
ObjectCheck: A Model Checking Tool for Executable

Object-oriented Software System Designs

(ETAPS 2002 Tool Demonstration Related to FASE)

Fei Xie1, Vladimir Levin2, and James C. Browne1

1 Dept. of Computer Sciences, Univ. of Texas at Austin, Austin, TX 78712, USA
Email: ffeixie, browneg@cs.utexas.edu Fax: +1 (512) 471-8885

2 Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, USA
Email: levin@research.bell-labs.com Fax: +1 (908) 582-5857

1 Introduction

Specifying software system designs with executable object-orientedmodeling lan-
guages such as xUML [1][2], an executable dialect of UML, opens the possibility
of verifying these system designs by model checking. However, state-of-the-art
model checkers are not directly applicable to executable object-oriented soft-
ware system designs due to the semantic and syntactic gaps between executable
object-oriented modeling languages and input languages of these model checkers
and also due to the large state spaces of these system designs.

This paper presents ObjectCheck, a new tool that supports an approach [3]
to model checking executable object-oriented software system designs modeled
in xUML. The approach can be summarized as follows:

{ A software system design is speci�ed in xUML as an executable model ac-
cording to Shlaer-Mellor Method [4].

{ A property to be checked on the design is speci�ed in an xUML level logic.
{ The xUML model may be abstracted, decomposed, or transformed to reduce
the state space that must be explored for checking the property.

{ The xUML model and the property are automatically translated to a model
and a query in the S/R [5] automaton language. Prior to the translation, the
xUML model is reduced with respect to the property as proposed in [6].

{ The S/R query is checked on the S/R model by COSPAN [5] model checker.
{ If the query fails, an error track is generated by COSPAN and is automati-
cally translated into an error report in the name space of the xUML model.

ObjectCheck provides comprehensive automation for the approach by support-
ing xUML level property speci�cation, xUML-to-S/R translation and optimiza-
tion, error report generation, and error visualization. ObjectCheck also provides
preliminary automation for the integrated state space reduction proposed in [7].

The most closely related work to ObjectCheck are a toolset for supporting
UML model checking based on Abstract State Machines [8], and the vUML
tool [9]. Both tools translate and verify UML models based on ad hoc execution
semantics that do not include action semantics while action semantics of xUML
follows a proposal for Action Semantics for UML [10], which has been �nalized by
OMG. ObjectCheck combines commercially supported software design environ-
ments [1][2] and model checkers with research tools to provide a comprehensive
capability for model checking xUML models.



2 xUML Semantics

In xUML, a system is composed of instances of classes, which are either active,
having dynamic behaviors, or passive, having no dynamic behaviors and being
used to store data. There can be association and generalization relationships de-
�ned among classes. A large system can be recursively partitioned into packages,
which are groups of classes closely coupled by associations and generalizations.

The execution behavior of a class instance is speci�ed by an extended Moore
state model where each state has an associated action that is executed in a run-
to-completion mode upon entry to the state. State transitions are invoked by
messages. State actions can be categorized as follows:

{ Read or write actions that read or write attributes of class instances, or
dynamically create or delete class instances;

{ Computation actions that perform various mathematical calculations;
{ Messaging actions that send messages to active class instances;
{ Composite actions that are control structures and recursive structures that
permit complex actions to be composed from simpler actions;

{ Collection actions that apply other actions to collections of elements, avoid-
ing explicit indexing and extracting of elements from these collections.

The execution behavior of an xUML model is an asynchronous interleaving of
the executions of the state models of active class instances in the model.

3 Overview of ObjectCheck

To provide comprehensive automation support for model checking xUML mod-
els, ObjectCheck is structured as shown in Figure 1. Under the architecture, we

Data

Error Report

Error Report Generator

xUML Model

Designer

COSPAN Model Checker

S/R Model Error Track

Error VisualizerProperty Specification Interface xUML Visual Modeler

Property

xUML−to−S/R Translator

S/R Query

Dataflow CompoentLengend: User Interaction

Fig. 1. Architecture of ObjectCheck

selected industrial toolsets such as Bridgepoint [2] or Objectbench [11], as the
xUML visual editors and COSPAN as the model checking engine. We incorpo-
rated the optimization module of SDLCheck [12] that implements Static Partial
Order Reduction (SPOR) and other software speci�c model checking optimiza-
tions. Furthermore, we implemented the following components of ObjectCheck:

2



Property Speci�cation Interface The property speci�cation interface en-
ables formulation of properties to be checked on xUML models in an xUML
level logic. The logic de�nes a set of temporal templates such as Always and
Eventually. A property formulated on an xUML model consists of instantia-
tions of these templates with propositional logic expressions over the semantic
constructs of the xUML model.

xUML-to-S/R Translator The translator inputs an xUML model and a prop-
erty to be checked on the model and outputs an S/R model and a query to be
checked on the S/R model. Details of the translation can be found in [3].

Error Report Generator When an S/R query fails on an S/Rmodel, COSPAN
generates an error track specifying an execution trace inconsistent with the query.
The error report generator compiles an error report in xUML notations from the
error track. The error report consists of an execution trace of the corresponding
xUML model, which violates the corresponding xUML level property.

Error Visualizer To facilitate debugging an error found by COSPAN in an
xUML model, an error visualizer is provided, which generates a test case from
the error report and reproduces the error by executing the xUML model with
the test case in a simulator included in the xUML visual editor.

State Space Reduction ObjectCheck supports powerful state space reduction
algorithms. Localization Reduction [5] and Symbolic Model Checking (SMC)
are performed by COSPAN. The xUML-to-S/R translator makes use of the
optimization module of SDLCheck, which has been modi�ed to reect xUML
semantics. The module transforms an xUML model to reduce the model checking
complexity of the resulting S/R model and, in particular, it implements SPOR
that reduces the set of possible interleavings of executions of state models (which,
otherwise, all should be explored in the model checking phase) by eliminating the
interleavings irrelevant to the property to be checked. Currently, a state space
reduction manager is being developed, which, together with other components of
ObjectCheck, implements the integrated state space reduction proposed in [7].

4 Applications

ObjectCheck has been successfully applied in model checking the xUML models
of a number of interesting examples such as a robot controller system, which is
previously reported in [13], and an online ticket sale system. An illustration of
applying ObjectCheck to the online ticket sale system follows.

The xUML model of the online ticket sale system is composed of instances
of three classes: Dispatcher, Agent, and Ticket Server. The system processes
concurrent ticketing requests submitted by customers. A liveness property to be
checked on the model is that after an agent is assigned to a customer, eventually
the agent will be released.

The xUML model is translated into two S/R models: one with SPOR o� and
the other with SPOR on. The S/R query corresponding to the liveness property
was checked on the two S/R models by COSPAN with two di�erent state space
searching algorithms: Explicit State Enumeration and SMC. The computational

3



SPOR SMC Memory Usage Time Usage

O� O� Out of Memory {

O� On 113.73M 44736.5S

On O� 17.3M 6668.3S

On On 74.0M 1450.3S

Table 1. Comparison of Model Checking Complexities

complexities of the four model checking runs are compared in Table 1. Both
SPOR and SMC lead to signi�cant reduction on the model checking complexity.
The combination of SPOR and SMC leads to less running time, but requires more
memory than applying SPOR only. It can be observed that no single reduction
algorithm alone can achieve an overwhelming advantage over other reduction
algorithms. Therefore, various combinations of state space reduction algorithms
on various types of xUML models have to be studied for better combinations.

5 Conclusions

ObjectCheck has facilitated e�ective model checking of non-trivial software sys-
tem designs represented as xUML models. Ongoing research in state space re-
duction at the xUML model level shows signi�cant promise for enabling model
checking of substantial software system designs speci�ed as xUML models.

6 Acknowledgement

We gratefully acknowledge Robert P. Kurshan, Natasha Sharygina, and Husnu
Yenig�un. This work was partially supported by TARP grant 003658-0508-1999.

References

1. Kennedy Carter: http://www.kc.com/html/xuml.html. Kennedy Carter (2001)
2. Project Tech.: http://www.projtech.com/pubs/xuml.html. Project Tech. (2001)
3. Xie, F., Levin, V., Browne, J.C.: Model Checking for an Executable Subset of UML.

Proc. of 16th IEEE International Conf. on Automated Software Engineering (2001)
4. Shlaer, S., Mellor, S.J.: Object Lifecycles: Modeling the World in States. Prentice-

Hall, Inc (1992)
5. Hardin, R.H., Har'El, Z., Kurshan, R.P.: COSPAN. Proc. of 8th International

Conf. on Computer Aided Veri�cation (1996)
6. Kurshan, R.P., Levin, V., Minea, M., Peled, D., Yenig�un, H.: Static Partial Order

Reduction. Proc. of 4th International Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (1998)

7. Xie, F., Browne, J.C.: Integrated State Space Reduction for Model Checking Ex-
ecutable Object-oriented Software System Designs. Proc. of FASE 2002 (2002)

8. Compton, K., Gurevich, Y., Huggins, J.K., Shen, W.: An Automatic Veri�cation
Tool for UML. Univ. of Michigan, EECS Tech. Report CSE-TR-423-00 (2000)

9. Lilius, J., Porres, I.: vUML: a Tool for Verifying UML Models. Proc. of the
Automatic Software Engineering Conf. (1999)

10. OMG: Action Semantics for the UML. OMG (2000)
11. SES: Objectbench User Manual. SES (1996)
12. Levin, V., Yenig�un, H.: SDLCheck: A Model Checking Tool. Proc. of 13th Inter-

national Conf. on Computer Aided Veri�cation (2001)
13. Sharygina, N., Kurshan, R.P., Browne, J.C.: A Formal Object-oriented Analysis

for Software Reliability. Proc. of 4th International Conf. on FASE (2001)

4


