
Model Checking for an Executable Subset of UML

Fei Xie1 Vladimir Levin2 James C. Browne1

1 Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712, USA
ffeixie, browneg@cs.utexas.edu

2 Computing Sciences Research Center
Bell Laboratories

Murray Hill, NJ 07974, USA
levin@research.bell-labs.com

Abstract

This paper presents an approach to model checking soft-
ware system designs specified in xUML [3, 9], an exe-
cutable subset of UML. This approach is enabled by the
execution semantics of xUML and is based on automatic
translation from xUML to S/R [2], the input language of
the COSPAN [2] model checker. Model transformations are
applied to reduce the state space of the resulting S/R model
that is to be verified by COSPAN. An xUML level logic for
specifying properties to be checked is defined. Automated
support is provided for translating properties specified in
the logic to S/R representations and mapping error traces
generated by COSPAN to xUML representations.

1. Introduction

This paper presents an approach to model checking soft-
ware system designs specified in xUML[3, 9], an executable
subset of UML. The execution semantics of xUML include
action semantics following a proposal for Action Semantics
for UML [6] to OMG. The steps in the approach are:

a. A system design is specified in xUML as an executable
model;

b. A property to be checked against the system design is
specified in an xUML level logic;

c. The xUML model and the property are automatically
translated to a model and a query in the S/R [2] au-
tomaton language by an xUML-to-S/R translator;

d. The S/R query is automatically checked against the
S/R model by the COSPAN [2] model checker;

e. If a query fails, an error track is generated by COSPAN
and is automatically translated into an error report in
the name space of the xUML model.

The core of our approach is the comprehensive automa-
tion support for translation of an xUML model to an S/R

model, for translation of a property specified in the xUML
level logic to an S/R query, and for translation of an error
track generated by COSPAN to an xUML representation.
Model transformations leading to an S/R model with mini-
mal state space form another major part of our work.

Research on model checking software systems has been
mainly focused on system representations at either de-
sign level or programming language implementation level.
Model checking designs facilitates early detection of de-
sign errors while model checking implementations [7, 11]
may uncover errors introduced in the implementation phase.
In this research, model checking is applied to executable
designs which have not yet been implemented but for
which implementations can be either automatically gener-
ated based on a predefined architecture or manually coded.
Due to space limitations, we only compare with the most
closely related work: the automatic verification tool for
UML from the University of Michigan [1], and the vUML
tool [5]. Both tools translate and verify UML models based
on ad hoc execution semantics which did not include action
semantics. Neither supports formulation of properties to be
checked on the UML model level. We also addressed the
translation of generalization relationships between classes
in UML models, which is not addressed in [1, 5].

The rest of this paper is organized as follows: xUML,
COSPAN, and S/R are sketched in Section 2. Section
3 presents major algorithms in the automatic translation
from xUML to S/R. Model transformations reducing state
spaces are discussed in Section 4. Section 5 introduces the
automatic analysis support that facilitates model checking
xUML models. Conclusions are given in Section 6.

2. Overview of xUML, COSPAN, and S/R

An xUML model consists of class definitions, inter-class
relationships, and class instantiations. The execution behav-
ior of a class instance is specified by a Moore state model

where each state has an associated action that is executed
in a run-to-completion mode upon entry to the state. State
transitions are invoked by messages. The execution behav-
ior of an xUML model is an asynchronous interleaving of
the executions of the state models of class instances.

COSPAN is a model checker with synchronous seman-
tics and implements multiple state space reduction algo-
rithms, one of which, Symbolic Verification, is not read-
ily implementable in model checkers with asynchronous in-
terleaving semantics. COSPAN also enables Partial Order
Reduction [8] through Static Partial Order Reduction [4],
integration of which with Symbolic Verification yields a po-
tentially powerful state space reduction method.

In S/R, a system is composed of synchronously interact-
ing processes. A process consists of state variables, selec-
tion variables, inputs, state transition predicates, and selec-
tion rules. Selection variables define the outputs of the pro-
cess. Each process imports a subset of all the selection vari-
ables of other processes as its inputs. State transition predi-
cates update state variables as functions of the current state,
selection variables, and inputs. Selection rules assign values
to selection variables as functions of state variables. Such
a function is nondeterministic if several values are possible
for a selection variable in a state. The “selection/resolution”
execution model of S/R is clock-driven, synchronous, and
parallel, under which a system of processes behaves in a
two-phase procedure every logical clock cycle:

� [1: Selection Phase] Every process “selects” a value
possible in its current state for each of its selection
variables. The values of the selection variables of all
the processes form the global selection of the system.

� [2: Resolution Phase] Every process “resolves” the
current global selection simultaneously by updating its
state variables upon enabled state transition predicates.

In the following, all “processes” refer to S/R processes.

3. Automatic xUML-to-S/R Translation

xUML models with asynchronous interleaving execution
semantics, dynamic creation of class instances, and poten-
tially unbounded state spaces are automatically translated
to S/R models with synchronous parallel execution seman-
tics, a static set of processes, and finite state spaces. Each
class instance is translated to a process. The private mes-
sage queue of each class instance is modeled by a process.

3.1. Simulating Asynchrony with Synchrony

A global scheduler, also modeled by a process, nonde-
terministically schedules a process from among all the pro-
cesses modeling the class instances that are ready for an
xUML state action or an xUML state transition. Only the

scheduled process can perform an S/R state transition cor-
responding to a state action or a state transition in the state
model of the corresponding class instance. All other pro-
cesses modeling class instances follow a self-loop S/R state
transition back to their current S/R states.

Asynchronous message passing between class instances
is simulated by synchronous communication between pro-
cesses modeling class instances and their message queues.
Message types defined in a class are mapped to constants
in the S/R model. These constants define an enumeration
type which establishes the value range of the state variables
that are declared in the processes modeling message queues
of instances of the class and used to record the types of the
messages kept in the queues.

3.2. Translating State Models

The behavior of a class instance is specified by its state
model that consists of states, actions, and state transitions.
Figure 1 illustrates a state from an xUML state model with
its associated action and transitions.

Counting

C1: Idle

counter = counter + 1;
if (counter==10) counter = 0;

Outgoing State Transition

Transition Enabling Message Type

Incoming State TransitionState Action

Figure 1. An Sample xUML State

To translate a state model, the translator first constructs
the control flow graph of the state model. In the control
flow graph, an action associated with a state is partitioned
into primitive blocks. A primitive block consists of one
or more sub-actions of the action. Two adjacent control
points bracket either a primitive block or a state transition.
Figure 2 illustrates the control flow graph segment corre-

counter == 10

counter = counter + 1

Consuming

false

C1: Idle

true

Control Point 2

counter = 0

Control Point 4

Control Point 5

State Transition

Control Point 1

Control Point 3

Primitive Blocks

Figure 2. Control Flow Graph Segment

sponding to the state with its associated action and tran-
sitions in Figure 1. The primitive block between Control
Point 1 and 2 in Figure 2,counter = counter + 1, consists
of three sub-actions: a read, a plus, and a write.

Partitioning of the action associated with a state into
primitive blocks must preserve the run-to-completion se-

Selection Variable
ready_indicator
& Its updating Selection Rules

stvar $: (..., cp1, cp2, cp3, cp4, ...) 1 State Variable $

selvar __ready_indicator : boolean
asgn __ready_indicator := ... + ($ = cp1) + ($ = cp2) + ($ = cp3)

5
6
7

| true ? ($ = cp3) | false ? ($ = cp4) | ...

 + (($ = cp4) * Queue.HasMsg) + ...

2
3

in_actionselvar __in_action : boolean
asgn __in_action := ... | false ? ($ = cp1) | true ? ($ = cp2) | ...

4
& Its updating Selection Rules
Selection Variable

 ...

trans
 ...

 −> cp4 : else;

 −> cp2 : else;

State Transition Predicates

18
19
20

16
17 Updating $

 cp2 −> cp3 : (VALUE = 10) * (Scheduler.Scheduled = SELF)
 cp1 −> cp2 : (Scheduler.Scheduled = SELF) −> cp1 : else;

 −> cp4 : ~(VALUE = 10) * (Scheduler.Scheduled = SELF)

 cp3 −> cp4 : (Scheduler.Scheduled = SELF) −> cp3 : else;
 cp4 −> cp5 : (Queue.FirstMsg = C1) * (Scheduler.Scheduled = SELF)

14
15

13

stvar counter : integer
asgn counter −>
 0 ? ($ = cp3) * (Scheduler.Scheduled = SELF)

9
10

State Variable counter
& Its Updating State
Transition Predicates | (counter + 1) ? ($ = cp2) * (Scheduler.Scheduled = SELF)

 | counter

8

11
12

Figure 3. S/R Translation of the xUML State in Figure 1

mantics. For instance, all the primitive blocks between Con-
trol Points 1 and 4 in Figure 2 compose the action in Fig-
ure 1 and form a run-to-completion unit that must be exe-
cuted without interruption. Therefore supplemental infor-
mation is attached to the control points.

The state model, based on its control flow graph, is trans-
lated to semantic constructs of the process modeling the
class instance as follows:

� A state variable $ of enumeration type is defined in
the process and each control point in the control flow
graph is one-to-one mapped to a value of $.

� The primitive block or state transition immediately fol-
lowing a control point is mapped to a set of state tran-
sition predicates or selection rules that depend on the
value of $ corresponding to the control point.

The S/R process segments resulting from the state with
its associated action and outgoing transition in Figure 1
are shown in Figure 3. For example, the primitive block,
counter = 0, following Control Point 3 is mapped to two
state transition predicates that are enabled when $ has the
value of cp3 and the process is scheduled by the global
scheduler: One transition predicate sets the state variable
corresponding tocounterto 0 (Line 10); The other updates
$ from cp3 to cp4 (Line 18). The outgoing state transition
is mapped to a state transition predicate that updates $ from
cp4to cp5when enabled (Line 19).

A process may take several selection/resolution cycles to
perform a state action of the class instance it models if the
action is partitioned into several primitive blocks. In order
to guarantee the run-to-completion semantics of actions, a
selection variable,in action, is defined in the process, as
shown in Figure 3. Oncein action is true, the process is
scheduled continuously by the global scheduler until the
process setsin action to false. in action is set to false if
and only if $ has a value corresponding to a control point
followed by a state transition or the first primitive block of
an action; otherwise it is set to true.

3.3. Translating Generalizations

Under a generalization, subclasses may inherit attributes
and message types from superclasses. The superclass at-
tributes inherited by subclasses are mapped to state vari-
ables of the processes modeling the subclass instances. The
superclass message types are mapped to constants which are
included in the value ranges of the state variables that record
the message types in the processes modeling the message
queues of the subclass instances. Therefore no change is
required on the translation of either a messaging action that
sends a message of a superclass message type to an instance
of a subclass or a state transition that consumes the message.

3.4. Handling Infinite or Dynamic State Spaces

The translator is able to translate xUML models with in-
finite or dynamic state spaces if designers can range infi-
nite data types, numbers of class instances to be dynami-
cally created, and infinite message queues by annotating the
xUML models with an annotation language provided.

4. Transformations Reducing State Spaces

A significant part of our research is devoted to transform-
ing xUML models before the translation to S/R in order to
obtain S/R models with minimal state spaces.

4.1. Static Partial Order Reduction

The asynchronous interleaving semantics of xUML sug-
gests applying Static Partial Order Reduction (SPOR) [4]
to an xUML model prior to its translation into S/R. SPOR
transforms the model by restricting its transition structure
with respect to a property to be checked. Integrated appli-
cation of Partial Order Reduction and Symbolic Verification
is achieved by applying Symbolic Verification to the S/R
model translated from the transformed xUML model.

4.2. Identification of Static Attributes

Class instances may have static attributes whose values
never change during system execution. We implemented a
labeling algorithm that tags static attributes when the xUML
model is parsed. Instead of being translated to state vari-
ables, static attributes are translated into constants which
do not contribute to the state space.

4.3. Identification of Self Messages

A self message is a message that a class instance sends to
itself. The messaging action sending a self message and the
transition consuming the message are translated as a whole
to a single state transition predicate if the execution order
of actions and state transitions can be preserved. An S/R
state transition resulting from the state transition predicate
has the same effect as sending and consuming the message.

4.4. Support for Symbolic Verification

To symbolically verify an S/R model, an explicit value
range must be provided for each variable in the S/R model.
These ranges can be provided by designers using the anno-
tation language mentioned in Section 3.4. We are exploring
transformations leading to S/R models whose state spaces
can be reduced more effectively by Symbolic Verification.

5. Analysis Support and Tools

5.1. xUML Level Property Specification

We defined an xUML level property specification logic,
provided an interface for specifying xUML level properties
in the logic, and implemented a translator from xUML level
properties to S/R queries. A property formulated in the
logic consists of declarations of propositional logic predi-
cates over xUML model constructs and declarations of tem-
poral predicates. The temporal predicates are declared by
instantiating a set of templates. A template consists of a
temporal logic operator and a pattern of arguments. Each
temporal predicate is an instantiation of a template where
each argument is a propositional logic expression composed
from the previously declared propositional predicates.

5.2. Post-Processing of Error Tracks

When a query on an S/R model fails, COSPAN generates
an error track specifying an execution trace that is inconsis-
tent with the query. A translator that automatically maps
the error track to an error report in the xUML notation is
provided. The error report consists of an execution trace of
the corresponding xUML model, which violates the corre-
sponding xUML level property.

6. Conclusions

We present an approach to model checking xUML mod-
els of complex and concurrent software systems. The ap-
proach is enabled by the executable nature of xUML, based
on automatic translation of asynchronous xUML models to
synchronous S/R models, and enhanced by xUML model
transformations leading to S/R models with manageable
state spaces. A long version of this paper with full details of
the translation algorithms can be found in [12]. A success-
ful application of this approach has been reported in [10].

7. Acknowledgments

We would like to acknowledge Robert P. Kurshan for his
important role in initiating, supporting, and collaborating
on this project. We would also thank Natasha Sharygina
and Husnu Yenig¨un for their support. This research was
partially supported by TARP grant 003658-0508-1999.

References

[1] K. Compton, Y. Gurevich, J. K. Huggins, and W. Shen. An
Automatic Verification Tool for Uml. Univ. of Michigan,
EECS Dept. Tech. Report CSE-TR-423-00, 2000.

[2] R. H. Hardin, Z. Har’El, and R. P. Kurshan. COSPAN.Proc.
of 8th International Conference on Computer Aided Verifi-
cation, 1996.

[3] Kennedy Carter.http://www.kc.com/html/xuml.html.
[4] R. P. Kurshan, V. Levin, M. Minea, D. Peled, and

H. Yenigün. Static Partial Order Reduction.Proc. of 4th
International Conference Tools and Algorithms for the Con-
struction and Analysis of Systems, 1998.

[5] J. Lilius and I. Porres. vUML: a Tool for Verifying UML
Models. Proc. of the Automatic Software Engineering Con-
ference, 1999.

[6] OMG. Action Semantics for the UML. OMG, 2000.
[7] D. Y. W. Park, U. Stern, J. U. Sakkebak, and D. L. Dill. Java

Model Checking.Proc. of the Automatic Software Engineer-
ing Conference, 2000.

[8] D. Peled. Combining Partial Order Reductions with On-the-
fly Model-Checking.Formal Methods in System Design, (8),
1996.

[9] Project Tech.http://www.projtech.com/pubs/xuml.html.
[10] N. Sharygina, R. P. Kurshan, and J. C. Browne. A Formal

Object-oriented Analysis for Software Reliability.Proc. of
Fundamental Approaches to Software Engineering, 2001.

[11] W. Visser, K. Havelund, G. Brat, and S. J. Park. Model
Checking Programs.Proc. of the Automatic Software Engi-
neering Conference, 2000.

[12] F. Xie, V. Levin, and J. C. Browne. Model Checking for an
Executable Subset of UML.Univ. of Texas at Austin, UTCS
Tech. Report TR-01-34, 2000.

