multiprogram (2) the invariance of
PO: ar > 0 and aw > 0

follows immediately in the usuval way "from the topolegy of the program".
(Associate with readeri an additional variable ;s initially = 0, and
satisfying O 5}ci <1 ; replace ar:= ar + 1 by €,y ar = 1, ar + 1 and

ar:= ar - 1 by ¢,, ar := 0, ar - 1 and observe the invariance of ar =
i

Zci ’ etc.)

Note. lLooking at program (2) and interpreting it operationally, one might be
tempted to say: clearly ar > the number of readers engaged in READ , and
as "a number of readers" is never negative, ar >0 follows immediately, and
similarly for aw >0 . I prefer not to do so, to prove the invariance aof
PO from the uninterpreted text (2), and to conclude from PO that it does
not prohibit the interpretation of ar and aw as natural numbers, (End of

Note.)

In texme of ar and aw I propose the required invariance of
P1: aw = 0 or (aw =1 and ar = 0)

as a suitable formal expression of our operational requirement "when a writer

is engaged in its critical section, it must be the only process engaged in

its critical section™. The term aw = 0 is intended toc cover the situation

when no writer is engaged in its critical section, the term aw = 1 and ar =0

EWD703 - 2
should cover the case when a writer is engaged in its critical section.

Note. The attentive reader will already have decided that he should not ex-
pect more eloquence from me on the "suitability" of the proposal captured by

P1 . (End of Note.)

In order to prevent ar:= ar + 1 from violating P1 we can make

it into a guarded command of the form
wp("ar:: ar + 1", P1) - ar:= ar + 1 .
The axiom of assignment gives for this guard
aw = 0 pr (aw = 1 and ar + 1 = 0)
but on account of PO the second term is false, and we simplify

aw = O + ar:= ar + 1 .

In order to prevent aw:= aw + 1 from violating P! we cansider
wp(Mawi=aw + 1", P1) - aw:=aw + 1 .
The axiom of assignment gives for this guard

aw + 1 =0 or {(aw+ 1 =1 and ar = 0)

but, again, PO admits simplification of this quard --its first term is false--—

and we find

aw = 0 and ar = 0 - aw:= aw + 1 .

The decrease ar:= ar — 1 is similarly guarded
wp("ar:= ar ~ 1", P1) = ar:= ar - 1 s
and we get for the guard with the axiom of essignment

aw = 0 or (aw = 1 and ar - 1 = 0) ,

which, thanks to P! 'can be simplified as
aw = 0 - ar:= ar - 1 .

The known invariance of PO tells us that the precondition of ar:= ar - 1

EWD703 - 3

implies wp{"ar:= ar - 1", PO) , i.e, implies ar - 1 >0 ; on account of

P1 +this implies aw = O , and, therefore, we can simplify to
true — ar:= ar - 1

i.e., the decrease ar:= ar - 1 need not be guarded at all,

The verification that also aw:= aw - 1 need not be guarded is left

to the reader.

Inserting the guards as derived we get
initiel state: ar = 0, aw = 0, mutex = 1 (3)

reader: do true — ncs;
§ Pﬁmutax); if aw = O — ari= ar + 1 fi; v{mutex):
READ;

P(mutex); ar:= ar - 1; V(mutex)

writer: do true - ncs;

§§ P(mutex}; if aw = O and ar = O - aws= aw + 1 fi; V(mutex);
WRITE;
P(mutex); aw:= aw - 1; V(mutex)

od

Multiprogram (3) has been designed so as to leave PO and P1 invari-
ant, and that is fine. It has, however, & major drawback: both alternative
constructs, in the lines marked § and §§ respectively, may lead to abor-
tion! The so-called split binary semaphore provides us with a technigue for
preventing the selsction of the critical sections marked § and §§ res-

pectively under those circumstances in which they would lead to abortion,

We replace the single binary semaphore mutex by three, also binary,

semaphores ~-m , r , and w say-- , related to the original mutex by
mutex =m + r + w ’

and replace in multiprogram (3) each P(mutex) by P(m), P(r), or P(w)

EWD703 - 4

—--the three ways of decreasing mwutex by 1-- and each V(mutex) by V(m),
V(r), or V(w) --the three ways of increasing mutex by 1ea . (Hacausa

m, r, and w are semaphores, we thus guarantee O < mutex <1 .) More pre-
cisely: we replace the P(mutex) marked by § by P(r) , replace the
P(mutex) marked by §§ by P(w) , and the P{mutex) that opens a critical

section that cannot lead to abortion by F(m) .

We can now avoid selection of an aborting critical section by guarding
v(r) by aw =0 and by guarding v (w) by aw =0 and ar = 0 , because
the precondition of a V-operation on a component of a split binary semaphore
can be taken as the postcondition of the corresponding P-operation. Our
analysis so far would suggest that it suffices to replace V(mutex) everytime

by

Q: if true - v(m) ﬂ aw = 0 - V(r) ﬂ aw = 0 and ar = 0 - viw) i (4)

This, however, is too naive. To start with: how do we translate the
initialization mutex =1 ? The initialization m =0, r =1, w=0 1is tao
regtrictive: if all readers remain in their ncs , no writer could perform
WRITE. The initiaelization m =0 , r =0, w =1 has to be rejected on sim-
ilar grounds. In order to make the only remaining possible initializatian
m=1, r =0, w=0 acceptable, readers and writers should encounter as
first P-operation one that cannot lead to abortion. We can satisfy this

requirement by inserting in both readers and writers ef (3) after nes

P(mutex); V(mutex);

before performing the substitution described above., This would lead to the

following multiprogram
initial state: ar =0, aw=0, m=1, r =0, w=0 (%)

reader: do true — ncs; P(m); Q;
P(r) {aw = 0}; ar:= ar + 1; Q;
READ;
P(m); art=ar - 1; 0

EWDY03 - 5

writer: do true - ncs; P(m); Q; [cnnt.(5)]
P(w) {aw =0 and ar = 0}; aw:= aw + 1; 0
WRITE;
P(m); aw:= aw - 1; Q

od

Multiprogram (5) is, however, still too naive: the non-determinacy, that has
been introduced by @ as given in (4), has lead to a system with the danger

of deadlock. The recipe for its prevention is, however, universal.

1) At initialization and at each V-operation, the "type of the next P-
operation" --i,e. the component of the split binary semaphore on which this
program will perform its next P-operation-- must be uniquely defined.

Our program (5) satisfies this condition, as do all programs without initial
non-determinacy nor non-determinacy between a V-operation and the dynamically
next P-operation. If a program does not satisfy this condition we can always
make it satisfying it by introducing one or more extra components of the split

binary semaphors, and by replacing essentially

if true - P(component 1);...
ﬂ true — P(compnnent 2)5u..

fi

H.

by

trus - P(extra cumponent); I; P(cnmpanent 1);...

|5

true — P(extra cumponent); ; P(cumpunent 2);...

H =

|ﬁ

Task. Prove that for this substitution process only a finite number of dif-

ferent extra comporents is needed. (End of Task.)

2) With each component of the binary semaphore we associaste a counter,
initialized to the number of processes for which the first P-operation is of

the correspanding type.

3) After each P-operation we insert a decrease by 1 of the counter as-

sociated with its type.

EWDT03 -~ 6

4) Before each 0 we insert an increase by 1 of the counter associated
with the type of the dynamically next P-operation. (Thanks to step 1,

this is & well-defined counter.)

Note, For the operationally minded:; each counter can be interpreted as the
number of processes "ready" or “headed" for a FP-operation on the correspond-

ing component. (End of Note.)

5) Strengthen in Q the guarding of each V(compunent) by the requirement

that the corresponding counter is positive,

Associating with the semaphore components m , r , and w the counters
bm , br , and bw respectively, carrying out the above transformstions on

program (5) 1leeds to

initial state: ar = O, aw = O, bm = number of processes, br =0, bw = 0 (6)

reader: do true - ncs;
P(m); bme= bm ~ 1; bri= br + 1; Q;
P(r); bri= br - 1; ar:= ar + 1; bms= bm + 1; Q;
READ;

P(m); bmi= bm - 1; ari= ar - 1; bmet=bm + 1; 0

writer: da true - ncs;
P(m); bm:i= bm = 1; bwi= bw + 1; Q;
P(w); bwi= bw = 1; aws= aw + 1; bm:= bm + 1; Q;
WRITE;
P(m); bm:= bm = 1; aw:= aw - 1; bmi= bm + 1; Q

od

with Q short for

Q: if bm >0 - V(m) (61)
H aw = 0 and br > 0 - V(r)
J aw=0and ar = 0 and bw > 0 - v{w)
fi

EWD703 - 7

Note. The transformation of the introduction of the counters and of the
strengthening of the guards in { by the requirement that the corresponding
counters be positive, excludes the danger of deadlock, If the original re-
quirement —-in our case: the invariance of P1-= entailed intrinsically the
danger of deadlock, this danger is now made manifest by the danger of sbortion
in 0 . The systematic procedure for dealing with that situation falls ocut-

side the scope of this tutorial, (End of Note.)

Our originel system was free from deadlock, hence we must --see above
note~- be able to prove the absence of the danger of abortion in Q . The

precondition of Q implies everywhere in (6)

bm + br + bw = number of resders + number of writers
ar + br < number of readers

aw + bw << number of writers
Tagk. Verify the above three assertions. (End of Task.)
From the above we conclude

ar + ew < bm , and hence

bm >0 og (ar = 0 and aw = 0) .

Assuming the number of processes to be larger than zero --otherwise the dangez

of abortion is absent anyhow!-- , we also have
bm > 0 or br > 0 o bw > 0

and from the last two relations it follows that at least one of the guards of

0 as given in (6') is true.

The above form of Q as given in (6') is still very non-deterministic:
we have the stretegic freedom of strengthening the guerds es long as we avoid
the danger of abortion., As it stands, ocur solution does not exclude that
readers or a writer are denied access to their critical section READ or
WRITE without reascn. Within Q we cen give "priority" to V(zr) or V(w)
by strengthening the guard of v(m) to the conjunction of the complements of

the other two gquards:

EWD703 - 8
Ams (aw>09_:;br=0)_§n_d(aw>02_r_r>02;bw-_—0)

Denoting by Ar and Aw respectively:

Ar: aw = 0 and br >0
0 0

Aws aw =

we can now substitute for Q in (6)

Q: if Am - vim) [I Ar - v(r) ﬁ Aw — V{w) fi . (7')

A1l (now superfluous) operations on bm can be omitted; using the post-
conditions of the P-operations, the substitution instances of @ as given

by (7') can be simplified, Thus we derive from (6) the multiprogram
initial state: ar =0, aw =0, br =0, bw =0, m=1, r =0, w=0 (7)

reader:

do true — ncs;
P(m); br:= br + 1; _i_f_aw>0-»\/(m) ﬂaw:O—-V(r) Fi;
P(r); br, ar = br - 1, ar+1;ﬁbr=0—v\!(m) ﬂbr>0-\l(r) fi;

READ:
P(m); ar:= ar - 1;ﬁar>0_u_ngbw:0—-V(m)
ﬂar:Owa>0—oV(w)
fi
od
writer:

do true — ncs;
P(m); bw:=bw + 1; if aw >0 gz ar >0 - V(m)
0 and ar:O—.V(w)

He =
s 1)
=
]

P(w); bw, aw 3= bw = 1, aw + 13 vim);

WRITE;

P(m); aws= aw - 1; if br = 0 and bw = 0 - V{m)
[br >0 - v(x)
[bw >0 ~ v(w)

EWD703 -~ 9

Remark. An inspection of the alternative constructs in (7) shows that only
the very last one is non-deterministic: here we have, therefore, still a
strategic freedom. Investigate the consequences of replacing the last
guarded command bw > 0 - V(w) by bw>0 and br = 0 - V(w) . (End of

Remark.) * *

In the above we have derived our final program as the end of a sequence
of successive versions. We have done so for educational reesons, with the
intent of introducing the different aspects of programs synchronized with
a split binary semaphore one after the other. This is not meant as a2 sugges~
tion that in the case of actual program design one should write down all those
successive versions! The experienced programmer knows that "outside the
critical sections™ as delineated by the P - V pairs, we have an invariant of

the form

(m:Oo

Am) and (r =0 ox Ar) and (w =0 or Aw)

and focusses his attention on the A's; having chosen them he derives the final
code. I meke this remark beceuse so-called "program transformations” are
sometimes suggested as a practical way of program derivation —-not by me,

for as & rule it leads to an undue amount of writing—- .

5th Maxch 1979
Plateanstraat 5 prof.dr.Cdsger W.Dijkstra
5671 AL NUENEN Burroughs Reseexch Fellow
The Netherlands

