Loop Abstraction for Model Checking Large-Scale
Software

Natasha Sharygina and James C. Browne

The University of Texas at Austin,
Austin, TX, USA 78712

natali,browne@cs.utexas.edu

Abstract. This paper reports on the design, implementation and evaluation
of a data abstraction algorithm which is effective in reducing the complexity
of model-checking for control properties of large-scale programs. The reduc-
tion technique performs a transformation of a ”concrete”, possibly infinite
state, program by means of a syntactic program transformation that results in
an ”abstract” program that when model-checked provides complete but min-
imal coverage of cyclic execution paths. We demonstrate that the algorithm
is correct in that the ”abstract” program is a conservative approximation of
the ”concrete” program with respect to the control specifications of the pro-
gram. The loop abstraction has been implemented in the integrated xUML
design, testing and formal verification software development environment.
We use as a case study a NASA robot control system and report on substan-
tial reduction in both time and space for the abstract model compared to
the concrete model.

Keywords: Abstract Model Checking, Software Verification, Integration of
Software Design, Testing and Verification

1 Introduction

Formal verification by model checking has the potential to produce a major enhance-
ment in software reliability and robustness for software systems. The applicability
of model-checking to software systems is severely constrained by ”state space explo-
sion”. Data abstraction is a principal method for state space reduction [1,4,6,13,
14,16]. Predicate abstraction [7] is one of the most popular and widely applied meth-
ods for systematic abstraction of programs. Predicate abstraction is based upon ab-
stract interpretation [5]. It maps concrete data types to abstract data types through
predicates over the concrete data. However, complete predicate abstraction may be
intractable due to its computational cost. Generation of a full set of predicates is
typically infeasible for large programs.

All forms of abstraction may introduce unrealistic behaviors (behaviors not found
in the concrete program) into the abstract program. Error traces from model check-
ing of the abstract program are often used to detect unrealistic behaviors. Excessive
abstraction may introduce additional behaviors which result in state space explo-
sion when attempting model checking for the abstract program. These drawbacks for

2 Natasha Sharygina and James C. Browne

general abstraction methods coupled with the potential effectiveness of abstraction,
motivate research into targeted abstractions which can be applied selectively.

This paper formulates and evaluates an abstraction algorithm for minimizing
the contribution of the loop executions to program state space. A rationale for the
effectiveness of the loop abstraction is given following.

The execution behaviors of control software systems are typically dominated
by cycles implementing feedback loops. The structure of the control flow graph is
usually determined by a small set of variables (control flow variables). The paths in
the control flow graph of a program with loops are usually determined by conditional
statements (guards) which depend on a subset of the control flow variables (loop
variables). Model checking of such systems generates a traversal of the loops in the
control flow graph for each possible value of each loop variable. Each traversal of
the loop with different values of the loop variables is distinct in the state graph
of the program. Additionally each traversal of a loop will typically involve many
variables ("don’t care” variables) which do not participate in determination of the
paths through the control flow graph. But each execution of a loop with different
values for the ”don’t care” variables is also distinct in the state graph generated by
the model checker.

Control flow properties (such as absence of deadlock of the program execution or
guarantee that a functionally unsafe state will not be reached) are dependent only
on the static control flow graph of the system and are independent of the number
of traversals of the loops of the control flow graph. Therefore the control properties
of the concrete program can be model checked by model checking of an abstract
program with the same static control flow graph.

The abstraction presented in this paper generates an abstract program with the
same static task graph as the concrete program from which it is derived but which
specifies a minimum (or nearly minimum) number of traversals of the loops of the
static task graph. The values of the ”don’t care” variables can also be freed in
the abstract program. These abstract programs typically have orders of magnitude
smaller state spaces that the concrete programs from which they are derived.

The abstraction algorithm is computationally simple and requires storage only
linear in the size of the program since it is a source to source transformation based
on static analysis of the program.

The steps in the algorithm are:

a) Identify each control flow statement (simple or compound) which participates
in determining a path of a loop.

b) Determine the number of exit paths from each control flow statement that
determine the loop.

c) Replace each control flow statement with a simple control flow statement with
the same set of exit paths where exit path selection is determined by a random
variable which ranges over the number of exit paths.

d) Identify all of the variables which depend on the variables which appeared in
the control statements that determine the loop.

e) Identify all of the control flow statements which depend on the abstracted
loop control flow variables.

Loop Abstraction for Model Checking Large-Scale Software 3

f) Replace these control flow statements following steps ¢) and d).

We demonstrate that the algorithm is correct in that the ”abstract” program is
a conservative approximation of the ”concrete” program with respect to the control
specifications of the program. The correctness result implies that a control speci-
fication holds for the original program if it holds for the abstract program. Some
loss of precision of data computations introduced by the abstraction is traded for
the ability to conduct practical verification of behavioral specifications of control
algorithms.

Additionally, since the loop abstraction is applied to the source code, it has
the following advantages over abstraction methods that construct explicit transition
graph.

- it is independent of the model checker or the verification algorithm. Thus other
state space reduction techniques, such as symbolic model-checking and partial order
reduction, can be applied to the abstract program.

- it can be applied to any representation of the program including the design
level specifications.

The loop abstraction algorithm has been implemented in a front-end of the For-
malCheck/COSPAN model checking tool and has been evaluated during verification
of a NASA robot controller. It has been found to give order of magnitude reduction
in the complexity and computational resource requirements for model-checking of
control properties of a robot control system. Moreover, it enabled model-checking of
control properties for 5 and 6 joint robot arms which had previously been intractable
with available computational resources.

The potential usefulness of loop abstraction is enhanced by the facts that control
software are the obvious candidate systems for model checking to improve reliability
and that almost all control systems implement feedback loops.

Contents of Paper. Sections 2 defines syntax and semantics of the control soft-
ware systems. Section 3 defines the loop abstraction. Section 4 describes an imple-
mentation of the loop abstraction algorithm in the framework of integrated software
design and model checking. The effectiveness of loop abstraction is demonstrated in
Section 5 that shows the verification results of the NASA robot controller system.
Section 6 concludes the paper and positions the loop abstraction with respect to the
existing abstraction techniques.

2 Background

2.1 Program Syntax

Control software systems are often constructed as compositions of sequential pro-
grams which interact through sending of messages or events.

Definition 1 [Sequential Program]: A sequential program is defined as fol-
lows:

SeqProc — Proc; terminate,

4 Natasha Sharygina and James C. Browne

where Proc is defined by commands!:
simple commands:

z:=exp | z := any{ exp,,...,exp, } |
compound commands:
Proc1,Proc2 | if B then Procl else Proc2 fi | while B do Procl od |
communication commands:
"Generate e(ID,exp)’ | 'Receive e(ID,z)’ .

In the above definitions z is a program variable, exp; are expressions over pro-
gram variables, and B is a boolean condition, e is the name of the event, ID is the
name of the event destination program. The statement z := any{ ezxp,,...,exp,, } is
a non-deterministic assignment, after which z will contain the value of one of the
expressions exp;,..., exp,,.

We can, without loss of generality, assume that each program is comprised of
basic blocks [9].

Definition 2 [Basic Block]: A basic block is a sequence of statements for which
execution can be initiated only through the statement at the head of the block and
which, once initiated, executes to completion. Execution of a basic block is initiated
by arrival of an event.

Events are distributed via FIFO queues, one queue for each sequential program.
The execution model for a sequential program is: a) An event arrives in the input
queue of a sequential program and some basic block of the program is enabled for
execution in ”"run to completion” mode. b) The enabled basic block is executed. c)
Execution of a basic block may result in events being sent to the program containing
the executing basic block or to other programs. d) At the end of the execution of a
basic block the program halts and awaits arrival of its next event.

Definition 3 [Output of a Basic Block|: The output of a basic block is
an event or sequence of events. The output from an instance of the execution of a
basic block is determined by the control structure within the block. Each instance
of the execution of a basic block is a traversal of the tree determined by the control
structure. The control statements which generate the tree will be referred to as the
block output guard. The outputs of a basic block are determined by the leaves which
are reached in the execution of the block. Thus, each branch of the block output
guard controls one output of a block.

Figure 1 illustrates the concept of the basic block. The control flow graph (at
the command level) illustrates the control flow paths that determine the outputs of
the basic block.

Definition 4 [System]: A system is a parallel composition of sequential pro-
grams. Each program has its own read-shared local variables and events. In general
terms a system, S, is defined as a set of variables, X, and a set of events, F, an
initial condition, I, a set of basic blocks, B, that contain commands that modify the
program variables, and send and receive events, S = (X,E,[,B).

! For the complete list of the commands see [19]

Loop Abstraction for Model Checking Large-Scale Software 5

int ab,cx.y;
Basic Block:
Receive el(id); Input event
XI=Y;
if p(a,b) Guard predicate
then {
Generate e3(id); Output event
a:=f(x);}
else{
Generate €2(id); Output event

if p(c) Guard predicate
then {
)

Generate e4(id,c); } Output event
outputl: e2, €3 output2: e2 output3: e4 dsel a:=f(x): 11}

Fig. 1. Demonstration of a Basic Block Concept

The execution model for the system is asynchronous interleaved execution of the
basic blocks of the sequential programs. a) One program from among those which
are enabled for execution (those programs with events in their input queues) is non-
deterministically selected for execution. b) The basic block in the selected program
which consumes the event at the head of the event queue is executed and step a is
repeated.

This works exploits the atomicity of the program executions based on the basic
block view of the program structure.

Definition 5 [Basic Block Control Flow Graph]: The nodes of the basic
block control flow graph of the system are basic blocks of the composing sequential
programs. The arcs of the basic block control flow graph of the system connect basic
blocks which are the sources and targets for events. Therefore a control flow graph
can also be specified as generation and consumption of a sequence of events.

The control flow properties of the system behavior can be stated in terms of
control at the basic block level by referring to events that initiate execution of basic
blocks.

Definition 6 [Loop]: A loop in a basic block control flow graph of a system
1s defined by a repeated execution of a path which begins with the gemeration of a
unique event by a basic block and ends at that same basic block (loop basic block).

Each loop is guarded by a set of the basic block output guards of the loop basic
block and their dependence set. Let us call the variables of the basic block output
guards that define the loop, loop variables.

2.2 Program Semantics

The syntax of the program defined above can be given an execution semantics as
an asynchronous transition system (ATS) [10] composed of finite state machine
interacting through finite, non-blocking FIFO queues.

Definition 7 [Event Queue]:(cf. [10]) An event queue, Q; = (V,N,E,L) is
defined by the the queue vocabulary, V, by the size of the queue, N, by the vector

6 Natasha Sharygina and James C. Browne

of events stored in the queue, E, and the content of the stored events, L, defined
as a finite set of the values. The values are expressions on the system variables, or
constants. For a set of queues, Q, the queues vocabularies are disjoint.

Definition 8 [Finite State Machine]:(cf. [10]) A state machine, M, is defined
as a tuple, M = (X,S,s0,1,0,Q,T), where

- X is the finite set of variables;

- S is the finite set of possible binding of values to X;

- so is an element of S, the initial state;

- I is the set of input events;

- O is the set of output events;

- Q is a set of event queues;

- T is the transition relation specifying the allowed transitions among S.

Definition 9 [Trace of a State Machine|: An infinite sequence of states tr
= 5081..-8n, 18 a trace of FSM if (1) so is an initial state and (2) for all 0 < i < n,
the state s;+1 is a successor of s;.

Definition 10 [Asynchronous Transition System (ATS)]:(cf. [10]) An ATS
18 a composition of finite state machines which interact by sending and receiving
events. The global state space is the product of the local state spaces of the composed
state machines, the system event queue is the union of the sets of the queues of
the separate machines, and the global transition relation is the union of the local
transition relations.

Definition 11 [Trace of an ATS]:

The trace of an ATS is an interleaving of states from the traces of the state
machines which compose the system. The ATS may be constrained by fairness
conditions that determines which traces of the model are confronted with the
specification during model-checking. A fairness condition is defined as a boolean
combination of basic fairness conditions ”infinitely often p” where p is a set of state
pairs. The trace is fair if the fairness condition is true in infinitely many states along
the trace.

Definition 12 [Refinement]: Let A and C be two instances of the ATS defined
preceding. Let L(A) and L(C) be the language of all traces from execution of A and
C.

If X¢ C X4, and L(C) C L(A) then C weakly refines A, C < A.

Definition 13 [Control Refinement]: Let us define an operator R which
projects from L(C) and L(A) all states which do not receive events. Call R.L(C) and
R.L(A) control traces of an ATS.

If X¢ C X4 and R.L(C) C R.L(A) then C weakly refines control of A.

The program actions are grouped into basic blocks (as defined earlier) and ex-
ecute in run to completion mode. Therefore R.L(C) and R.L(A) correspond to the
basic block control flow graphs of systems C and A and L(C) and L(A) correspond
to the traces of systems C and A.

Definition 14 [Control Property]|: A control property is a temporal logic
specification defined over states that input events.

Loop Abstraction for Model Checking Large-Scale Software 7
3 Loop Abstraction

We define a loop abstraction technique that maps all of the traversals of a loop in the
program control flow graph with different values for the loop variables to traversals
with values of newly introduced variables whose range is the number of the basic
block outputs. The values of the new variables are non-deterministically chosen sub-
ject to fairness constraints. The loop abstraction is the syntactic program transfor-
mation that results in a reduced ATS that provides complete but minimal coverage
of the program executions and, that, thus, can be practically model-checked.

We present the abstraction informally by specifying the loop abstraction algo-
rithm. We demonstrate the soundness of the abstraction formally by presenting a
proof of correctness of the loop abstraction (see Appendix B).

3.1 Loop Abstraction Algorithm?

We use the basic block control flow graph of the program to derive information that
we need to implement the loop abstraction. We compute a number of outputs for
each basic block that is executed in the control loop and use the computed data to
abstract the generation of events within the basic blocks from the actual data. The
abstraction is enforced by the syntactic transformation of the basic blocks.

We first present components of the loop abstraction algorithm: an algorithm for
computation of a number of outputs controlled by a basic block output guard and a
basic block output guard transformation procedure. We conclude by presenting an
algorithm for the loop abstraction.

Basic Block Output Range Computation. The range computation algo-
rithm (compute_range) performs syntactic analysis of the block output guard by
parsing its text and searching for the Generate and if, while keywords. A sketch of
the algorithm is given in Figure 2. The number of branches of the block output
guard is counted and stored in the range variable. Since each branch defines a ba-
sic block output (see def. 3) then the range variable defines the number of possible
outputs controlled by a basic block.

The compute_range program maintains two variables which are used to store
information required during the analysis of the programs of the guards, branch and
found, declared as integer and boolean respectively. Initially (step 1) both variables
are set to zero.

Guard Transformation. In the abstract program, the block output guards are
substituted with multi-way selector expressions, Path Selectors, each of which non-
deterministically selects the outputs to be generated during an execution of the basic
blocks. Each Path Selector is defined over a single variable, a path_selection variable,
with a range defined by the number of the outputs controlled by the corresponding

2 The loop abstraction technique is defined and implemented for xUML software systems.
xUML is an instantiation of the programming model defined in section 2. xUML notation
supports separation of data and control. This separation enables syntactic identification
of the program basic blocks that are used to determine the program control structure.
Specification and an example of the xUML programs can be found in Appendix A.

8 Natasha Sharygina and James C. Browne
int compute_range() {
Step 1. If (branch==0) {
Goto Step 2 and parse commands of a positive test program
Else Goto Step 2 and parse commands of a negative test program }
Step 2. Until (the end of the body of the conditional statement is reached {
If (Generate keyword found AND found !=1) {
range++; found:=1;}
If (if or while keyword found){
Goto Step 1; found :=0; } }
Step 3. branch++;
If (branch == 2) Goto Step 4
Else Goto Step 1
Step 4. return range; }

Fig. 2. A Sketch of the Output Range Computation Algorithm

block output guard. Each output controlled by the Path Selector is selected by a sin-
gle value of the path_selection variable. Subject to the fairness constraints specified
for all values for each path_selection variable, the global state transition graph of the
abstract program will have all of the event sequences and thus interleavings of basic
block executions as the global state transition graph of the concrete program. The
transformation algorithm is trivial and is performed for each basic block by copy-
ing commands and replacing the conditions of the block output guard by equality
comparison of the path_selection variable to one value in its range. There are sev-
eral patterns of the possible configurations of the control tree defined by the block
output guard. The transformation algorithm resolves each pattern accordingly such
that each Path Selection expression truly represents the original program structure.
An example of an output guard transformation for a sample basic block is given
below. The right side represents the original text of the basic block and the left side
demonstrates the result of the syntactic transformation.

int a,b,c,x;
Abstract Basic Block | Concrete Basic Block

Receive el1(id);
//actions omitted
if(p(a,x)) {
Generate e5(id);
Generate e3(id,x); }

Receive el(id);

//actions omitted

path_selection := any(1,2,3,4);

if (path_selection == 1) {
Generate e5(id);

|
|
|
|
|
Generate e3(id,x); } | else {
else { | if(p(a,c))
if (path_selection == 2) { | Generate e3(id2,a,c); }
Generate e3(id,a,c); 7} | else {
else { | if(p(c))
if (path_selection == 3) { | Generate e5(id,c);
Generate e5(id,c);’} | if (p(b))
if (path_selection == 4) { | Generate e5(id,b));
Generate e5(id,b);} | }r

}}

Loop Abstraction for Model Checking Large-Scale Software 9

The Loop Abstraction Algorithm. The loop abstraction algorithm performs
syntactic transformation of the program text by transformation of basic blocks. The
abstraction algorithm starts from the transformation of a loop basic block by substi-
tuting its output guards with the Path Selector expressions®. The abstraction of a
concrete set of output guards may introduce some loss of information caused by the
non-deterministic choice over the set of the path_selection variables. To compensate
the imprecision, abstraction of the loop control flow statements that depend on the
loop control flow variables is performed. A sketch of the algorithm is presented in
Figure 3.

Step 1. Detect loop labels
Step 2. Analyze and Transform a Basic Block, B'°°P/depend,
While end of basic block is not reached {
(a) current_.command < command
(b) If current_command is a guard {
If guard is an output guard {
- abstract_guard++
- flow_var_storage < names of the loop variables
- range_size < compute_range
- transform_guard(range_size,abstract_guard)
- fairness.tet < assumptions(range_size,abstract_guard) } } }
(¢) Move to the next command }
// A new program is formed by substitution of B'°°r/depend
with the transformed basic block
Step 3. Detect depend variables:
While depend variables found {
flow_var_storage < names of the depend variables }
Step 4. Detect depend guard:
(a) While guard found {
(b) If guard is an output guard {
(c) If guard is the depend guard {
break; Goto Step 2 } } }
Step 5. An abstract program is formed as: P* = (X*,E*,I* B?),
where E*, I are defined as for the concrete program,
X=X U X" X is the set of the concrete variables and
X" is the set of the selection variables.
B® = B\ Bleop/depend | prew where
B, Bloor/derend are the sets of concrete basic blocks,
and B"®" is the set of transformed basic blocks.

Fig. 3. A Sketch of the Loop Abstraction Algorithm

The loop abstraction algorithm maintains four variables which are used to store
information required during the analysis and transformation of the program, range_size,
abstract_guards, current_.command, and flow_var_storage declared as integers, char
and an array of char type respectively. It also creates a file, fairness.tzt that is

% A loop basic block is identified and labeled by a ’Loop Label’ during simulation of the
program executions (see section 4).

10 Natasha Sharygina and James C. Browne

used to store the fairness assumptions specified as one of the results of the program
transformation.

The algorithm proceeds as follows:

Step 1: The loop markers are identified (the program looks for a keyword "Loop
Label’).

Step 2: The algorithm iteratively analyzes and transforms basic blocks that define
control flow within a loop*.

At each iteration the algorithm parses the text of the basic block command after
command while performing the following series of actions:

a) Placement of the first command found in the text of the basic block into
current_command,

b) Testing if the current_command is a guard (i.e test against the if, while key-
words). For the negative test the program proceeds to step 2c, otherwise the following
actions are performed:

If the guard is the output guard (i.e. if the body of the guard includes the events
generation commands (denoted by the ’Generate’ keyword)) then

- The abstract_guard variable that is used to store a number of transformed guards
is updated.

- The names of the loop variables of the output guards are passed to the flow_var_storage
variable.

- The compute_range program is invoked to count the number of outputs con-
trolled by the guard. The result is stored in the range_size variable.

- The transformation program uses the current values of the abstract_guard and
range_size variables to transform the guard following the procedure discussed in the
guard transformation section.

- The fairness.txt file is updated with new fairness constraints. The fairness
constraints are defined following the scheme:

For (int ¢ := 0, int j := abstract_guard - 1; i < range_size; i++) {
Create a line: AssumeEventually® path_selection[j] := i }°.

The file containing the fairness constraints is later used to specify assumptions that
assure that all outputs defined in the concrete system are explored during the model-
checking of the abstract program.

c) If the end of the basic block is not reached then the next command of a basic
block is analyzed (if the previous command was a guard that was transformed, then
the program starts from the command that follows the new structure).

* The atomic structure of the xUML programs is explicitly preserved by special words
’state’ and ’endstate’ for the beginning and the end of the basic block respectively. This
allows syntactic identification of the code that corresponds to each xUML basic block.
The assumptions are encoded in the query language of the COSPAN model-checker, a
part of the loop abstraction implementation environment.

For example, if the first output guard found during the program analysis (abstract_guard

ot

== 1) controls four outputs (range_size == 4), then the following set of the fairness
constraints is created: (Assume Eventually path_selection[0] := 1; Assume Eventually
path_selection[0] := 2; Assume Eventually path_selection[0] := 3; Assume Eventually

path_selection[0] := 4).

Loop Abstraction for Model Checking Large-Scale Software 11

Step 3: Dependency analysis between the program variables and the variables
stored in the flow_var_storage is performed. The names of the dependent variables
are passed to the flow_var_storage variable.

Step 4: The new program is searched for depend guards (i.e. conditional state-
ments ’if-then-else/while’, which operate on the variables that are included in the
flow_var_storage array). If a depend guard is found then program proceeds to step
2, otherwise it proceeds to Step 4.

Source Code
(C, C++)

Code Generation

SES/Code Genesig Loop Detection

Testing Tool

(OB Simulator)
Labeling T

xUML MODEL

(graphical designs)

Translation

Transformation GOB_to_TOB

xUML MODEL
(textud file)

Abstraction Tool
(Loop_Abstraction)

Syntactic

Redesign
Formalization and
Translation
TOB to SR
Fmmmm e m——— === =
AUTOMATA
REAL ERROR

= Fairness
Constraints

(COSPAN)
CONTROL Refinement Refinement ‘:ALSE NEGATIVE
PROPERTY, Constraints

|
|
|
|
|
|
|
| Consistency Check Model-Checker TRUE
|
|
|
|
|
|
|

Fig. 4. The Loop Abstraction Procedure For the Integrated Design and Model-Checking
Software Development Environment

Step 5: Program transformation finishes by inserting into the declaration part of
the program text a line that declares an array of variables path_selection][abstract_guard)
of integer type.

12 Natasha Sharygina and James C. Browne

The abstract program is the source-to-source transformation of the program dur-
ing which an array of path_selection variables is added to the program specification
and all basic blocks that determine the control flow of the program loops are sub-
stituted with the Path Selector-controlled basic blocks. See Figure 3, Step 5 for
formal definition of the abstract program.

4 TImplementation of the Loop Abstraction

The loop abstraction has been implemented in the software development frame-
work that integrates xUML modeling, testing and automata-based model-checking.
We refer the reader to [22], [25] for the detailed description of the integrated en-
vironment. The steps of the loop abstraction procedure as they are implemented
in the integrated design and verification environment are captured in Figure 4.
The abstraction procedure operations are supported by the following tools (each
tool is represented with respect to the actions it performs in the loop abstraction
procedure):

1. The UML graphical specification and validation environment as it is imple-
mented in the commercial tool, SES/OBIJECTBENCH (OB) [19]:

- a loop in the execution behavior of the xUML programs are detected using the
discrete event simulator by traversing possible event sequences which can arise from
the execution of interacting xXUML state machines;

- a basic block that are identified to be repeatedly activated is manually annotated
with a ’Loop Label’ in the xUML specification environment.

2. The LOOP_ABSTRACTION program:

- the labeled xUML state machines are syntactically analyzed and transformed
into the abstract xUML state machines using the loop abstraction algorithm.

- a set of the fairness constraints is generated. The list of the generated fairness
constraints is passed as an input to the model-checker.

3. The automata-based model-checking tool, COSPAN]I8]:

- a consistency check is performed over the abstract SR model (SR is an input
language of COSPAN) automatically derived” from the abstract xUML program
with respect to the the specified control property, the fairness constraints and the
approximation restrictions. The following features provided by COSPAN are used:

- the assume/gquarantee mechanism of COSPAN is used to add fairness con-
straints and the refinement assumptions to the model-checking process.

- the localization reduction algorithm, automatically invoked by COSPAN during
model-checking, is used to eliminate from consideration the variables (don’t care
variables) that do not effect the verification property.

" The abstraction procedure uses a translator [25] that automatically transforms the
xUML programs from the Graphical OB representation into SR, an input language of
the model-checker, COSPAN. Specifically, the LOOP_ABSTRACTION program is applied
to the intermediate representation of the translation result, the textual representation
of the xUML programs.

Loop Abstraction for Model Checking Large-Scale Software 13

5 Evaluation of the Loop Abstraction Technique

The loop abstraction technique has been evaluated during verification of a NASA
Robot Controller System (RCS) formulated as XUML models. Description of the
the RCS Kinematics component, which verification results are discussed here, can
be found in Appendix A (for detailed information see [12,21,22]).

Table 1. Verification properties

N Property Robotic Description Formal Description

1| EventuallyAl- Eventually the robot control Eventually permanently
ways(p=1) terminates p=1

2| AfterAlwaysUn- When EE reaches a At any point in the
til(¢=>b, r=1, "NotValidPosition’ state program | execution if ¢=5 than it is
p=1) terminates prior to a new EE move| followed by r=1 until p=1

3| Always(r=1 — If the EE is the At any time during
u=0) ”FollowingTrajectory” state than | execution of the program

the Arm is in the ”Valid” state when r=1 than u=0

Sample properties (both safety and liveness) are given in Table 1. The properties
are encoded in a query language of COSPAN. Since it is easier to reason about the
program control flow in terms of the locations in the program execution rather than
in terms of events, we specify the control properties in terms of the states defined by
the labeling variables (defined in Appendix A) in the xXUML system®. For example,
the labeling variable ee_status of the EndEffector program can change its values
within the following range { ’Idle’, ’FollowingTrajectory’, ’CheckingConstraints’,
"ValidPosition’, ’NotValidPosition’, ’InitialPositioning’ } (see Figure 5, Appendix
A), which for the purpose of model checking was encoded during translation into
the following range of integers {0,1,2,3,4,5}.

The following declarations are used in Table 1: p - declares the global_status
variable of the Global program; ¢ - declares the ee_status variable of the F'F program,;
u - declares the arm_status variable of the Arm program.

We considered several variants of the RCS of different complexity defined by the
number of joints ¢ of a robot arm. We used two models to check the properties. The
first model is the complete (concrete) structure of the robot arm. The second model
is the abstract version of the concrete model to which the loop abstraction method
has been applied.

Table 2 compares the run-time and memory usage for the first two properties
from Table 1. The results are given for the concrete and the abstract RCS with
a total number of 7 xUML programs excluding the ¢ programs corresponding to
the number of instances of the Joint object. Each entry in the table has the form
z/y/z where z is the number of the states reached, y is the run-time in cpu seconds

8 The labeling variables values are preserved by the loop abstraction since they do not
depend on any program variables but the fact that an event arrives to a basic block.

14 Natasha Sharygina and James C. Browne

Table 2. Comparison of Verification of the Concrete and Abstract Robotic Systems

7 P1: Concrete P1: Abstract P2: Concrete P2: Abstract
(states/min:sec/MB)| (states/min:sec/MB)| (states/min:sec/MB)| (states/min:sec/MB)

2| 4.02M/212:35/211 26K/0:28/4.03 1.97M/83:42/145 17K /0:17/3.38

3| 5.54M/301:50/289 63K /3:10/4.9 3.48M/253:42/246 45K /2:40/2.2

4| 7.34M/550:10/474 145K /11:28/8.4 5.89M/367:38 /302 116K /7:03/7.1

5| M/T exhaustion 688K /28:10/23.9 M/T exhaustion 554K /13:40/19.1

6| M/T exhaustion 1.1M/42:17/96.5 M/T exhaustion 715K /33:17/36.2

and z is the memory usage in Mbytes. The results of the verification demonstrate
significant reduction in both time and space for the abstract model compared to
the concrete model. The reduction becomes more pronounced for larger values of i.
Verification for the robot configurations consisting more than 4 joints could not be
completed for the concrete model due to the memory/time exhaustion (denoted as
M/T exhaustion in Table 2), but COSPAN succeeded for the abstracted model.

6 Conclusions and Future Work

Conclusions. We defined a loop abstraction technique that is computationally sim-
ple and requires storage only linear in the size of the program since it is a source
to source transformation based on static analysis of the program. It proved to be
highly effective in state space reduction for the test-case control-intensive program,
the large-scale robot controller system. Most importantly, the loop abstraction en-
abled completion of model checking for realistic robot configurations where all other
approaches, including predicate abstraction [1,15], failed. It seems probable that it
will be equally effective on other cycle intensive programs.

It would be expected that a selective and limited scope abstraction such as the
loop abstraction would introduce fewer unrealistic behaviors into the abstract pro-
gram than more comprehensive abstractions. This proved to be the case for the robot
control system. Only a few refinements were needed. These were identified as false
negatives in model checking the abstract program and were manually implemented.

The limitation of the loop abstraction is that it can only be applied when the
properties to be model checked are control properties. Control properties are, how-
ever, typically the safety-critical properties of control systems.

Future Work. The immediate future research includes: automation of the re-
finement process, application to other cyclic programs including some classical test
cases such as the dining philosophers problem and extension to programming systems
other than xUML. Propagation of the abstraction across basic blocks will further
reduce the number of unrealistic behaviors which are introduced by the abstraction
and further reduce the requirement for refinement. Longer term research is a search
for other widely applicable and effective selective abstractions.

Loop Abstraction for Model Checking Large-Scale Software 15
7 Related Work

Loop abstraction is similar to predicate abstraction in that it requires specification
of an abstraction function as predicates over concrete data. Loop abstraction differs
from predicate abstraction in that it does not require computation of the abstrac-
tion predicates. Instead it operates on the conditional predicates which implement
program control. The result of the loop abstraction is the construction of a con-
trol skeleton which makes our work similar to construction of boolean programs as
defined in [1]. However, our work is different from [1] in that it is concerned with
the abstraction of only the loops. Loop abstraction introduces a limited number of
unrealistic behaviors compared to [1] and also preserves some original data valua-
tions compared to the complete data abstraction provided by predicate abstraction
methods. Loop abstraction can be a useful complement to predicate abstraction. It
abstracts control while predicate abstraction abstracts statements not effected by
the loop abstraction. We are planning to evaluate the loop abstraction in combi-
nation with predicate abstraction as a part of a project that develops a prototype
automatic predicate abstraction tool [15].

The implementation of the loop abstraction algorithm is similar to [15] in that
the loop abstraction algorithm does not construct the explicit state graph of either
the original or of the abstract program. Instead a syntactic analysis of the original
program is used to produce an abstract program. However, our approach is different
from other abstraction algorithms dealing with the source code in that the abstrac-
tion is applied to a design-level specification (xXUML programs). To our knowledge,
there has been no previous reports on data abstraction algorithms specifically tar-
geting design level specifications.

The work presented in this paper is also related to path coverage (also known as
predicate coverage) testing [2, 3]. Path coverage reports whether each of the possible
paths in each function of the program has been followed. (A path in testing is a
unique sequence of branches from a function entry to exit). Loop abstraction provides
complete coverage of all possible execution paths within a loop. One of the major
obstacles to successful path coverage is looping during program execution. Since
loops may contain an unbounded number of paths, path coverage only considers
a limited number of looping possibilities. Our method solves this problem. Path
coverage has the problem that many potential paths are impossible to reach because
of data relationship constraints. Loop abstraction technique solves this problem by
adding fairness constraints to force exploration of all abstracted paths.

Acknowledgments. We thank Bob Kurshan, Allen Emerson, Kedar Namjoshi
and Nina Amla for their helpful comments. This research was supported in part by
the TARP program 003658-0508-1999, by Bell Laboratories Lucent Technologies,
and by the University of Texas at Austin Robotics Research Group.

References

1. T. Ball, R. Majumdar, T. Millsteain and S. Rajamani, Automatic Predicate Abstraction
of C Programs, In Proceedings PLDI 2001, SIGPLAN Notices, Vol. 39 (2001)

16 Natasha Sharygina and James C. Browne

2. B. Beizer, Software Testing Techniques, New York: Van Nostrand Reinold, (1990)

3. J. J. Chilenski and S. P. Miller, Applicability of modified conditional coverage to software
testing, Software Engineering Journal, (1994) 193 - 200

4. E. M. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. In Proceed-
ings POPL 92: Principles of Programming Languages, (1992) 343 - 354

5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the static
analysis of programs by construction of approximation of fixpoints. In Proceedings of
POPL 77: Principles of Programming Languages, (1977) 238 - 252

6. D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive systems:
abstractions preserving ACTL*, ECTL*, and CTL*. In Proceedings of PROCOMET 9/:
Programming Concepts, Methods, and Calculi, (1994) 561-581

7. S. Graf and H. Saidi, Construction of abstract state graphs with PVS. In Proceedings
of CAV 1997, LNCS 1254 (1997) 72 - 83

8. R.Hardin, Z. Har’'EL, and R. P. Kurshan, COSPAN, In Proceedings of CAV 1996, LNCS
1102, (1996) 423 - 427

9. M. S. Hecht, Flow Analysis of Computer Programs, NY: Elsevier-North Holland (1977)

10. J. Holzmann, Design and Validation of Computer Protocols, Prentice Hall, NJ (1991)

11. Kennedy Carter Inc., www.kc.com

12. Kapoor, C., and Tesar, D.: A Reusable Operational Software Architecture for Advanced
Robotics (OSCAR), The University of Texas at Austin, Report to DOE, Grant No. DE-
FG01 94EW37966 and NASA Grant No. NAG 9-809 (1998)

13. Kurshan, R., Computer-Aided Verification of Coordinating Processes - The Automata-
Theoretic Approach, Princeton University Press, Princeton, NJ (1994)

14. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System Design,
Vol. 6(1), (1995) 11-44

15. K. S. Namjoshi and R. P. Kurshan, Syntactic Program Transformations for Automatic
Abstraction, In Proceedings of CAV 2000: Computer Aided Verification, LNCS 1855,
(2000), 435-449

16. Y. Kesten and A. Pnueli, Control and Data Abstraction: Cornerstones of the Practical
Formal Verification, Software Tools and Technology Transfer, Vol. 2(4) (2000) 328 - 342

17. ProjectTechnologies Inc., www.projtech.com

18. H. Saidi, Modular and Incremental Analysis of Concurrent Software Systems, In Pro-
ceedings of ASE 1999, ACM Press (2000) 92 - 101

19. SES Inc., ObjectBench Technical Reference, SES Inc. (1998)

20. SES Inc., CodeGenesis User Reference, SES Inc. (1998)

21. N. Sharygina, and D. Peled, A Combined Testing and Verification Approach for Soft-
ware Reliability, In Proc. of FME2001: Formal Methods FEurope, LNCS 2021, (2001)
611-628

22. N. Sharygina, J. C. Browne and R. Kurshan, A Formal Object-Oriented Analysis
for Software Reliability: Design for Verification, In Proceedings of ETAPS2001(FASE):
Fundamental Approaches to Software Engineering, LNCS 2029, (2001), 318-332

23. Shlaer, S., and Mellor, S., Object Lifecycles: Modeling the World in States, Prentice-
Hall, NJ (1992)

24. L. Starr, Ezecutable UML: The Models that Are the Code, Model Integration, LLC
(2001)

25. F. Xie, V. Levin, and J. C. Browne, Model Checking of an Executable Subset of UML,
In Proceedings of ASE2001: Automated Software Engineering (2001)

Loop Abstraction for Model Checking Large-Scale Software 17

Appendix A. xXUML Programming Paradigm

xUML [23] is an instantiation of the programming model described in section 2.1. xUML
is a dialect of UML with executable semantics. Programs written in xXUML are design
level representations which can be executed directly through discrete event simulation or
interpretation and/or compiled to procedural source code. xUML is fairly widely used for
development of control systems [11,17,19].

| ee reference=0; EEQ: idle(EE_ID)

I end_position=0; \
o ____ \ | EE4: MoveEndEffector(EE_ID)

4‘&#:’ FollowingTr aj ectory

EES: back(EE_ID)

EES:to_idle(EE_ID, =
o_idle(EE_ID) EE1: HositionEndEffector(EE._ID); -
R // LOOP LABEL BLOCK A
| Generaté TS1: BLOCK C Current_Position=next_target;

if(Current_Position<=Global(1).final_point{
Generate EE6: Check_Constraints(EE _|ID); \\

|
|

| ! |
| Calculatefrrail Configuration(TS_ID, | |
! |

if(Current_Position<=EE.obstracle) {

| “forward |kinematics',|dOfL ockedJoint);

U 1
7

-

-

I nitialPositioning

Output Guad

|
Generate RECOVERY: Avoid(R1); } } hl
|
Generate EE5: back(EE_ID);} |

EE2: CheckLimits(EE_ID,solution) ; EE6: CheckConstraints(EE_ID)
Checking
Depend Guard Constraints
AN N - EE3: To_Valid(EE_ID|
,,,,\,\,\ ,,,,, L::,,,I
Ifor (int i=0;i<6;i++){> “ BLOCKB | ValidPosition
| if (Current_Position[i] > Limit(i]){ |
Ilactions are omitted | ~
Ieise{ | ; [- - -
| | EE7: To_N¢t_Valid(EE_ID) \ BLOCK E

| Generate EE7: to Not_Valid_Position(EE_ID);}

| NotValidPosition

N
| :]
N Ilections are omitted

[BI OE KiF]I

Fig. 5. xUML model of the End_Effector program of the Robot System.

An xUML program is a set of interacting objects. The behavior of each object is im-
plemented as a Moore state machine with a bounded FIFO input queue for events. The
objects interact by sending and receiving events. Each state of the state machine which can
receive an event is given a unique label. A sequential action is associated with each labeled
state. Each action assigns values to state variables and generates events to be posted to its
own input queue or the input queues of other state machines. The actions execute in run
to completion mode. The action language for the implementation of xXUML is a C-based
language extended by the event generation and state machines manipulation commands.
Each state machine has a state labeling variable which is updated immediately following

18 Natasha Sharygina and James C. Browne

receipt of an event. The presence of the labeling variable allows reasoning about the control
flow in terms of locations in the program execution rather than in terms of events.

Each state machine corresponds to a sequential program of the programming model
defined and described in Section 3. Each action corresponds to a basic block of a sequential
program. The execution model for an xXUML system is asynchronous interleaved execution
of the action language programs associated with the labeled states of the state machines.
The semantic model for xXUML is identical to the semantic for the programming model
defined and described in Section 3.

An example of the xUML system is given using a Kinematics component of the test-bed
robot controller system (RCS) [22, 21]. The Kinematics component is modeled by the xUML
state machines, representing behavioral specifications of the Arm, Joint, End_Effector,
Checker, Recovery, Trial_Configuration, Global_ Representation xUML objects. Figure 5
shows the state machine of the End_Effector program as an example of an xUML behavioral
specification.

The state machine is represented as a collection of basic block that are activated by
events. For example, an Block A can be activated by an input event FE/ and labeled by the
update of a variable ee_status := FollowingTrajectory (in the example, the label variables
update commands are implicitly implemented by the xUML graphical development envi-
ronment.) The activation of the basic block is followed by the execution of local commands
and generation of output events Generate EE6: CheckConstraints(EE_ID), Generate EE5:
back(EE_ID), and Generate RECOVERY: Avoid(R1).

The Kinematics RCS component implements the following algorithms:

- Robot Control Algorithm. Given a target position of the last joint of the robot arm
(end-effector), every joint calculates its target angle position. If each target angle posi-
tion satisfies the physical constraint imposed on the joint, the arm proceeds to the target
position; otherwise, fault recovery is called.

- Fault Recovery Algorithm. The position of the joint that violates the physical con-
straints is set to the specified limit while the other joints recalculate their target angle
positions.

- Obstacle Avoidance Algorithm. If the robot arm encounters an undesired position
(an obstacle in the robot workspace), a new position around an obstacle is searched by
the robot arm. If a new position of the arm is found and joint target angles are identi-
fied, the robot arm proceeds to the next target position, otherwise robot control terminates.

Appendix B. Soundness of the loop abstraction

We demonstrate that the loop abstraction is sound with respect to the control flow
representation of the concrete program. The soundness result implies that a control speci-
fication holds for the original program if it holds for the abstract program.

Let C be an ATS instance associated with the concrete program. Let A be an ATS
instance associated with a program that was constructed from C by applying the loop
abstraction algorithm.

Theorem 1:

Given a control property p, the abstract ATS (A) is equivalent with respect to ¢ to the
ortginal ATS (C).

Proof Sketch:

The claim is proved by a trace containment test. We demonstrate that a control trace
which conforms to the specification of the control property (see def. 14) of C is contained
in the language of control traces, R.L(A).

Loop Abstraction for Model Checking Large-Scale Software 19

1. X© C X#. This follows the definition of the abstract program (see Figure 3): (dur-
ing program transformation new variables, the path_selection variables, are added to the
program).

2. EC = E“. This follows the definition of the abstract program (see Figure 3): (during
program transformation no new events are added to list of the program events nor are any
events of the concrete program are omitted).

3. Generation of events is controlled by the output guards. Call the variables that are
used in the output guards of the concrete program, control variables, Xcontror- Call the rest
of the variables of the concrete program, data variables, Xg4tq. Therefore, X = Xcontror U
Xd(lt(l'

The path_selection variables are the control variables of the abstract program since
they are used in the guard statements to control generation of events. Therefore, from 1 it
follows that XS ,.., C XA . ..

4. Assume that the language of control traces is defined by a set of control traces each
of which is initiated by valuation of a different control variable. Let’s call these control
traces elementary control traces.

From 2 and 3 it follows that any elementary control trace of C is a subset of R.L(A).

5. From definition of traces (def. 9), every prefix of a trace is a trace. Since the set of
initial states is not empty, and the transition relation is serial, every trace can be extended.
Therefore, a control property (def. 14) is a specification that is defined over a set of ele-
mentary traces. Thus, from 4, any control trace conforming to a control property specified
for C is contained in R.L(A).

Therefore, A is equivalent to C with respect to the control property.

It can be shown in the manner above that R.L(C) C R.L(A) which implies (see def. 13)
that C weakly refines control of A and preserves all control properties. This means that
the same abstraction can be used to check all control properties.

