EWD952 - 0
transcription

Science fiction and science reality in computing

There is a lot of misunderstanding about computing science, among both
computing's practitionmers and the public at large, and the purpose of this talk
is to clear up that misunderstanding, for it hurts all of us in more than one
way.

On the one hand, the achievements of computing science are sadly ignored.
Many projects in which the conscious application of the technigues and methods
of computing science is indispensable are carried out in a totally unscientific
manner as if computing science did not exist. This is a great pity, for it leads
to many a costly failure that could have been _avoided, and computing science is
denied the due recognition for its achievements.

On. the other hand, the expectations of what computing science will achieve
for us are often totally unrealistic: the performance of miracles by the dozen
seems to be the absolute minimum. And this is a great pity too, for it leads
to false hopes and unrealistic pianning, and when those wonderful plans fall
through, computing science will be written off as just another form of quackery.

If you so desire you may view this talk as an effort to change what seems
now to be the computing scientist's predicament: first he is not allowed to
have any influence at all, and afterwards he will be blamed for all that went
wrang.

At first sight one might think that explaining the quintesserce of a science
and then drawing conclusions as to its appropriate réle is a straightforward
technical job, but regrettably it isn't. The problem is that the message runs
counter to too many vested interests and is for many too uncomfortable to be heard.

In the past it could be delivered. It used to cause "a momentary discomfort,

and then the audience would laugh it off and return to the order of the day,
tolerating the messenger very much as the court jester is tolerated. But

things are changing, the vested interests have increased and been diversified,

and more and more people are beginning to realize that this is no longer a
laughing matter. While a knowledgeable and dispassionate discussion of these
matters has become more and more urgent, it has become more and more difficult
to raise the topic. For further technical details I refer to the fate of Galileo
Galilei.

* *
*

Earlier I said that achievements of computing science are sadly ignored.
Well, if it were just that, it would not be alarming: there is by necessity a
lag between the useful achievement in the laboratory and its general exploitation.
In our case, however, it is alarming because over the last decades the gap between
Computlng science and computing practice has only widened. Whereas computing
science made great strides towards a vigorous, rigorous discipline, computing
practice showed mainly stagnation. I am not exaggerating: the physicists still
think that FORTRAN is the last word in computing, the chemists continue with
BASIC, and what APL is for the electronic engineer, COBOL is for the MBA. The
human tendency to get attached tc the sourcés of bne's misery has been halled
as the great stabilizing factor in many marriages and religions, but by their
morbid attachment to those inadeguate vehicles those disciplines have manoeuvred
themselves into a position in which they are beyond help.

http://userweb.cs.utexas.edu/users/EWD/transcriptions/EWD09xx/EWD952.html

EWDZ52 - 1

These observations used to apply to the "casual user", but in the mean time

the problem has been magnified by the fact that it has affected many university
curricula that, instead of training first-class scientists, now train third-rate
programmers. '

well, you might say, these people don't consider themselves programmers but
physicists, chemists etc., but in the professional field the picture is equally
bleak. We have all heard of the Shuttle that did not get launched due to an error
in the synchronization software, so I shall give you another example. Recently,
British Rail has installed its first computerized signalling system along one of
its tracks and they advertised the system in the hope of selling it to other
railroad companies by revealing that, in order to avoid the risk of using a compiler,
the system had for safety's sake been written in machine code. It was evidently
taken for granted that commercially produced compilers play dirty tricks on you.
Another area rich in horror stories is provided by VLSI design; among its usual
"tools" is a program --very expensive to run-- that tries to reconstruct the
circuits from the raster, needed because the program producing the raster cannct
be trusted. But the alchemy of communication protocols probably beats them all;
originally designed by telecommunication engineers to compensate for incidental
hardware errors, they have become so unwieldy that they are responsible for the
introduction of many more transmission failures than they were intended to correct
and that the verification of their designs has become a major challenge: unravel-
ling that mess can now be a Ph.D. topic. And all that inadequacy was avoidable,
for computing science initiated its peretrating and successful study of the pro-
blems of compilation and synchronization more than twenty years ago. So much
for the gap between science and practice; now for the unrealistic expectations.

We have already seen that curricula are being changed on the unchallenged
assumption that, in this modern day and age, computer usage is essential to be-
coming a good scientist. Now this is very strange, for it is almost impossible
not to challenge that assumption in view of the large number of very successful
scientists we know that never used a computer because in their days there weren't
any. It is true that microcomputers have been sold as aggressively as encyclopedias,
Dlackmailing the parents with the future of their kids. And if you read between
the lines, the message was even more seductive: give your kid our homecomputer,
and he'll become a genius. But we cannot blame the industry for that misconception,
no matter how hard it tries to push its goodies down our throats: in those ad-
vertisements they just appealed to the ever-present lurking desire for the Philos-
ophers' Stone that makes gold and the Elixir that gives eternal youth and health.
Industry was no worse than the common guack.

To the best of my knowledge it was not industry that invented the term
"computer literacy”, but society. Quite early in the game it was firmly implanted
also the economies of the countries of the third world). For a while, no one
wnew how, but fortunately someone hit upon the bright idea that information was "a
resource", so that solved that problem, the more so since, for the first Time
in the history of mankind, we had now a valuable resource of infinite supply.
Then people remembered how oil had created immense riches for a happy few; this
time that should not happen again, so "computer literacy" for the millions was
invented to solve that problem. What that term should mean is still an open ques-
tion, but that did not prevent our visionaries from happily proceeding to invent
the post-industrial society in which people, if not happily teleconferencing,
would devote their ample leisure time to creative vidso-games.

EWDS52 ~ 2

There is nothing novel in people expecting that Heaven on Earth will be
established in the near future; novel, however, is that microelectranics will
do that job, rather than the Grace of God. I am not exaggerating: expectations
are so unrealistic that what should be reasoned discourse sounds more often than
not like people participating in a strange ritual, faithfully reciting prayers
in a language they don't understand. Let me just quote you a few recent examples.

The director of a large research laboratory, when interviewed at the occasion

of his retirement, extolled the virtues of the home computer by stressing that

it would emable people "to order their creative thoughts". Now think for a while
about the nonsense! Between you and me, when did you have your last creative
thought? Two years ago? Not bad. It would have made more sense if he had said

"to order the stamps in your collection".When Bertrand Russell made the famous
remark "Many people would sooner die than think. In fact they do.”,he showed

more reaiism. My privafe conclusion was that that director retired none to soon.

At an international conference on Computers and Education it was immediately
agreed that the little kids should be introduced to computers as young as possible.
There was a moment's concern that such an intensive mechanization of the educational
process might hamper the little kids in their emotional growth and in the develop-
ment of their contactual skills, until someone remarked that "talking to a program
could do no harm because, being a product of the human mind, a program was essen-
tially human". Now that I come to think of it, was't also Hitler's Final Solution
a product of the human mind? - .

At a recent conference on the feasibility or infeasibility of the software
for the Star Wars project, one of the arguments in favour of feasibility, I have
been told, was the remark that today almost all of the banking operations had
been successfully computerized, hadn't they? Well, as a matter of fact, they
haven't: as late as 1986 the salary payment of a large (computer!) company was
electronically screwed up. But even if they had, it would have been a fake argu-
ment: the two projects are so differemt that the analogy is several orders of
magnitude too shallow to be of any value. The worst of all, I think, was that
this fake argument was put forward by someone who had found himself a place in
the academic world.

* *
*

In the sixties Sir Hermann Bondi wrote an article on who should o
do academic research. The gquestion was an urgent ome. Prior to the second world
war scientists were a negligibly small minority, but in response to the recognition
that that war had been won by science and technology, the academic enterprise
was boosted thereafter. Not surprisingly, Bondi came to the conclusion that
many of his contempories engaged in scientific research had really better be
in_some other business. Because the explosive growth of the university was directly
related to the expected high benefits from science, Bondi also devoted a section)
of his paper to the usefulness of science in general. His conclusion is sobering.

He points out that of the problems coming from outside the campus, from
"the real world", about 80 % are trivial and about 20 % patently unsolvable,
and that academic research has its potential impact in the thin boundary layer
in between as it is only there that knowledge, talent and hard work can achieve
something that cannot be achieved by other means. In the scientific/technological
euphoria of the day, such a sobering warning was more than needed; it was, however,
neither heard nor heeded, but that is another story.

EWDS52 - 3

By an unfortunate accident of history, computing emerged during just
those decades of unbounded faith in the whaolesomeness and power of science and
technology Whereas the more established sciences had their roots and traditions
in soberer times, we_embarked on computing with our expectations unbridled.
From a hlstorlcal perspective, the naive optimism is quite understandable. And
there may even he some justification for it. You see, Bondi is a physicist and
his 8G/20 % judgement was derived from his knowledge of how the natural
_sclences deal with the complexities that we are faced with in the
world that surrounds us. Computlng science, though, deals with a world of arte-
facts in which the complexity is of our own making. That makes a big difference
and it is quite possible that, in computing, Bondi's “boundary layer" is not
so vanishingly thin at all. But in order to make an educated guess of _what that
layer could and should comprise, we have to understand how computing science

emerged and grew to operate.

Before turning to computing science specifically, however, I must dismiss
one further dream that was frequently dreamt in those decades, viz. that it
is possible to "plan" research so as to produce in due time what the world asks
for. Science does not work that way (which, by the way, is a good thing as there
is often a grave discrepancy between what the world asks for and what the world
needs). T.Bell justly praises a number of rulers for being "far-sighted enough
to see that the simplest way of getting mathematics out of a mathematician was
to pay his living expenses",fand the same holds for the other sciences. No
dramatic progress of science ever occurred because some benefactor commissioned
the result. Significant progress in science only occurs when after probing ponder-
ing a knowledgeable original mind has concluded that something baffling may now
be ripe for understandlng or something very difficult may now be done. Success-
ful scientific research is the art of doing the just possible, and consequently
scientific development is much better regarded as an autonomous process with
its own private rules than as a planned activity with external objectives. (And
this is the paradox faced by all directors of industrial research laboratories:
after having attracted the right people, they cannot serve their company better
than by leaving those people alone.)

* ¥
*

Proponents of inter-disciplinary research sometimes seem to believe that
the boundaries between the different sciences are no more than unfortunate accidents
of history. But the way in which scientific knowledge has been parcelled out
over the different disciplines i1s not so accidental at all: what may constitute
the area of a viable scientific discipline has to meet quantitative and gualitative
constraints. T/

Among the quantitative constraints I mention that tr the area must be small
enough so that the major highlights fit in a single person's head; on tne
other hand it must be large enough to provide intellectual food For at least

a lifetime,

Among the gualitative constraints I mention that on the one hand its problems
must be sufficiently independent from the rest so that they can be studied in
relative isolation from that rest, while on the other hand the area has to have
an internal coherence.

It is this last reguirement that makes guite clear how the earlier depart-

ments of computing science predated computing science itself: to begin with

EWD952 - 4

they were no more than ill-considered cocktails of presumably computer-related
Copics that happened to be available on campus, eg. some electronics, some numerical
analysis, same statistics and economics, some business administration and in

the USA some artificial intelligence after a while. The cocktail, composed without
cohergnce, did not taste too good. Forging coherence was one of the first tasks

for those that were responsible for carving a niche in which a budding computing
science would be viable.

For the sake of the coherence they withdrew from all specific areas of
potential computer applications and tried to concentrate on what all those applica-
tions gught to have in common; they had done so for the sake of coherence and

for the sake of the generality that is Teguired for durability.

Another aspect of that durability was the conscious effort to avoid the
training of scientists with a half-life of five years. This implied in particular
staying away from everything that could only be given a meaning in close relation
to the computing machines currently on the market. For instance, how to live
with the idigsyncracies of 0S/360 was considered a moving target that was none
of computing science's concern.

In summary: the niche was carved, away from specific applications and
away from specific machines. And, as time went on, in the same vein away from
specific programming languages and operating systems. In the beginning this
was done in order to protect the budding science from the volatility of the
products from the market place, and when some of these products turned into
de facto standards it was done to protect the flourishing science from the
stagnation in the market place. Independent of the question whether to regret
or to applaud this separation, I want you to understand that for the emergence
of computing science as a viable discipline this separation was and still is
a conditio sine qua non.

what did computing science do in that splendid isolation? More precisely,
what did it do without losing the claim of applicability? Well, it did a lot;
much more, in fact, than I can explain in the context of this lecture, but I
can give you the flavour,

In the sixties it developed the parsing theory that was needed to raise
compiler design above the level of error-prone adhoccery and to turn it into
a teachable topic. This was a major achievement: I, for instance, quite distinctly
remember how in 1962 those of us who had actually written a compiler were by
the others still regarded as a kind of semi-gods. In connection with this achieve-
ment I would like to stress that it could never have occurred had we not learned
in the mean time how to give a complete formal definition of the syntax of the
programming language to be compiled: without that formal definition the compila-
tion problem would have been too ill-defined to exist. Automata theory and com-
plexity theory were developed to give essential and gquantitative bounds on what
can be computed at all; again, at the heart of these theories lies a very formal
postulate as to what computing is, a postulate without which those thearies cannot
exist. For the sake of operating system design, the problem of process synchroniza-
tion was posed and solved and the first theorems about the absence of deadlock
were proved; again, a formal definition of the phenomenon intuitively krown as
deadlock was the first prerequisite for that achievement.

In the seventies the attention shifted from syntax to semantics, to begin
with for deterministic sequential programs, but shortly thereafter including
nondeterminacy and concurrency as weil. I shall not try to describe the various

EWD952 - 5

activities in any detail: they ranged from providing a model for the typed lambda-
calculus to the development of programs by means of semantics-preserving program-
transformations. It was during that decade that programs became mathematical
objects in their own right. The most concise way of capturing the change in
attitude is probably to remark that, while formerly it had been the task af
the programs £o instTuct our machines, it had now become the task of the machines
to execute our programs. Program verification and program design were developed
as branches of formal mathematics, with the result that it was no longer an act
of irresponsibility to publish a program without having tried it on a computer.

Well, this has been a far from complete overview of how computing emerged as
a science, and I apologize to all contributers whose work has remained unmentioned.
‘But I do hope that it has been sufficiently complete and evocative to have given you
the flaveur of the guintessence of the discipline. It became a Fa501natzng discipline
because the separation between "pure" and "applied", which is traditional in
so many others, got completely blurred and largely lost its significance. The
luxury of working in an enviromment in which the distinction between pure and
applied science is meaningless is probably a fringe benefit of the fact that
the general purpose computer really deserves the epithet "general purpose.

It has all the flavours of pure mathematics, being more formal than most
other branches of mathematics. It cannot escape being so formal since any program-
ming language, by the sheer virtue of being mechanically interpretable, represents
a formal system of some scrt. At the same time it has the full flavour of applied
mathematics because the sheer capacity of modern computers provides such an oppor-
tunity for confusion that its methods are indispensable if we prefer not to get
trapped in the complexities of our own making.

Learning how not to get caught in the complexities of our own making, keeping
things sufficiently simple and learning how to reason sufficiently effectlvely
about the d951gns we are considering, all these have become central issues of -~
computing science. This too was recognized more than a decade ago, when "separation
of cancerns" became a catch phrase of programming methodology.

Please notice that the way in which computing science carved itself its
niche was, all by itself, an example of successful "separation of concerns".
Whenever we invest a lot of mental energy in the careful design of any discrete
system, we do so for more than just the fun of it: we always hope that the product
of our efforts will be used for the benefit of others. We hope that it will
satisfy a need, will meet the expectations and will please its users. In the
prescientific period of system design, the unformalized notion of "user satisfac-
tion" was for a time the only accepted quality criterion for software.

The shortcoming of "user satisfaction™ as a quality criterion is that it
is not a technical notion: it provides no technical guidance to the designer
and, besides that, can be achieved by other than technical means, such as heavy
advertising and brainwashing. Science can do nothing with it, at any rate preciously
little. The concerns had to be separated, and that is where the functional speci-
fication entered the picture.

The role of a formal functional specification is simply to act as a logical
firewall between two completely different concerns, known under the names of
"the pleasantness problem" and "the correctness problem". The pleasantness problem
concerns the question whether a system meeting such-and-such a formal functional
specification would satisfy our needs, meet‘ﬁﬁf’expeotatlons and fulfil our hopes.
The correctness problem concerns the question whether a given design meets such-

and-such a formal functional specification.

EWD952 - &

The logical firewall was necessary so as to create the correctness problem
for computing science to tackle: it isolates computing science's well-carved
niche from the pleasantness problem to which science has little to contribute.
Please note that I did not say that the one problem is more important than the
other; after all, no chain is stronger than its weakest link. Wnat I said
was that the correctness problem represented that part that we managed to bring
inside Bondi's "thin boundary layer" where the conscious application of the tech-
nigues of scientific thought can avail, whereas the unformalized pleasantness
problem intrinsically lies outside the domain of science.

You may have all sorts of problems, ranging from a dangerous intersection
to whole generations of your population feeling threatemed in their very existence.
But science never solves your praoblems, it only solves its own ones, and the
decision whether you accept the solution to the formal problem science posed to
itself as a possible solution to your problem as well is unavoidably yours. In the
same vein: science never provides a model for reality, it only constructs its
own theory, and the question whether you accept your perception of reality as
a sufficiently truthful model for that theory, well, that's your problem....
Truth and reality are no longer scientific notions and the scientist leaves talking
about them to the philosophers, the prophets and the poets.

Seen this way, the réle of science is quite limited, so disappointingly
limited in fact, that many prefer to close their eyes to the limitations of
science, Stressing these limitations was never very popular in the scientific
community, among other things because it raises the guestion why society should
tolerate scientists at ali. This is no joke: we all know that if today a society

decided to expel its scientists, it would not be the first one to do so...

And now that science has "gone public", so to speak, it is not very popular
among the public at large either. People have always had ambivalent feelings
towards technology, and the more powerful the technologies peaople are confronted
with, the more dramatic the dilemma of that ambivalence. They feel more threatened
by technology than ever before; at the same time their hope of the salvaging
power of science and technology is becoming more and more unbridled. In the
good old days of the traditional guack, his ointment only needed to cure all ills,
his Elixir only needed to give you eternal youth, and from the famous Philosophers!'
Stone only the modest trick of making gold was required.” Those were the good
old days, when the quest for the Philosophers' Stonme was still in its infancy.

But in these advanced electronic days, the Philosophers' Stone has acguired
completely new dimensions. An achievement still in the traditional vein of gold-
making is that thanks to robotics eventually all countries of the world will
have a positive balance of trade. It will solve the problems of production and
unemployment. It will give central government the power to fight crime and corrup-
tion, while the ubiquitous micro will be the safeguard of democracy. Teaching
machines will rejuvenate the educational process while calculators, automatic
spelling correctors and intelligent machines in genmeral will make most education
superfluous. All state secrets will be absolutely protected by infallible encryp-
tion; powerful decoding schemes will enable us to break all codes. Weapons and
defence systems will be equally effective. But, most important of all, if we
don't know what to do, we shall have our decisions "supported", our management
will be informed and our information will be managed, our design will be as aided
as our intelligence will be amplified, and without any special training everybody,
really everybody, even managers and generals, will have all the canned expertise
they need at their fingertips. The great novelty of today's Philosophers' Stone
is that you can delegate your responsibilities to it.

EWD952 - 7

So much far the blatant nonsense. Now it could be argued that in my unwilling-
ness to compromise I have taken an extreme position; I know that guite a number of
reasonable and respectable colleagues in the field would judge the limits as
I have drawn them for computing science impractically narrow. They would point
to all sorts of systems of great potential utility that would fall outside my
very strict boundaries. They would argue, firstly, that currently such systems
are designed without much of a formal functional specification, and, secondly,
that we would not know how toc give such a specification, even if we wished to
do so. One example is provided by libraries of numerical routines for which
neither the limits of their applicability nor the accuracy of the results have
heen clearly stated. Another example could be a system for optical character
recognition as might be used in mail sorting, at least if delivered without a
precise statement of which characters will be flawlessly recognized. True enough,
but allow me to point out a few things.

Firstly, let me recall that I refused to grade the pleasantness problem and
the correctness problem in relative importance, in other words that there is nothing
intrinsically wrong with an unscientific project: it is only unscientific.
Secondly, that these are projects in which apparently computing science's niche
does not fit; well, if that's the case, computing science cannot contribute
to them and had better leave them alone. Why should computer applications to
which science cannot contribute be ruled out? I don't think we should be bothered
about that. It is my firm conviction that we grossly underestimate the cultural
significance of computers as long as we judge them primarily as tools, because
I expect them to have a much profounder influence in their capacity of intellect-
ual challenge.

My overriding concern, however, is that such projects exploit only part
of the computer's characteristics and that they lead to rather unspecified products
in which the computer's other characteristics have disappeared. The numerical
routines exploit the number crunching abilities, optical character recognition
exploits the storage capacity and the flexibility, but in both cases the final
product is no longer an automaton with precisely stated properties. Hence the
resulting product is no longer a machine in the sense of computing sclence and
using it is like doing mathematics without axioms. Such numerical routines can
only be used in a context where the answer does not matter or the numerical analyst
using them has other means of verifying the answers; such optical character recog-
nition systems can only be used in circumstances in which it does not matter
if, say, a fraction of the letters is initiaily sent to the wrong destination.
We can no longer rely on such systems as if they were automata, and we have
to reject them in any closed loop.

For many, such a conclusion is unpalatable, and as a result there is a
school of thought --cr, if you prefer: a school of non-thought-- that proposes
that the situation is not that serious, that we should not be that rigid, that
engineers have always allowed their components to fail occasionally, that striving
for perfection guickly becomes counter-productive, and that we had better learn
how to live in the real world with systems and subsystems that usually do what
we expect them to do. It is a seductive proposal. Wouldn't it be nice to achieve
excellence without having to strive for perfection? (This the more so, since
in a heavy populist society, the latter is socially unacceptable.) It is the
stance now taken under the bamner of "software engineering”.

But what proponents revealingly refer to as "the software engineering move-
ment" is beset by a few unsurmountable internal contradictions.

EWDS52 - 8

One of them 1s the dogma that striving for perfection is counterproductive
in the sense that it would make software development much too expensive. But
what are the main causes of the soaring costs of software development? A major
cost, in terms of both manpoweT and unforeseen delays, is debugging, and one can
save a lot by investing more in preventing the bugs from entering the design
in the first place. Since the errors are so expensive, in general the high-quality
design is also by far the cheaper. Another major cause is that many systems are built
“on shifting foundations in the sense that the underlying software of operating
systems and compilers is too shaky to be stable, with the result that each new
release of that underlying software requires possibly extensive adaptation of
what has been built on top of it. Finally, many of the tools the programmer
is supposed to work with are so poorly documented that they force him to find
out by experiment what they might be able to dec for him. Since these experiments
can be pretty expensive and time-consuming and --inductive reasoning being what
it is-- an educated guess is the best the poor programmer can hope for, the poor
programmer is really in a miserable position. So here you see three major scurces
of cost explosion traced down to someane's assumption that striving for perfection
is counterproductive!

Another contradiction of the software engineering movement surfaces as
soon as a software engineer asks himself how he could become a better one, how
the art, craft or practice of software engineering could be improved. He will
immediately discover that he has to resort to the discipline he has rejeeted.
Having accepted as its charter "How to program if you can't.", software engineering
nas manoeuvred itself into an impossible position, a position computing science
can avoid only by refusing to compromise, by sticking to iIis own formal discipline,

and by not pretending to be more.

A moment ago I mentioned poor documentation of a system as an intrinsic
limitation on the reliability with which the system can be used mechanically
in a larger context. This iIs the place to point out that hirimg a technical
writer is rarely a solution; the act is usually not much more than an admission
that the system's designers are in some sense functiorally illiterate. The com-
mon situation is that even an army of technical writers could not do the job
because the system has grown so complex that it defies accurate description.

A striking example of this phenomenon has rtecently been provided by Ada.
If Ada is going fo provide a standard, that standard had better be unambiguously
documented. At least two groups | have had a go at it; both efforts resulted in formal
texts of about 600 pages, i.e. many times longer than needed to ensure the im-
possibility of ever establishing firmly that the two documents define the same
programming language. The fault of the patent unmanageability of these two
documents lies neither with the twc groups that composed them, nor with the
formalisms they have adopted, but entirely with the language itself: only by
not prov1ding a formal definition themselves, could its designers hide that they
were DIODOSng an unmanageable monstrum. That Ada will decrease the pain of
progremming and increase the trustworthiness of our designs to within acceptable
limits is one of those fictions for which a military education is needed in order
to believe in it. The best thing I can report on this front are persistent rumours
that even a military education does not suffice to maintain faith in the effective-
ness of this Stone of the Philosuphers. I have mentioned Ada explicitly because
it provides a perfect illustration of what I alluded to at the beginning of this
talk: its adoption was a political process in which computing science, whose
warnings were viewed as a nuisance, was not allowed to have any influence, and,
consequently, Just maintaining one's well-considered doubts. becomes, beyond one's
control and intentions, a politically leaded act. T

EWD952 - 9

I haven't talked about artificial intelligence yet. Well, this topic
is fraugnt with another political complication as it has become part of the
transatlantic controversy: the topic never really caught on in Europe. For
the first two decades after the war, a simple fimancial explanation sufficed.
Artificial intelligence was expensive and Europe was poor; in addition, arti-
ficial intelligence was almost exclusively financed by the DoD, which focussed
its funding --I won't say: support-- on American research. But the financial
explanation cannot be the whole story, because when Europe was rich enough
to fund its own research in artificial 1ntelllgence the topic still did not -
catch on. Neither did the other soft sciences really.

My conclusion is that it is but one aspect of a broader cultural difference.
The European mind maintains a greater distinction between Man and Machine and
has lower expectations from both of them. It is less inclined to
describe the human psyche in mechanistic terms; it is also less inclined to ~—
describe inanimate machinery in anthropomorphic terminology; consequently,
it considers the guestion whether machines can think as relevant as the question
whether submarines can swim. Its society is evidently less gadget-ridden,
in part because it expects much less from gadgetry, certainly not salvation.
Cenversely, the goal of mimicking human reasoning is apt to evoke the comment
"Couldn't you try to copy something better?”

Usually I don't need to talk about artificial intelligence as
it is only a specific area of potential machine application and as
such outside the scope of computing science proper. I have to do it,
however, as spon as it is proposed that, by applying AI technigues,
machlnes will solve the software prbblems we don't know how to solve ourselves.
Our first reaction to the Fifth Generation Project was a sigh of relief, in
the style of "Well, if the Japanese industry tries to cash in on AI, that will
take care of the Japanese competition.”. Within a week or so came the sad reali-
zation that the Western world would probably lack the backbone needed for not
joining that bandwagan.

Indeed it joined the bandwagon and, consequently, we have again the popularity
of "Wouldn't it be nice if our machines were smart enough to allow programming

in natural language°" Well, natural languages are most suitable for their
original purposes, viz. to be ambiguous in, to tell jokes in and to make love

in, but most unsuitable for any form of even mildly sophisticated precision.

And if you don't believe that, either try to read a modern legal document and

you will immediately see how the need for precision has created a most unnatural
language, called "legalese", or try to read one of Euclid's original verbal
proofs (preferably in Greek). That should cure you, and should make you realize
that formalisms have not been introduced to make things difficult, but to make
things possible. And if, after that, you still believe that we express ourselves
most easily in our native tongues, you will be sentenced to the reading of five
student essays. The problem with the "smart" machines is the same as we had

with all the programming language "features": each next layer of "user-friendliness"
blurs the specification and thereby makes the system more risky to use.

One final issue. It is not the topic of my talk but, in these political
days, if I don't raise it myself, it will be raised in the discussion: what
about the software required for SDI, better known as Star Wars? Well, I am
sure I could not design it to my satisfaction.

I thank you for your attention.

	transcription:

