
On the IBM360

(Translation of EWD255)

E.W. Dijkstra�

A �rst series of objections concerns the functional speci�cation

of the organisation of channels. This is designed with the intention

of the CPU submitting a chain of instructions to the channel for

sequential execution. However, the hardware is poorly utilized

because:

1. when a channel sends an interrupt to the CPU before an ear-

lier interrupt from this channel has been processed, the pre-

vious interrupt is lost;

2. it is impossible to add reliably an instruction to a chain that

is being executed by a channel: should the CPU attempt this,

then there are circumstances under which it is not possible to

determine reliably whether or not the channel has just com-

pleted execution or still has to do so. (This impossibility is

a consequence of the fact that the length of the chain is indi-

cated by marking its last element.)

3. if the execution of an instruction fails, then this is duly re-

ported, but the channel continues after this failure with the

next instruction in the chain as if no failure had occurred.

As a result of these shortcomings the instruction chain cannot

be used in the intended manner and the operating system is faced

with moral urgency situations1 that would otherwise be avoidable.

�Translated by M.H. van Emden.
1Translator's note: I cannot make sense of this. It seems to me that \moral

urgency situations" is the correct translation of the original's \morele haast-

situaties". Is he talking about race conditions?

(To those not familiar with operating systems this probably seems

to be a criticism of detail. I, on the contrary, feel that this defect is

an alarming indication with respect to the competence of the de-

sign team: this is not a question of taste or style, things have been

designed with sensible intent while simple reasoning demonstrates

that the facilities o�ered are inadequate.)

A second series of objections consists of examples where the de-

signers have left to the software the management of the machine's

components instead of allowing the software to specify the process

at a more abstract level, delegating the management of speci�c

components to the system/machine. Examples of this are the fol-

lowing.

1. Peripherals can only be controlled by coupling them to a chan-

nel and by subsequently issuing instructions to this channel.

And this while the channel has no logical signi�cance; the

peripheral does have one.

2. The arithmetic unit has a large number of registers of which

it is indicated explicitly in the program text which ones are

to be used. This has unpleasant consequences:

(a) that compilers are confronted with the problem of \reg-

ister allocation", which leads to an optimization process

that is costly in terms of compilation time

(b) that the kind of status change that occurs in subrou-

tine calls and in multiprogramming becomes unavoid-

ably costly because of obligations to save or restore reg-

1



ister contents (whether these turn out to be necessary

or not!). Here the design optimizes at the microscopic

level, which must be paid for many times over at the

macroscopic level:

re (2a) the fact that compilation is so time-consuming

is responsible for the demand for \independently pre-

compiled program components", the combination of

which has created the need for a so-called linkage edi-

tor;

re (2b) in case time becomes an issue, subroutine calls

have to be replaced by an adapted copy of the subrou-

tine's text, which leads to extremely lengthy programs,

so long, that their assembling becomes \a major process-

ing task" (Asher Opler, IFIP 1965). IBM will, in that

case, be happy to supply the required memory!

3. Instead of the program addressing information, it has to ad-

dressmemory, either in core or on disks, with the consequence

that every program is responsible for its private organisation

of \overlays" and transfers between slow and fast memory2.

This has rather disastrous consequences:

(a) Standard programs have to exist in di�erent versions,

depending on their core requirements. The desire to use

programs of others (APT for the 360, for example) can

force one to install at least that amount of core. More-

over: enlarging core does not seamlessly lead to increased

e�ciency, at least not without some reprogramming.

(b) The only way in which distinct programs can use com-

mon subroutines that have only a single occurrence in

core is to have these subroutines permanently present.

Because one has to be economic with this, the need

2Emphasis added by translator, who �nds the original obscure and gives

it a sense in this way. The original reads: \ In plaats van dat het programma

informatie adresseert, moet het geheugen adresseren, hetzij in kernen, hetzij

disks, tengevolge waarvan elk programma individueel belast is met priv�e or-

ganisatie van \overlay"'s en transporten tussen langzaam en snel geheugen.

"

arises for \system generation", adapting the system to

the problem mix, with all its consequent misery: it is

a time-consuming process and, moreover, one does not

want to do it, as the problem mix can change!

(c) The fact that programs in execution occupy an immov-

able contiguous part of core memory makes scheduling

harder to an unnecessary and disproportionate content;

the resulting system remains in
exible in use.

Summarizing: details of embedding, which could have been ab-

stracted from by slightly more re�ned hardware, now require their

explicit representation in programs. On the one hand this unnec-

essary explicitness makes program structure more di�cult; on the

other hand it is the case that this premature �xation detracts from

the suppleness with which the installation can be used.

The unbelievable thing is that this machine is now being ad-

vertised with the \wonderful operating system" that relieves the

programmer of so many tasks! This glosses over the facts that:

1. a large part of these tasks are necessitated by the hardware

and would have been easier or non-existent in a better design;

2. this operating system implies an alarming overhead (but IBM

is happy to supply a faster model from the family);

3. the tasks have not been obviated, but have been transferred to

the computing centre's management, which has to dimension

and manage the machine

4. the creation of this operating system turned out to be a pro-

gramming task beyond the capabilities of the manufacturer;

5. that the system has become such a baroque monstrosity that

no user can venture to adapt it.

Finally, just as the 709-series always struck me as a desparate

attempt to use tapes as back-up storage, the 360-series strikes me

as disk units with accompanying electronics. It would not surprise

me if the somewhat disappointing performance of the faster models

2



comes down to the fact that the faster model is waiting, say, four

times faster for a disk arm to move. How they are going extract

themselves from this vicious circle is not clear to me: to address

this discrepancy by multiprogramming is not attractive from the

point of view of the CPU; the advent of \one-head-per-track-disks"

might well undercut the raison-d'être for the current operating

system.

3


