
Verified Systems by Composition from Verified Components

Fei Xie and James C. Browne

Dept. of Computer Sciences, Univ. of Texas at Austin, Austin, TX 78712, USA
Email: ffeixie, browneg@cs.utexas.edu Fax: +1 (512) 471-8885

Abstract

This paper presents an approach to integrating model
checking into component-based development of software
systems. This integration enables development of highly re-
liable component-based software systems and reduces the
complexity of verifying these systems by utilizing their com-
positional structures. In this approach, temporal proper-
ties of a software component are specified, verified, and
packaged with the component. Selection of a component
for reuse considers not only its functionality, but also its
temporal properties. When a component is composed from
simpler components, temporal properties of the composed
component are verified on an abstraction of the component.
The abstraction is constructed from environment assump-
tions of the component and verified properties of its sub-
components. This approach has been applied to improve
reliability of run-time images of TinyOS [4], a component-
based run-time environment for networked sensors. Results
from an initial case study demonstrate the applicability of
the integration, the improvement of reliability, and a signif-
icant reduction in model checking complexity.

1 Introduction

Component-based development (CBD), developing soft-
ware systems through composition of components, is one
of the most important technical initiatives in software en-
gineering research. Testing is the most commonly used
technique for validating software systems being built with
CBD. Testing has the inherent test case coverage problem,
which hinders development of highly reliable component-
based software systems. Application of model checking to
software is an important method for improving reliability
of software systems. Model checking provides exhaustive
state space coverage for the systems being checked. Model
checking is particularly effective at detecting coordination
errors which frequently result from component composi-
tions and are notoriously difficult to detect by testing. How-

ever, model checking often cannot handle large-scale soft-
ware systems due to state space explosion.

Model checking and CBD are synergistic. Model check-
ing can potentially enable effective development of more re-
liable component-based software systems. CBD introduces
compositional structures, clean component interfaces, and
standard composition rules to the systems being built, which
can reduce the state spaces model checkers have to handle.

This paper presents an approach to integrating model
checking into the CBD of software systems, which con-
tributes to solution of fundamental problems in both CBD
and model checking:
� Development of components which can be reused with

certainty that their behaviors will meet their specifica-
tions in a proper composition;

� Identifying proper components for a composition;
� Establishing that a component composed from “cor-

rect” components will meet its specifications;
� Alleviating the state space explosion problem.

This approach can be summarized as follows:
� As a software component is being built, temporal prop-

erties of the component are established, verified, and
then packaged with the component.

� Selecting a component for reuse considers not only its
functionality but also its temporal properties.

� Properties of a composed component are verified by
reusing verified properties of its sub-components and
applying compositional reasoning [2].

A general component model, which provides a framework
for representing components and their properties and for
composing components, is defined. In this model, a prop-
erty of a component is defined with assumptions on the en-
vironment of the component. The property is verified on
the component under these assumptions. When the compo-
nent is reused in the composition of a larger component, the
property isenabledif the environment assumptions made in
its verification hold on other components in the composition
and/or the environment of the composed component.

The general component model can be instantiated in
many different computation models upon which the syntax

and semantics for components, properties, and component
compositions are precisely defined. We have instantiated
the general component model in an Asynchronous Inter-
leaving Message-passing (AIM) model. In this instantia-
tion, executable representations of components are specified
in an executable object-oriented modeling language whose
semantics conform to the AIM computation model, such
as xUML [6]. This instantiation is of interest due to that
although many component-based software systems are not
developed on the AIM model, most of them can be readily
transformed to systems based on the AIM model.

Components are categorized asprimitive components
(components built from “scratch” and not composed from
other components) andcomposedcomponents. Proper-
ties of primitive components are verified by directly model
checking the object-oriented design models of the compo-
nents using methods established in our previous work [9,
11]. Properties of a composed component, instead of being
model checked on its executable design model, are checked
on its abstraction. The abstraction is composed of sim-
ple automata corresponding to environment assumptions of
the composed component and verified properties of its sub-
components. A sub-component property is included in the
abstraction if it is enabled in the composition and related to
the properties to be checked according to cone-of-influence
analysis. If the abstraction of the composed component
is still too complex to be checked directly, compositional
reasoning is applied to decompose the abstraction. If the
abstraction is too abstract for verifying the desired proper-
ties, it is refined by verifying additional properties of the
sub-components so that the necessary properties of the sub-
components can be included into the abstraction.

This approach is founded on compositional reason-
ing [2]. There has been extensive research on compositional
reasoning, most of which applies compositional reasoning
in a top-down approach: To check properties of a large sys-
tem, the system is decomposed into modules recursively
in a top-down fashion. Our work combines the top-down
approach with the bottom-up component composition pro-
cess of CBD. Properties of components are verified as they
are composed from simpler components in a bottom-up ap-
proach and verifications of these properties involve com-
positional reasoning. Research on interface automata [1] is
related to our work in that it also explores the compositional
structures of software components. It differs from our work
in that it focuses on checking interface compatibilities of
software components while our work focuses on checking
temporal properties of software components. Inscape [8]
was pioneering research in use of extended interfaces to
support effective composition of systems from components.
Rapide [7] was an early project integrating formal methods
(in their case, proofs of consistency with specifications) and
component-based development of software systems.

Our approach is most suitable for application to a fam-
ily of software systems that are built from a set of software
components. We have identified two major application do-
mains: Families of software systems based on a specific
hardware/software architecture, such as the TinyOS [4] run-
time environment, and families of distributed large-scale
software systems based on component platforms such as
CORBA, DCOM, and EJB.

Section 2 defines a general component model for veri-
fication and instantiates it on the AIM computation model.
Section 3 discusses how to verify properties of components.
Section 4 illustrates our approach with the TinyOS case
study. Section 5 analyzes the effectiveness of our approach
in the context of the case study. Section 6 discusses future
work and concludes.

2 Component Model for Verification

Section 2.1 presents a general component model designed
to enable component verification. The general component
model is a template that can be instantiated on computation
models to enhance them with component and component
composition which enable verification of components. The
computation models provide semantics and abstract syntax
for the executable representations and the interfaces of com-
ponents and provides semantics for component execution
and interaction. Composition rules are also realized on the
computation models. Section 2.2 sketches the AIM compu-
tation model. Section 2.3 instantiates the general compo-
nent model on the AIM model.

2.1 General Component Model

2.1.1 Component

A component,C, is a four-tuple,(E; I; V; P), where

� E is an executable representation ofC.
� I is an interface through whichC interacts with other

components, such as a messaging interface or a proce-
dural interface.

� V is a set of variables defined inE and referenced by
the properties defined inP .

� P is a set of temporal properties defined onI andV ,
and verified onE. A temporal property inP is repre-
sented by a pair,(p; A), wherep is a temporal formula
defined onI andV andA is a set of temporal formulas
defined onI andV . The property,p, holds onC if tem-
poral formulas inA hold on the environment ofC (see
next paragraph for the definition of the environment of
a component). Temporal formulas inA are referred to
as the environment assumptions ofC for enablingp.

Under this model, an applicable system is a component.
The environment that the system interacts with is also mod-

2

eled as components. The set of components that a compo-
nent interacts with is referred to as the environment of the
component. The environment of a component varies as the
component is reused in different compositions.

2.1.2 Component Composition

A component,C = (E; I; V; P), can be composed
from a set of simpler components,(E0; I0; V0; P0), : : :,
(En�1; In�1; Vn�1; Pn�1), as follows:
� E is constructed fromE0, : : :, En�1 by connecting
E0, : : :, En�1 through their interfaces.

� I is derived fromI0, : : :, In�1: An operation inIi,
0 � i < n, is included inI if and only if it is used
whenC interacts with other components.

� V is a subset of
Sn�1

i=0 Vi. A variable in
Sn�1

i=0 Vi is
included inV if and only if the variable is referenced
by the properties defined inP .

� P is a set of temporal properties defined onI andV ,
and verified onE. Properties inP are verified onE by
utilizing the properties inP0, : : :, Pn�1.

2.2 AIM Computation Model

The AIM computation model is a commonly used compu-
tation model for software systems. Under our definition of
the AIM model, a system is a finite set1 of interacting pro-
cesses. A process is a four-tuple,(V; M; Q; I), whereV
is a set of variables, each of which is of a bounded type;
M is an extended Moore state model;Q is an infinite FIFO
message queue;I is an initial condition that consists of an
initial value for each variable inV , an initial state forM ,
and the empty status forQ.

An extended Moore state model is a three-tuple,
(S; E; T), whereS is a set of states, each of which has an
associated state action;E is a set of message types (assum-
ing thatE0s of different processes are disjoint);T is a set
of state transitions each of which is a three-tuple,(r; t; m),
wherer andt are two states inS andm is a message type
in E. A state action is a program segment composed from
executable statements as follows:
� An empty statement;
� An assignment statement;
� A messaging statement that outputs a message;
� An if statement;
� A composite statement that is a sequential composition

of statements.
An execution of an AIM system is an interleaving of state

transitions and state actions of the processes in the system.
� A process isreadyif and only if it just entered a state

and has not yet executed the state action associated
with the state or if one of its state transition is enabled
by the first message in its message queue.

1If not specified explicitly, a set referred to in this paper is finite.

� At any given moment, exactly oneready process
is non-deterministically scheduled to execute from
among all thereadyprocesses.

� When scheduled, areadyprocess executes an enabled
state transition or an enabled state action in a run-to-
completion fashion.

Processes in a system interact via messages. Given two pro-
cesses,P1 andP2, to send a message fromP1 toP2, a mes-
saging statement is included in a state action ofP1. The
messaging statement includes a message type,T , defined
in E of P2, and the parameters required byT . When the
state action is executed, a message of the type,T , with its
parameters is put in the message queue ofP2.

2.3 Instantiation on AIM Computation Model

This section discusses the instantiation of the general com-
ponent model on the AIM computation model with the fo-
cus on how to derive the executable specification and the in-
terface of a composed component from its sub-components.

2.3.1 Component

A component,C, is a four-tuple,(E; I; V; P), where

� E is an executable representation ofC with syntax and
semantics conforming to AIM.E can be either an AIM
specification that consists of a set of interacting AIM
processes, or an implementation of the AIM specifica-
tion in a programming language.

� I is the messaging interface through whichC interacts
with other components and is a pair,(R; S), whereR
(orS, respectively) is a set of input (or output) message
types whose instances may be input (or output) byC,
more precisely by processes inC, whenC interacts
with other components.

� V andP inherit their definitions from the general com-
ponent model and reference semantic entities in the in-
stantiations ofE andI on the AIM model.

2.3.2 Component Composition

A component,C = (E; I; V; P), can be composed
from a set of simpler components,(E0; I0; V0; P0), : : :,
(En�1; In�1; Vn�1; Pn�1), as follows:

� E is constructed fromE0, : : :, En�1, by mapping out-
put message types inS0, : : :, Sn�1 to input message
types inR0, : : :, Rn�1. If there is a mapping defined
between an output message type,s, in Si, 0 � i < n,
to an input message type,r, in Rj , 0 � j < n, the
following steps are executed:

– A conformance check is performed on the param-
eter lists ofs andr.

3

– All occurrences ofs in Ei are replaced byr, ex-
cept the occurrences where messages of the type,
s, are output to components outsideC.

– If s is mapped to more than one input message
type, each messaging statement that outputss is
replicated for each input message type.

� I = (R;S) is derived fromIi = (Ri; Si), 0 � i < n:
R (or S, respectively) is a subset of

Sn�1

i=0 Ri (or
Sn�1

i=0 Si). A message type in
Sn�1

i=0 Ri (or
Sn�1

i=0 Si)
is included inR (or S) if and only if messages of that
type may be input (or output) byC whenC interacts
with other components.

� V is derived by following the corresponding rule given
in the general component model.

� Formulation of the properties inP and verification of
these properties by utilizing the properties inP0, : : :,
Pn�1 are discussed in Section 3 in detail.

2.3.3 Component Execution and Interaction

The execution semantics of components are defined recur-
sively (assuming bounded recursion). When a component
executes, if the component has no sub-components, then at
any given moment exactly one AIM process in the compo-
nent executes; if the component has sub-components, then
at any given moment exactly one sub-component executes.

Components interact with each other via messages. A
component can only input (or output, respectively) mes-
sages of the types listed in its input (or output) messaging
interface. Messages input (or output) by a component are
consumed (or generated) by an AIM process in the compo-
nent or its recursively nested sub-components.

3 Verification of Components

This section discusses verification of components in the in-
stantiation of the general component model on the AIM
computation model. First, we introduce how AIM systems
are verified. Then, we discuss how component properties
are formulated. Finally, we differentiate components into
two categories, primitive and composed, and present proce-
dures for verifying components of the two categories.

3.1 Background: Verification of AIM Systems

There are many software design specification languages
whose semantics conform to the AIM model, such as
xUML [6], an executable dialect of UML, and SDL [5]. In
our previous research [9, 11], we designed and implemented
an approach to model checking system designs specified in
xUML. This section briefly sketches this approach and dis-
cusses how compositional reasoning, which plays a key role
in verifying components, is applied in this approach.

3.1.1 Model Checking xUML Specifications

The approach to model checking software system designs
specified in xUML can be summarized as follows:

� A system design is specified in xUML as an executable
model.

� A property to be checked on the design is specified in
an xUML level logic.

� The xUML model and the property are automatically
translated to a model and a query in the S/R [3] au-
tomaton language.

� The S/R query is checked on the S/R model by the
COSPAN [3] model checker.

� If the query fails, an error track is generated by
COSPAN and is automatically translated to an error
report in the name space of the xUML model.

The S/R automaton language employs synchronous paral-
lel execution semantics and shared-variable communication
paradigm. The AIM computation model is simulated in the
synchronous parallel variable-sharing computation model
of S/R. This approach requires a system design to be model
checked be a closed system. A system is made closed by
modeling its environment as part of the system.

3.1.2 Compositional Reasoning

The above approach suffers from the state space explosion
problem. To verify large-scale software system designs,
we extend the approach with compositional reasoning [2],
where model checking a property on a system is accom-
plished by decomposing the system into modules, check-
ing module properties locally on the modules, and deriv-
ing the system property from the module properties. We
apply compositional reasoning in model checking xUML
specifications by following the Multi-Semantics Composi-
tional Reasoning approach proposed in [10], where compo-
sitional reasoning rules are established in the semantics of
software systems, but are proved and implemented based
on translation of software systems to formal representations
for which compositional reasoning rules have already been
established, proved, and implemented.

3.2 Formulation of Component Properties

After the AIM specification and the messaging interfaces
of a component are constructed, properties of the compo-
nent can be formulated. Properties are mainly derived from
functional specifications of the component such as input
and output relationships. Additional properties may also
be introduced incrementally when the component is reused
in composing other components. Verifying a property of a
composed component may require formulating and verify-
ing additional properties of its sub-components.

4

3.3 Verification of Primitive Components

A primitive component often has specific functionality. As
a result, the state space of a primitive component is often
of modest size and suitable for direct application of model
checking. The approach in Section 3.1.1 is employed to ver-
ify a primitive component. However, the AIM specification
of a primitive component often does not specify a closed
system and the approach cannot be readily applied. There-
fore, we construct a closed system from the AIM specifica-
tion and the environment assumptions of the component.

Given a primitive component,C = (E; I; V; P), and a
property,(p; A) 2 P , in order to check whetherp holds on
E assuming assumptions inA hold on the environment of
C, the following steps are executed:

1. Create an AIM process,ENV , whose input message
types are the same as the output message types defined
in I and whose state model outputs messages of the
input message types defined inI ;

2. Build an AIM system fromENV and the AIM pro-
cesses inE and translate the system into S/R;

3. Free all variables of the automaton corresponding to
ENV in the S/R model obtained in Step 2 so that these
variables will take on any value in their domains non-
deterministically (Detailed discussion on freeing vari-
ables in an S/R model can be found in [3]);

4. Translate assumptions inA to S/R automata and com-
pose them with the S/R model obtained in Step 3 so
that the free variables introduced in Step 3 are now
constrained by the assumptions inA;

5. Translatep to an S/R automaton and checkp on the
S/R model gotten in Step 4.

These steps construct a closed system by using theENV

process as the translation stub and replacingENV with the
assumptions inA in the resulting S/R model, and then verify
p on the closed system. Construction of the closed system is
simplified by that in S/R, models, properties, and assump-
tions are all specified as automata of the same form.

3.4 Verification of Composed Components

This section presents a method for verifying a prop-
erty, (p; Ap) 2 P , on a composed component,C =
(E; I; V; P), where C is composed fromC0 =
(E0; I0; V0; P0) and C1 = (E1; I1; V1; P1). This
method reuses the properties that have been verified on the
sub-components,C0 andC1. It can be readily extended to
the case thatC is composed fromC0, : : :, Cn�1.

3.4.1 Component Abstraction Construction

Since the AIM specification of a composed component of-
ten has a large state space that cannot be directly model
checked, we construct an abstraction of the component

based on the composition, the environment assumptions of
the component, and the messaging interfaces and the veri-
fied properties of the sub-components.

Before discussing how to construct the abstraction, we
first introduce the concept ofenabled property. A prop-
erty of a component is defined with assumptions on the en-
vironment of the component. The property is verified on
the component under these assumptions. When the compo-
nent is reused in the composition of a larger component, the
property isenabledif the environment assumptions made in
its verification hold on other components in the composition
and/or the environment of the composed component.
Definition – Enabled Property: A property(pi; Ai) of
Ci, wherei 2 f0; 1g and(pi; Ai) 2 Pi, is enabled in the
composition ofC0 andC1 if and only if:

� EitherAi is empty;
� Or for each formula,q, in Ai, either there exists a

property, (q; A0), which is defined, verified, and en-
abled onP1�i, or q 2 Ap.

That a property,(pi; Ai), of Ci is not currently enabled
in the composition ofC0 andC1 does not imply thatq does
not hold onCi under the composition.(pi; Ai) can be-
come enabled when all assumptions inAi become enabled,
which may require checking additional properties ofC0 and
C1. The function in Figure 1 can be applied to determine

boolean functionenabled (A, i) begin
if (empty(A)) then return true;
else
while (! empty(A)) do
q = Remove(A);
if (q 2 Ap) then continue;
elseif(< q; A0 >2 P1�i) then
if (enabled(A0, 1� i)) then continue;
endif;
return false;

endif;
endwhile;
return true;

endif;
end;

Figure 1. The “enabled” function
whether(pi; Ai) is enabled in the composition ofC0 and
C1, assuming that the environment assumptions ofp in Ap

hold on the environment of the composition.
The abstraction of the composed component,C, is de-

rived according to the following steps:

� Realize the output message interfaces ofC0 (orC1, re-
spectively) in the context ofC by replacing the output
message types ofC0 (or C1) with the corresponding
input message types ofC1 (or C0) according to the
mappings among the output message types ofC0 (or

5

C1) and the input message types ofC1 (orC0) so that
output message types ofC0 andC1 only appear when
used to communicate with the environment ofC.

� Create an AIM system,S, which consists of three stub
AIM processes:

– CP0 (orCP1, respectively), corresponding toC0
(or C1), whose variables have the same names
and domains as the variables inV0 (orV1), whose
input message types are the same as the input
message types ofC0 (or C1), and whose state
model outputs messages of the output message
types ofC0 (orC1);

– ENV , corresponding to the environment ofC,
whose input message types are the same as the
output message types ofC, and whose state
model outputs messages of the input message
types ofC.

� Run the “enabled” function in Figure 1 on each prop-
erty, (p̂; Â), in P0 andP1, and includêp into S if the
function returns true;

� Include the temporal formulas inAp intoS;
� Run the cone-of-influence analysis onS to exclude

properties and assumptions not related top.

There often exist circular dependencies among the prop-
erties of sub-components. Validity of these circular depen-
dencies has to be checked with compositional reasoning
rules [10] that support such validity checks. Sub-component
properties involved in invalid circular dependencies are ex-
cluded from the abstraction.

3.4.2 Verification of Component Abstraction

Instead of checkingp on the AIM specification ofC, we
checkp on the abstraction,S:

� TranslateS andp into S/R by applying the approach
described in Section 3.1.1;

� Free all variables of the automata corresponding to
CP0, CP1, andENV in the S/R model;

� Check the S/R query corresponding top on the S/R
model corresponding toS;

� Include(p;Ap) in P if p holds onS; Otherwise, refine
S as discussed in Section 3.4.3.

The complexity of model checkingp on the abstraction,S,
is often much lower than the complexity of directly model
checkingp on the AIM specification ofC.

3.4.3 Refinement of Component Abstraction

If p does not hold on the abstraction,S, then eitherp does
not hold onC assuming assumptions inAp hold on the en-
vironment ofC or S is too abstract. With the help of do-
main specific knowledge, it is often possible to differentiate
the two cases by analyzing the error tracks generated by the

model checker. Ifp does not hold onC under the assump-
tions inAp, then eitherC has to be re-composed or more
assumptions have to be added toAp. If S is too abstract, it
must be refined.

The abstraction can be refined by including additional
properties ofC0 andC1. These properties are either prop-
erties that are newly introduced, but have not yet been ver-
ified, or properties that have been verified, but are not cur-
rently enabled in the composition. If a property to be in-
cluded has not been verified, it is first verified. If a prop-
erty to be included has been verified, but is not currently
enabled, the procedure in Figure 2 is applied to enable the
property. The procedure enables the property,(p; A), ofCi

procedureenable (A, i) begin
while (!empty(A)) do
q = remove(A);
if (q 2 Ap) then continue;
elseif(< q; A0 >2 P1�i) then
if (! enabled (A0, 1� i)) then
enable (A0, 1� i);

endif;
elseif(q is supposed to hold onC1�i) then
A0 = f assumptions ofq g;
if (! verify (q, A0, 1� i)) then abort; endif;
enable (A0, 1� i);

else abort;
endif;

endwhile;
end;

Figure 2. The “enable” procedure

by enabling all its assumptions onC1�i. If an assumption,
q, is a property that has been verified inP1�i, but is not en-
abled, the “enable” procedure is called forq recursively. If
q has not been verified inC1�i, a set of assumptions,A0, of
q is introduced and(q; A0) is verified onC1�i. If (q; A0)
is successfully verified, the “enable” procedure is called on
A0 recursively. The recursive execution of the “enable” pro-
cedure is aborted if a call to the “verify” procedure returns
false or ifq is neither an assumption of the composed com-
ponent,C, on its environment norq is a property that is
supposed to hold onC1�i. Circular dependencies among
properties, introduced by the refinement, must be validated
as discussed in Section 3.4.1.

4 Case Study:
Verification of TinyOS Components

We illustrate the approach to integrating model check-
ing into CBD by applying it to improve the reliability of
TinyOS [4] run-time images. TinyOS is a component-
based run-time environment designed to provide support

6

for deeply embedded systems which require concurrency-
intensive operations while constrained by minimal hard-
ware resources. Hardware constraints of deeply embed-
ded systems prohibit loading all TinyOS functional mod-
ules into a single run-time image and different requirements
of these systems require different configurations of TinyOS
modules, which make CBD an appropriate development ap-
proach for TinyOS.

TinyOS run-time images are usually loaded to a large
number of deeply embedded systems such as networked
sensors, which makes correction of software bugs very ex-
pensive. Hardware constraints of TinyOS prohibit using
locks and monitors which are computationally expensive.
This combination of complexity and the requirement for
high reliability justifies the application of model checking
to improve the reliability of TinyOS.

4.1 Sensor Component

We sketch how primitive components are specified and ver-
ified with the Sensor component. We first introduce the
(E; I; V; P) specification of the Sensor component. The
executable representation,E, of the Sensor component is
specified in xUML. The communication diagram of the
Sensor component is shown in Figure 3 (Space limitations
prohibit showing all xUML diagrams ofE). The Sensor

Clock

SO_Task

ADC

Photo STQ

Sensor−Output

Component Boundary

A_IntrC_Intr C_Ret

Done_Ack Done

A_Ret S_Schd S_Ret Message CommunicationSub Component

OP_Ack

Output

Figure 3. Sensor component
component consists of six AIM processes that interact with
each other and the environment of the component via mes-
sages. The messaging interface,I , of the component is as
follows:

� R=fC Intr, A Intr, S Schd, OPAck, Doneg;
� S=fC Ret, ARet, SRet, Output, DoneAckg.

Message types inR are defined in the AIM processes of
the Sensor component and the message types inS are to be
realized when the component is composed with other com-
ponents. C Intr, A Intr, andS Schdare the hardware in-
terrupts the Sensor component needs to handle andC Ret,
A Ret, andS Retare the corresponding replies. The Sen-
sor component outputs Sensor readings as messages of the

type,Output, and gets messages of the type,OP Ack, back
as the replies. The properties to be checked on the Sen-
sor component are listed in Figure 4 with their assump-
tions. These properties assert that the component repeatedly

Properties:
Repeatedly(Output);

After (Output)Never (Output)UntilAfter (OP Ack);

After (Done)Eventually (DoneAck);
Never (Done Ack) UntilAfter (Done);
After (Done Ack) Never (Done Ack) UntilAfter (Done);

Assumptions:
After (Output)Eventually (OP Ack);
Never (OP Ack) UntilAfter (Output);
After (OP Ack) Never (OP Ack) UntilAfter (Output);

After (Done)Never (Done)UntilAfter (Done Ack);

Repeatedly(C Intr);
After (C Intr) Never (C Intr + A Intr + S Schd)

UntilAfter (C Ret);

After (ADC.Pending)Eventually (A Intr);
After (A Intr) Never (C Intr + A Intr + S Schd)

UntilAfter (A Ret);

After (STQ.Empty = FALSE)Eventually (S Schd);
After (S Schd)Never (C Intr + A Intr + S Schd)

UntilAfter (S Ret);

Figure 4. Properties of Sensor Component

outputs sensor readings and correctly handles the signal-
and-reply relationship betweenOutputandOP Ackand be-
tweenDoneandDoneAckassuming the assumptions hold
on its environment. The set,V , consists of two variables,
ADC.PendingandSTQ.Empty, referenced by the properties
and the assumptions listed in Figure 4.

The Sensor component has a state space of modest size.
The properties listed in Figure 4 were successfully verified
on the component by following the steps in Section 3.4 and
were included intoP for future reuse.

4.2 Network Component

The communication diagram of the Network component is
shown in Figure 5. The messaging interface,I , of the Net-
work component is as follows:
� R=fN Schd, RIntr, SentAck, Datag;
� S=fN Ret, RRet, Sent, DataAckg.

The properties that have been verified on the Network com-
ponent and included inP are listed in Figure 6 with their
assumptions. The properties assert that the Network com-
ponent transmits on the physical network repeatedly if it re-
ceives inputs repeatedly, and it correctly handles the signal-
and-reply relationship betweenData andData Ackand be-
tween Sentand SentAck. The set,V , of the Network

7

Int_to_RFM

Generic_Comm

GC_Task RFM

Data_Ack

Data

R_Ret R_Intr

Sent Sent_Ack

N_Ret

NTQ

N_Schd

Figure 5. Network component

Properties:
IfRepeatedly (Data)Repeatedly(RFM.Pending);
IfRepeatedly (Data)Repeatedly(Not RFM.Pending);

After (Data)Eventually(Data Ack);
Never (Data Ack) UntilAfter (Data);
After (Data Ack) Never (Data Ack) UntilAfter (Data);

After (Sent)Never (Sent)UntilAfter (SentAck);

Assumptions:
After (Data)Never (Data)UntilAfter (Data Ack);

After (Sent)Eventually (SentAck);
Never (SentAck) UntilAfter (Sent);
After (SentAck) Never (SentAck) UntilAfter (Sent);

After (NTQ.Empty = FALSE)Eventually (N Schd);
After (N Schd)Never (N Schd + RIntr) UntilAfter (N Ret);

After (RFM.Pending)Eventually (R Intr);
After (R Intr) Never (N Schd + RIntr) UntilAfter (R Ret);

Figure 6. Properties of Network Component

component consists of two variables,RFM.Pendingand
NTQ.Empty, referenced by the properties and the assump-
tions listed in Figure 6.

4.3 Sensor-to-Network Component

This section introduces how a run-time image of TinyOS,
the Sensor-to-Network component, is composed from the
Sensor component and the Network component, and then
discusses how properties of the composed component are
verified by utilizing the properties that have been verified
on its sub-components.

The executable representation,E, of the Sensor-to-
Network component is composed from the executable
representations of the Sensor and Network components.
The abstracted communication diagram of the Sensor-to-
Network component is shown in Figure 7, where an anno-
tation of the form of “Input Message type (Output message

Network Component

Data (Output)

Senser Component

Done (Sent)

Sent_Ack (Done_Ack)
Sensor−to−Network Component

OP_Ack (Data_Ack)

Figure 7. Sensor-to-Network component

type)” denotes the replacement of an output message type
of a component with an input message type of the other
component. The messaging interface,I , of the Sensor-to-
Network component is as follows:

� R=fC Intr, A Intr, S Schd, NSchd, RIntrg;
� S=fC Ret, ARet, SRet, NRet, RRetg.

The properties to be checked on the Sensor-to-Network
component are listed in Figure 8 with their assumptions.
These properties assert that the Sensor-to-Network compo-

Properties:
Repeatedly(RFM.Pending);
Repeatedly(Not RFM.Pending);

Assumptions:
Repeatedly(C Intr);
After (C Intr) Never (C Intr + A Intr + S Schd

+ N Schd + RIntr) UntilAfter (C Ret);

After (ADC.Pending)Eventually (A Intr);
After (A Intr) Never (C Intr + A Intr + S Schd

+ N Schd + RIntr) UntilAfter (A Ret);

After (STQ.Empty = FALSE)Eventually (S Schd);
After (S Schd)Never (C Intr + A Intr + S Schd

+ N Schd + RIntr) UntilAfter (S Ret);

After (NTQ.Empty = FALSE)Eventually (N Schd);
After (N Schd)Never (C Intr + A Intr + S Schd

+ N Schd + RIntr) UntilAfter (N Ret);

After (RFM.Pending)Eventually (R Intr);
After (R Intr) Never (C Intr + A Intr + S Schd

+ N Schd + RIntr) UntilAfter (R Ret);

Figure 8. Properties of Sensor-to-Network

nent repeatedly transmits on the physical network if the
assumptions hold on its environment. The set,V , of the
Sensor-to-Network component consists of four variables,
ADC.Pending, STQ.Empty, RFM.Pending, andNTQ.Empty,
which are referenced by the properties and the assumptions
listed in Figure 8.

In order to check the properties of the Sensor-to-Network
component, we construct an abstraction of the component
following the steps given in Section 3.4.1:

� Replace the output message types of the Sensor (or
Network, respectively) components with the corre-
sponding input message types of the Network (or Sen-
sor) components as shown in Figure 7;

8

� Create an AIM system,SN , which consists of three
stub AIM processes:

– SP , whose input message types areC Intr,
A Intr, S Schd, OP Ack, andDone, whose state
model outputs messages of the types,C Ret,
A Ret, S Ret, Data, and SentAck, and whose
variables arePending andEmpty;

– NP , whose input message types areN Schd,
R Intr, SentAck, andData, whose state model
outputs messages of typesN Ret, R Ret, Done,
andOP Ack, and whose variables arePending
andEmpty;

– ENV , whose input message types areC Ret,
A Ret, S Ret, N Ret, andR Ret, and whose state
model outputs messages of the types,C Intr,
A Intr, S Schd, NSchd, andR Intr;

� Execute the cone-of-influence analysis, the “enabled”
function in Figure 1, and the validity check of circular
dependencies on the properties of the Sensor compo-
nent and the Network component and include the prop-
erties in Figure 9 into the abstraction.

Repeatedly(Data);
After (Data)Never (Data)UntilAfter (OP Ack);

IfRepeatedly (Data)Repeatedly(NP.Pending);
IfRepeatedly (Data)Repeatedly(Not NP.Pending);
After (Data)Eventually(OP Ack);
Never (OP Ack) UntilAfter (Data);
After (OP Ack) Never (OP Ack) UntilAfter (Data);

Figure 9. Properties included in abstraction

We then check the properties in Figure 8 on the AIM sys-
tem,SN , by following the steps given in Section 3.4.2. It
is easy to observe that the properties hold on the abstrac-
tion under the assumptions in Figure 8. Therefore, we can
conclude that the properties also hold on the executable rep-
resentation of the Sensor-to-Network component under the
given assumptions.

4.4 Verification through Abstraction Refinement

An abstraction of a composed component may be refined
by establishing, verifying, and enabling properties of the
sub-components of the composed component or even by re-
vising and re-verifying the sub-components. We illustrate
how an abstraction is refined with the verification ofProp-
erty 1on the Sensor-to-Network component. Space limita-
tions prohibit showing the formal specifications of the prop-
erties given hence after.

Property 1 The Sensor-to-Network component never
transmits any hardware Sensor reading duplicately.

An abstraction of the Sensor-to-Network component for
checkingProperty 1 is constructed. Model checking of

Property 1on the abstraction returns false. By analyzing
the error trace from the model checker, we observe that the
abstraction is too abstract for verifyingProperty 1and has
to be refined. To refine the abstraction, we introduce and
checkProperty 2on the Network component.

Property 2 The Network component never transmits any of
its input duplicately assuming that its next input only arrives
until after it outputs a Sent message to indicate its last input
has been successfully transmitted.

Property 2is successfully verified on the Network compo-
nent, but it is not currently enabled in the composition of
the Sensor-to-Network component. To enable the property
on the Network component, we introduce and verifyProp-
erty 3on the Sensor component.

Property 3 The Sensor component never outputs any hard-
ware reading duplicately and never outputs again until after
a message of the type, Done, is received.

The verification ofProperty 3returns false due to a bug of
the Sensor component. In the Sensor component, each time
a Sensor reading is put in the output buffer, a thin thread [4]
is created to output the data. There is a flag that should be
set when a Sensor reading has been output and aDonemes-
sage has not been received. However, the thin thread fails to
set the flag correctly. When the physical sensor outruns the
physical network, the sensor component may output again
before it receives theDonemessage for its last output.

This bug in the Sensor component is corrected. All
properties of the Sensor component, includingProperty 3,
are re-verified on the corrected Sensor component. A
new Sensor-to-Network component is composed from the
corrected Sensor component and the Network component.
An abstraction of the newly composed component is con-
structed andProperty 1is successfully verified on the ab-
straction.

5 Analysis of Case Study

Application of our approach for integrating model check-
ing into the CBD of software systems to TinyOS compo-
nents demonstrated both detection of a coordination error,
which is resulting from component composition and is hard
to formulate and detect with testing, and reduction of model
checking complexity.

5.1 Detection of Coordination Error

Model checking of the “repeated output” property and the
“non-duplication” property on the Sensor-to-Network com-
ponent detected a coordination error as described in Sec-
tion 4.4. Complete simulation test of these properties is not
feasible due to the fact that it is not possible to construct test
cases of infinite length.

9

5.2 Model Checking Complexity Reduction

Direct verification of a property on a composed compo-
nent with model checking is often infeasible due to state
space explosion. In our approach, the verification is re-
duced into three sub-tasks: model checking of the proper-
ties of the sub-components composing the component, con-
struction and refinement of the abstraction of the compo-
nent, and model checking of the property on the abstrac-
tion. Complexities of these sub-tasks are often significantly
lower than the complexity of directly model checking the
property on the composed component. Furthermore, veri-
fication of the properties of the sub-components can often
be reused from previous efforts. Even if the properties of
the sub-components are newly introduced and need to be
model checked, the complexity is lower due to the reduced
state spaces and can often be further reduced if the sub-
components are composed components. The procedures for
constructing component abstractions run much faster than
model checking procedures. Although abstraction refine-
ment involves user interactions, it is often facilitated by
domain-specific knowledge. An abstraction of a component
often only captures an aspect of the component and consists
of several simple automata of 2-4 states, which makes veri-
fications on the abstraction run fairly fast.

We illustrate the reduction attained in our approach on
model checking complexity with the statistics from the
TinyOS case study. Table 1 shows four model checking

Run Component Time Memory
1 Sensor-to-Network 89m15.45s 208.48M
2 Sensor 10m41.01s 33.673M
3 Network 18.0s 6.8239M
4 Abstraction of SN 0.1s 0.1638M

Table 1. Verification Complexity Comparison

runs for verifying the “Repeatedly Output” property on the
Sensor-to-Network component. Run 1 checks the property
on the composed component directly for comparison pur-
poses. Run 2 (or Run 3, respectively) checks the prop-
erties listed in Figure 4 (or Figure 6) on the Sensor (or
Network) component. Run 4 checks the “Repeatedly Out-
put” property on the abstraction of the Sensor-to-Network
component. The complexities for model checking the sub-
components and the abstraction are an order-of-magnitude
lower than the complexity of directly model checking the
composed component. Furthermore, the verification results
for the Sensor and Network components are reused from
previous studies. The statistics shown in Table 1 only in-
volves one level of composition. In a multi-level composi-
tion, this approach can model check higher level composed
components that cannot be directly model checked due to
state space explosion.

6 Conclusions and Future Work

This paper defines, discusses, and illustrates an approach
to integrating model checking into the CBD of software
systems. In this approach, model checking improves reli-
ability of software systems constructed with CBD and com-
positional structures of these systems, introduced by CBD,
significantly reduce model checking complexity. This ap-
proach can be readily instantiated and applied on many soft-
ware computation models.

Currently, our approach only considers integrated ap-
plication of model checking in CBD. There are other for-
mal software reliability methods such as theorem proving,
which have potential in improving reliability of component-
based software systems. For instance, theorem proving may
help us derive the properties of a composed component
from the properties of its sub-components in many cases.

Acknowledgment

We gratefully acknowledge the intellectual contribution of
Robert P. Kurshan to this research. We also thanks Don Ba-
tory, Thomas Graser, and Dewayne E. Perry for their valu-
able suggestions. This research was partially supported by
NSF grant 010-3725.

References

[1] A. Chakrabarti, L. de Alfaro, T. Henzinger, M. Jurdzinski,
and F. Mang. Interface Compatibility Checking for Software
Modules.Proc. of CAV’02, 2002.

[2] W. de Rover, F. de Boer, U. Hannemann, J. Hooman,
Y. Lakhnech, M. Poel, and J. Zwiers.Concurrent Verifica-
tion: Intro. to Compositional and Non-compositional Proof
Methods. Cambridge Univ. Press, 2001.

[3] R. H. Hardin, Z. Har’El, and R. P. Kurshan. COSPAN.Proc.
of CAV’96, 1996.

[4] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System Architecture Directions for Networked
Sensors.Proc. of ASPLOS-IX, 2000.

[5] ITU. ITU-T Recommendation Z.100 (03/93) - Specification
and Description Language (SDL). ITU, 1993.

[6] Kennedy Carter. http://www.kc.com/html/xuml.html.
Kennedy Carter, 2001.

[7] D. C. Luckham, J. J. Kenney, and et al. Specification and
Analysis of System Architecture Using Rapide.IEEE Trans-
action on Software Engineering, 21(4), 1995.

[8] D. E. Perry. The Inscape Environment.Proc. of ICSE’89,
1989.

[9] F. Xie and J. C. Browne. Integrated State Space Reduction
for Model Checking Executable Object-oriented Software
System Designs.Proc. of FASE 2002, 2002.

[10] F. Xie and J. C. Browne. Multi-Semantics Compositional
Reasoning for Software Systems.To appear in Proc. of
ISSRE 2002, 2002.

[11] F. Xie, V. Levin, and J. C. Browne. ObjectCheck: A
Model Checking Tool for Executable Object-oriented Soft-
ware System Designs.Proc. of FASE 2002, 2002.

10

