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ABSTRACT
This paper presents an approach to integration of model checking
into component-based development of software systems. This ap-
proach assists in development of highly reliable component-based
software systems and reduces the complexity of verifying these sys-
tems by utilizing their compositional structures. Temporal proper-
ties of a software component are specified, verified, and packaged
with the component. Selection of a component for reuse considers
not only its functionality but also its temporal properties. When a
component is composed from other components, a property of the
component is verified on an abstraction of the component. The
abstraction is constructed from environment assumptions of the
component and verified properties of its sub-components. A gen-
eral component model that enables component verification is de-
fined. Component verification is discussed in the context of the
instantiation of the general component model on an Asynchronous
Interleaving Message-passing computation model. This approach
has been applied to improve reliability of instances of TinyOS, a
component-based run-time system for networked sensors. A case
study on TinyOS is included, which illustrates the applicability of
this approach, the detection of a bug, and the reduction in model
checking complexity.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Modules and Interfaces;
D.2.4 [Software/Program Verification]: Formal Methods, Model
Checking, Reliability; F.3.1 [Specifying and Verifying and Rea-
soning about Programs]: Mechanical Verification
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1. INTRODUCTION
Component-Based Development (CBD) [23], developing soft-

ware systems through composition of components, is one of the
most important technical initiatives in software engineering. Model
checking [9, 22, 10] is an important method for improving reliabil-
ity of software systems. It provides exhaustive state space cover-
age for the systems being checked and is particularly effective at
detecting coordination errors which frequently result from compo-
nent compositions and are notoriously difficult to detect. However,
model checking often cannot handle large-scale software systems
due to state space explosions. Model checking and CBD are syn-
ergistic. Model checking can potentially enable effective develop-
ment of more reliable component-based software systems. CBD
introduces compositional structures, clean component interfaces,
and standard composition rules to the systems being built, which
may reduce the state spaces that model checkers have to handle.

This paper defines, discusses, and illustrates an approach to inte-
gration of model checking into the CBD of software systems, which
contributes to solution of the following fundamental problems in
CBD and model checking:

• Developing components which can be reused with certainty
that their behaviors will meet their specifications in a proper
composition;

• Identifying proper components for a composition;

• Establishing that a component composed from “correct” com-
ponents will meet its specifications;

• Alleviating the state space explosion problem.

This approach can be summarized as follows:

• As a software component is built, temporal properties of the
component are specified, verified, and then packaged with
the component.

• Selecting a component for reuse considers not only its func-
tionality but also its temporal properties.

• Verification of properties of a composed component reuses
verified properties of its sub-components and is based on
compositional reasoning [21, 2, 1, 19, 3, 11].

A general component model that enables component verification
is defined. This model provides a framework for representing com-
ponents and their properties and for composing components. In
this model, a property of a component is defined with assumptions
on the environment of the component. The property is verified on
the component under these assumptions. When the component is



reused in the composition of a larger component, the verified prop-
erty is enabledif the environment assumptions made in its veri-
fication hold on other components in the composition and/or the
environment of the composed component. (The formal definition
of an enabled property is given in Section 3.5.1).

The general component model can be instantiated on existing
computation models upon which syntax and semantics for compo-
nents, properties, and component compositions are precisely de-
fined. These computation models also provide semantics for com-
ponent execution and interaction. We demonstrate the general com-
ponent model with its instantiation on an Asynchronous Interleav-
ing Message-passing (AIM) computation model. In this instan-
tiation, executable representations of components are specified in
xUML [20], an executable dialect of UML, whose semantics con-
form to the AIM model. This instantiation is of interest because
the AIM model captures the essential nature of a broad range of
concurrent software systems.

Components are categorized asprimitive components (compo-
nents built from “scratch” and not composed from other compo-
nents) or ascomposedcomponents. A property of a primitive com-
ponent is verified by directly model checking an executable repre-
sentation of the component, for instance, checking the executable
design model (specified in xUML) of the component using meth-
ods established in our previous work [24, 26, 27]. A property of
a composed component, instead of being model checked on the
executable representation of the component, is checked on anab-
stractionof the component. The abstraction is composed of simple
automata corresponding to environment assumptions of the com-
posed component and verified properties of its sub-components. A
verified sub-component property is included in the abstraction if it
is enabled in the composition, related to the property to be checked
by cone-of-influence analysis [10], and not involved in invalid cir-
cular dependencies [19] among sub-component properties. If the
abstraction is still too complex to be checked directly, composi-
tional reasoning is applied to decompose the abstraction. If the
abstraction is too abstract to enable the verification of the desired
property, it is refined as follows: decomposing the property into a
set of properties of the sub-components, verifying these properties
on the sub-components, and then including these verified proper-
ties into the abstraction. Algorithms for abstraction construction
and refinement are based on compositional reasoning.

Our approach is most suitable for application to a product line of
software systems that are built from a growing set of software com-
ponents. We have identified two major application domains: prod-
uct lines of software systems based on a specific hardware/software
architecture, such as the TinyOS [16] run-time system, and product
lines of distributed large-scale software systems based on compo-
nent platforms such as CORBA, DCOM, and EJB.

The rest of this paper is organized as follows. Section 2 de-
fines the general component model for component verification and
instantiates it on the AIM computation model. Section 3 elabo-
rates on how to verify properties of components, either primitive
or composed. Section 4 illustrates our approach with a case study
on TinyOS. Section 5 analyzes the effectiveness of our approach in
the context of the case study. Section 6 presents the related work.
Section 7 discusses the future work and concludes.

2. COMPONENT MODEL FOR
VERIFICATION

In this section, we first define the general component model,
which is a template that can be instantiated on an existing computa-
tion model to enhance it with components, properties, and compo-

nent compositions which enable component verification. We then
sketch the AIM computation model. After that, we instantiate the
general component model on the AIM model.

2.1 General Component Model

2.1.1 Component
A component,C, is a four-tuple,(E, I, V, P ), where

• E is an executable representation ofC.

• I is an interface through whichC interacts with other com-
ponents, for instance, a messaging interface or a procedural
interface.

• V is a set of variables defined inE and referenced by the
properties defined inP .

• P is a set of temporal properties that are defined onI and
V , and have been verified onE. A temporal property is de-
noted by a pair,(p, A(p)), wherep is a temporal formula
defined onI andV , andA(p) is a set of temporal formulas
defined onI andV . The property,p, holds onC if the tem-
poral formulas inA(p) hold on theenvironmentof C (see
the next paragraph for the definition of the environment of a
component).P is extended incrementally by including prop-
erties that are newly verified. A property is included inP
only when it is verified.

An application system is also a component. The environment
with which the system interacts is also modeled as a set of compo-
nents. The set of components with which a component interacts is
referred to as the environment of the component. The environment
of a component varies as the component is reused in different com-
positions. Given a component and its property,(p, A), the tempo-
ral formulas inA are referred to as the environment assumptions of
the component for enablingp.

2.1.2 Component Composition
A component,C = (E, I, V, P ), can be composed from a set of

simpler components,(E0, I0, V0, P0), . . . , (En−1, In−1, Vn−1,
Pn−1), as follows:

• E is constructed fromE0, . . . , En−1 by connectingE0, . . . ,
En−1 through their interfaces.

• I is derived fromI0, . . . , In−1: An operation inIi, 0 ≤ i <
n, is included inI if and only if it is used whenC interacts
with other components.

• V is a subset of
Sn−1

i=0 Vi. A variable in
Sn−1

i=0 Vi is included
in V if and only if the variable is referenced by the properties
defined inP .

• P is a set of temporal properties defined onI andV , and
verified onE. Properties inP are verified onE by utilizing
the properties inP0, . . . , Pn−1.

2.2 AIM Computation Model
The AIM computation model is a commonly used computation

model for software systems. Under our definition of the AIM model,
a system is a finite set1 of interacting processes. A process is a four-
tuple,(X, Σ, Q, ∆), whereX is a set of variables each of which
is of a bounded type;Σ is an extended Moore state model;Q is an
infinite FIFO message queue;∆ is an initial condition that consists
1If not specified explicitly, a set referred to in this paper is finite.



of an initial value for each variable inX, an initial state forΣ, and
the empty state forQ. An extended Moore state model is a three-
tuple,(Φ, M, T ), whereΦ is a set of states, each of which has an
associated state action;M is a set of message types (assuming that
M ′s of different processes are disjoint);T is a set of state transi-
tions defined onΦ andM , each of which is a three-tuple,(r, t, m),
wherer andt are two states inΦ andm is a message type inM . A
state action is a program segment composed from the following ex-
ecutable statements: an empty statement, an assignment statement,
a messaging statement that outputs a message, an if statement, or a
composite statement that is a sequential composition of statements.

An execution of an AIM system is an interleaving of state tran-
sitions and state actions of the processes in the system.

• A process isready if and only if either it just entered a state
and has not yet executed the state action associated with the
state or one of its state transitions is enabled by the first mes-
sage in its message queue.

• At any given moment, exactly oneready process is non-
deterministically scheduled to execute from among all the
readyprocesses. When scheduled, areadyprocess executes
an enabled state transition or an enabled state action run-to-
completion.

Processes in a system interact through asynchronous message-
passing. Given two processes,P1 andP2, to send a message from
P1 to P2, a messaging statement is included in a state action ofP1.
The messaging statement includes a message type,m, defined in
M of P2, and the parameters required bym. When the state action
is executed, a message of the type,m, with its parameters is put in
the message queue ofP2.

2.3 Instantiation of General Component
Model on AIM Computation Model

This section discusses the instantiation of the general component
model on the AIM computation model with the focus on how to
derive the executable specification and the interface of a composed
component from its sub-components.

2.3.1 Component
A component,C, is a four-tuple,(E, I, V, P ), where

• E is an executable representation ofC with syntax and se-
mantics conforming to the AIM model.E can be either an
AIM specification that consists of a set of interacting AIM
processes, or an implementation of the AIM specification in
a programming language.

• I is the messaging interface through whichC interacts with
other components and is a pair,(R, S), whereR (or S, re-
spectively) is a set of input (or output) message types whose
instances may be input (or output) byC, more precisely by
processes inC, whenC interacts with other components.

• V andP inherit their definitions from the general component
model and reference semantic entities in the instantiations of
E andI on the AIM model.

2.3.2 Component Composition
A component,C = (E, I, V, P ), is composed from a set of sub-

components,(E0, I0, V0, P0), . . . , (En−1, In−1, Vn−1, Pn−1),
as follows:

• E is constructed fromE0, . . . , En−1, by mapping output
message types inS0, . . . , Sn−1 to input message types in

R0, . . . , Rn−1. If there is a mapping defined between an
output message type,s, in Si, 0 ≤ i < n, and an input
message type,r, in Rj , 0 ≤ j < n, the following steps are
executed:

– A conformance check is performed on the parameter
lists of s andr;

– All occurrences ofs in Ei are replaced byr, except the
occurrences where messages of the type,s, are output
to components outsideC;

– If s is mapped to more than one input message type,
a messaging statement that outputss is replicated for
each input message type.

• I = (R, S) is derived fromIi = (Ri, Si), 0 ≤ i < n.
R (or S, respectively) is a subset of

Sn−1
i=0 Ri (or

Sn−1
i=0 Si).

A message type in
Sn−1

i=0 Ri (or
Sn−1

i=0 Si) is included inR
(or S) if and only if messages of that type may be input (or
output) byC whenC interacts with other components.

• V is derived by following the corresponding rule given in the
general component model.

• Formulation of the properties inP and verification of these
properties by utilizing the properties inP0, . . . , Pn−1 are
discussed in Section 3 in detail.

2.3.3 Component Execution and Interaction
The execution semantics of components are defined recursively

(assuming bounded recursion). When a component executes, if the
component has no sub-components, then at any given moment ex-
actly one AIM process in the component executes; if the compo-
nent has sub-components, then at any given moment exactly one
sub-component executes.

Components interact with each other through message-passing.
A component can only input (or output, respectively) messages of
the types listed in its input (or output) messaging interface. Mes-
sages input (or output) by a component are consumed (or gener-
ated) by AIM processes in the component or its recursively nested
sub-components.

3. VERIFICATION OF COMPONENTS
This section discusses verification of components under the in-

stantiation of the general component model on the AIM computa-
tion model. First, we introduce how a closed AIM system is veri-
fied. Then, we discuss how component properties are formulated.
Finally, we differentiate components into two categories,primitive
andcomposed, and present procedures for verifying components of
the two categories respectively.

3.1 Background:
Verification of a Closed AIM System

There are many software design specification languages whose
semantics conform to the AIM model, such as xUML [20], an ex-
ecutable dialect of UML, and SDL [17]. In previous research [26,
27], we designed and implemented an approach to model checking
executable software system designs specified in xUML, which can
be summarized as follows:

• A system design is specified in xUML as an executable model
and a property to be checked on the design is specified in an
xUML level property specification language. (Details of this
property specification language are given in the appendix.)



• The xUML model and the property are automatically trans-
lated to a model and a property in the S/R [15] automaton lan-
guage, the input language of COSPAN [15] model checker.

• The S/R property is checked on the S/R model by COSPAN.
In COSPAN, both the S/R model and the S/R property are
represented as compositions ofω-automata [18]. (A com-
position ofω-automata is also anω-automaton.) COSPAN
conducts a language containment check, checking whether
the language of theω-automaton corresponding to the S/R
model is a subset of the language of theω-automaton corre-
sponding to the S/R property [18]. The property holds on the
model if the language containment check returns true.

• If the property does not hold on the model, an error trace is
generated by COSPAN and is automatically translated to an
error report in the name space of the xUML model.

This approach requires that a system design to be model checked
specify a closed system. A system is made closed by modeling its
environment as part of the system.

This approach suffers from the state space explosion problem.
To verify large-scale software system designs, we extended the
approach with top-down application of compositional reasoning,
where model checking a property on a system is accomplished by
decomposing the system into modules, checking module proper-
ties locally on the modules, and deriving the system property from
the module properties [24]. We applied compositional reasoning in
model checking xUML specifications by following the Translation-
Based Compositional Reasoning approach proposed in [25], where
compositional reasoning rules are established in the semantics of
software systems, but are proved and implemented based on trans-
lation of software systems to formal representations for which com-
positional reasoning rules have already been established, proved,
and implemented.

3.2 Formulation of Component Properties
After the AIM specification and the messaging interfaces of a

component are constructed, properties of the component can then
be formulated. Properties are mainly derived from functional spec-
ifications of the component such as input and output relationships
through domain analysis. However, it is not required that all prop-
erties of the component be packaged initially. Additional proper-
ties may be introduced incrementally as the component is reused
in composing other components. Verification of a property on a
composed component may require top-down application of com-
positional reasoning to decompose the property into a set of prop-
erties on its sub-components. The sub-component properties are
then verified on the sub-components and packaged with the sub-
components for future reuse. This top-down application of compo-
sitional reasoning requires that system/component developers man-
ually guide the property decomposition, however, it enables verifi-
cation of large-scale components that cannot otherwise be verified.

Since our approach targets a product line of software systems
constructed from a set of components, we assume that the AIM
specifications of the components are available to system/component
developers, which facilitates incremental introduction and verifica-
tion of component properties. The set of properties of a component
is expected to become quite stable after a few reuses.

3.3 Formulation of Environment Assumptions
Our approach requires that a property of a component be spec-

ified with its assumptions on the environment of the component.
We have investigated both automatic generation and manual for-
mulation of environment assumptions. Given a component and a

property, an assumption that enables the property on the compo-
nent can be automatically generated by taking the complement of
the product of the property and its cone-of-influence on the com-
ponent. (Various optimizations are possible.) Construction of the
complement, the product, and the cone-of-influence is supported
by COSPAN. The assumption generated is the weakest assumption
that enables the property on the component, however, it is usually a
complex and non-intuitive assumption which is difficult to check on
other components composed with the component in a composition.
A desired set of assumptions for the property is a set of simple and
intuitive assumptions formulated on the interface of the component.
Each of these assumptions is weaker than the automatically gener-
ated assumption, however, the conjunction of these assumptions is
stronger than the automatically generated assumption. These as-
sumptions are often easier to check on other components. Domain-
specific knowledge of system/component developers is expected to
facilitate the formulation of such a set of assumptions. Therefore,
currently in our approach environment assumptions are formulated
manually. Investigation of heuristics that can reduce or decom-
pose the automatically generated assumption by utilizing domain-
specific knowledge is in progress.

3.4 Verification of Primitive Components
A primitive component often has limited functionality. As a re-

sult, the state space of a primitive component is often of modest
size and suitable for direct application of model checking. The ap-
proach in Section 3.1 is employed to verify a primitive component.
However, the AIM specification of a primitive component often
does not specify a closed system and the approach cannot be read-
ily applied. Therefore, we construct a closed system from the AIM
specification and the environment assumptions of the component.

Given a primitive component,C = (E, I, V, P ), and a prop-
erty, (p, A(p)), specified onI andV , in order to check whetherp
holds onE assuming that assumptions inA(p) hold on the envi-
ronment ofC, the following steps are executed:

1. Create an AIM process,ENV , whose input message types
are the same as the output message types defined inI and
whose state model outputs messages of the input message
types defined inI ;

2. Build an AIM system fromENV and the AIM processes in
E and translate the system into S/R;

3. Free all variables of the automata corresponding toENV
in the S/R model obtained in Step 2 so that these variables
may obtain any value in their domains non-deterministically;
(Discussions on freeing variables in an S/R model can be
found in [15, 18].)

4. Translate assumptions inA(p) to S/R automata and compose
them with the S/R model obtained in Step 3 so that the free
variables introduced in Step 3 are now constrained by the
assumptions inA(p);

5. Translatep to an S/R property and check the S/R property on
the S/R model gotten in Step 4.

These steps construct a closed system by using theENV process
as a translation stub and replacingENV with the assumptions in
A(p) in the resulting S/R model, and then verifyp on the closed
system. Construction of the closed system is simplified by the fact
that in S/R, models, properties, and assumptions are all specified as
automata that are of the same form and can be trivially composed.



3.5 Verification of Composed Components
In this section, we present a method for verification of a prop-

erty, (p, A(p)), on a composed component,C = (E, I, V, P ),
whereC is composed fromC0 = (E0, I0, V0, P0) andC1 =
(E1, I1, V1, P1). This method reuses the properties that have
been verified on the sub-components,C0 andC1. It can be readily
extended to the case thatC is composed fromC0, . . . , Cn−1.

3.5.1 Component Abstraction Construction
Since the AIM specification of a composed component often has

a large state space that hinders direct application of model check-
ing, we construct an abstraction of the component based on the
composition, the environment assumptions of the component, the
messaging interfaces of the sub-components, and the verified prop-
erties of the sub-components.

Before discussing how to construct the abstraction, we first elab-
orate on the concept ofenabled property. A property of a compo-
nent is defined with assumptions on the environment of the com-
ponent. The property is verified on the component under these as-
sumptions. When the component is reused in the composition of
a larger component, the property isenabledif the environment as-
sumptions made in its verification hold on other components in the
composition and/or the environment of the composed component.
We now formally define anenabled property.
Definition – Enabled Property: A property(pi, A(pi)) of Ci,
wherei ∈ {0, 1} and (pi, A(pi)) ∈ Pi, is enabled in the com-
position ofC0 and C1 if and only if eitherA(pi) is empty or for
eachq, q ∈ A(pi), q is implied by the assumptions inA(p) and the
properties inP1−i that are enabled in the composition.

The function in Figure 1 can be applied to determine whether a

boolean functionenabled ((pi, A(pi)) ) begin
while ( !empty(A(pi) ) ) do
q = remove-an-element (A(pi) ); P ′={ };
foreach ((p′, A(p′)) ∈ cone(A(P ) ∪ P1−i, q) ∩ P1−i)
if ( enabled ((p′, A(p′)) ) then
P ′=P ′ ∪ {(p′, A(p′))};

endif;
endfor;
if (q is implied bycone(A(p) ∪ P ′, q)) then continue;
elsereturn false;
endif;

endwhile;
return true;

end;

Figure 1: The “enabled” function

property(pi, A(pi)) of Ci, i ∈ {0, 1}, is enabled in the compo-
sition of C0 andC1 assuming that the assumptions inA(p) hold
on the environment of the composition. For each assumptionq,
q ∈ A(pi), the function first identifies the setP ′ of properties
that are inP1−i, related toq according to cone-of-influence analy-
sis, and enabled. (In Figure 1,cone(A(p) ∪ P1−i, q) denotes the
cone-of-influence ofq on A(p) ∪ P1−i. cone(A(p) ∪ P1−i, q)
includes assumptions inA(p) and properties inP1−i, which refer-
ence the semantics entities inC that influence the semantics entities
referenced byq.) If q is implied bycone(A(p) ∪ P ′, q), then the
function continues with the next assumption inA(pi); otherwise,
the function returns false. The implication can be decided by either
matchingq to an element ofcone(A(p)∪ P ′, q), or model check-
ing q on the product of the elements ofcone(A(p) ∪ P ′, q). If a
property,(pi, A(pi)), of Ci is not currently enabled in the compo-
sition ofC0 andC1, it does not indicate thatpi does not hold onCi

under the composition.(pi, A(pi)) can become enabled when all
assumptions inA(pi) become enabled, which may require check-
ing additional properties ofC0 andC1.

The abstraction of the composed component,C, upon which the
property,p, is to be verified, is derived as follows:

• Realize the output message interfaces ofC0 (or C1, respec-
tively) in the context ofC by replacing the output message
types ofC0 (or C1) with the corresponding input message
types ofC1 (or C0) according to the mappings among the
output message types ofC0 (or C1) and the input message
types ofC1 (or C0);

• Create an AIM system,SYS, which consists of three stub
AIM processes,CP0, CP1, andENV , where: (i)CP0 (or
CP1, respectively) is corresponding toC0 (or C1), whose
variables have the same names and domains as the variables
in V0 (or V1), whose input message types are the same as the
input message types ofC0 (or C1), and whose state model
outputs messages of the output message types ofC0 (or C1);
(ii) ENV is corresponding to the environment ofC, whose
input message types are the same as the output message types
of C and whose state model outputs messages of the input
message types ofC;

• Run the “enabled” function in Figure 1 on each property in
P0 andP1, and include the property intoSYSif the function
returns true;

• Include the assumptions inA(p) into SYS;

• Run the cone-of-influence analysis onSYSto exclude prop-
erties and assumptions not related top.

There may exist circular dependencies among the properties of
sub-components. Circular dependencies among the liveness prop-
erties of sub-components may be invalid. Suppose we have veri-
fied that the property ofEventually(X)holds onC0 assuming that
the property ofEventually(Y)holds onC1 and vice versa. We can-
not conclude that the property ofEventually(X) and Eventually(Y)
holds onC unless we can show that there is no execution ofC in
which X andY are always false. Validity of such circular depen-
dencies has to be checked with compositional reasoning rules that
support such validity checks, for instance, rules presented in [3] and
[19]. Sub-component properties involved in invalid circular depen-
dencies are excluded from the abstraction. Validation of circular
dependency can be readily included in the “enabled” function.

3.5.2 Verification of Component Abstraction
Instead of checking the property,p, on the AIM specification of

C, we checkp on the abstraction,SYS:

• TranslateSYSinto S/R;

• Free all variables of the automata corresponding toCP0,
CP1, andENV in the resulting S/R model; (These free vari-
ables are now constrained by properties fromP0 andP1 and
assumptions fromA(p).)

• Translatep into S/R and check the S/R query corresponding
to p on the S/R model corresponding toSYS;

• Include(p, A(p)) in P if p holds onSYS; otherwise, refine
SYSas discussed in Section 3.5.3.

The complexity of model checkingp on the abstraction,SYS, is
often much lower than the complexity of directly checkingp on the
AIM specification ofC (see Section 5.2).



3.5.3 Refinement of Component Abstraction
If p does not hold on the abstraction,SYS, then eitherp does not

hold onC assuming assumptions inA(p) hold on the environment
of C, or SYSis too abstract. It is often possible to differentiate
the two cases by analyzing the error traces generated by the model
checker. Ifp does not hold onC under the assumptions inA(p),
then either more assumptions have to be added toA(p) or C has to
be re-composed. IfSYSis too abstract, it must be refined.

The abstraction can be refined by including additional properties
of C0 andC1. These properties are either properties that are newly
introduced, but have not been verified, or properties that have been
verified, but are not currently enabled in the composition. If a prop-
erty to be included has not been verified, it is first verified. If a prop-
erty to be included has been verified, but is not currently enabled,
the procedure in Figure 2 is applied to enable the property. The

boolean procedureenable ((pi, A(pi)) ) begin
while ( !empty (A(pi) ) ) do
q = remove-an-element (A(pi) ); P ′ = { };
foreach ((p′, A(p′)) ∈ cone(A(p) ∪ P1−i, q) ∩ P1−i)
if (enabled ((p′, A(p′)))) then P ′ = P ′ ∪ {(p′, A(p′))};
elseif( enable ((p′, A(p′))) ) then
P ′ = P ′ ∪ {(p′, A(p′))};

endif;
endfor;
if (q is implied bycone(A(p) ∪ P ′, q) ) then continue;
elseif( q is expected to hold onC1−i ) then
A′ = { assumptions ofq };
if ( !verify ( (q, A′), 1 − i ) ) then return false;endif;
return enable ((q, A′) );

elsereturn false;
endif;

endwhile;
return true;
end;

Figure 2: The “enable” procedure

procedure enables a property,(pi, A(pi)), of Ci by enabling all its
assumptions. For each assumption,q, the procedure first attempts
to enable the properties that are incone(A(p)∪P1−i, q)∩P1−i and
not enabled, by calling itself recursively. After theforeachloop,P ′

contains all the properties incone(A(p)∪P1−i, q)∩P1−i that have
been enabled. Ifq is implied bycone(A(p)∪P ′, q), the procedure
continues with the next assumption; otherwise, ifq is expected to
hold onC1−i

2, a set of assumptions,A′, of q is introduced and
(q, A′) is verified onC1−i. If (q, A′) is successfully verified, the
“enable” procedure is called on(q, A′) recursively. The “enable”
procedure returns false if a call to the “verify” procedure returns
false or ifq is neither an assumption of the composed component,
C, on its environment norq is a property that is expected to hold
on C1−i. Circular dependencies among properties, introduced by
the refinement, must be validated as discussed in Section 3.5.1.

4. CASE STUDY: VERIFICATION
OF TINYOS COMPONENTS

We have applied the approach to integration of model checking
into CBD to improve reliability of instances of TinyOS [16]. We
now illustrate this approach with a case study on TinyOS. TinyOS
is a component-based run-time system designed to provide support

2If q is expected to hold on the conjunction ofC1−i andA(p), it is
first decomposed into sub-assumptions onC1−i andA(p) respec-
tively, which is guided by system/component developers.

for deeply embedded systems which require concurrency-intensive
operations while constrained by minimal hardware resources. Hard-
ware constraints of deeply embedded systems prohibit loading all
TinyOS modules into a single instance and different requirements
of these systems require different configurations of TinyOS mod-
ules, which makes CBD an appropriate development approach for
TinyOS. TinyOS instances are usually loaded to a large number of
deeply embedded systems such as networked sensors, which makes
correction of software bugs very expensive. Locks and monitors,
which are often used to safeguard concurrent operations, are not
used in TinyOS due to their computational expenses and the hard-
ware constraints of TinyOS. This combination of complexity and
the requirement for high reliability justifies the application of our
approach to improve reliability of instances of TinyOS.

4.1 Sensor Component
We sketch how primitive components are specified and verified

with the Sensor component. We first introduce the(E, I, V, P )
specification of the Sensor component. The executable representa-
tion, E, of the Sensor component is specified in xUML. The com-
munication diagram of the Sensor component is shown in Figure 3.
(Space limitations prohibit showing all xUML diagrams ofE.) The
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Figure 3: Sensor component

component consists of six AIM processes that interact with each
other and the environment of the component through messages.
The messaging interface,I , of the component is as follows:

• R={C Intr, A Intr, S Schd, OPAck, Done};

• S={C Ret, ARet, SRet, Output, DoneAck}.

Message types inR are defined in the AIM processes of the Sen-
sor component and the message types inS are to be realized when
the component is composed with other components.C Intr, A Intr,
andS Schdare the hardware interrupts the Sensor component must
handle whileC Ret, A Ret, andS Retare the corresponding replies.
The Sensor component outputs Sensor readings as messages of the
type,Output. The properties to be checked on the Sensor compo-
nent are listed in Figure 4 with their assumptions. (In Figure 4,
the “+” operator denotes a logical OR. Detailed discussions of the
property specification language are given in the appendix.) These
properties assert that the component repeatedly outputs sensor read-
ings and correctly handles the signal-and-reply relationship between
Output and OP Ack and betweenDone and Done Ack assuming
that the assumptions hold on its environment. The set,V , consists
of two variables,ADC.PendingandSTQ.Empty, referenced by the
properties and the assumptions listed in Figure 4.



Properties:
Repeatedly(Output);

After (Output)Never (Output)UntilAfter (OP Ack);

After (Done)Eventually (Done Ack);
Never (Done Ack) UntilAfter (Done);
After (Done Ack) Never (Done Ack) UntilAfter (Done);

Assumptions:
After (Output)Eventually (OP Ack);
Never (OP Ack) UntilAfter (Output);
After (OP Ack) Never (OP Ack) UntilAfter (Output);

After (Done)Never (Done)UntilAfter (Done Ack);

Repeatedly(C Intr);
After (C Intr) Never (C Intr + A Intr + S Schd)

UntilAfter (C Ret);

After (ADC.Pending)Eventually (A Intr);
After (A Intr) Never (C Intr + A Intr + S Schd)

UntilAfter (A Ret);

After (STQ.Empty = FALSE)Eventually (S Schd);
After (S Schd)Never (C Intr + A Intr + S Schd)

UntilAfter (S Ret);

Figure 4: Properties of Sensor Component

The Sensor component has a state space of modest size. The
properties listed in Figure 4 were successfully verified on the com-
ponent by following the steps in Section 3.4 and were included into
P for future reuse.

4.2 Network Component
The communication diagram of the Network component is shown

in Figure 5. The messaging interface,I , of the Network component

Int_to_RFM

Generic_Comm

GC_Task RFM

Data_Ack

Data

Sent Sent_Ack

N Ret

NTQ

N Schd R Intr R Ret

Figure 5: Network component

is as follows:

• R={N Schd, RIntr, SentAck, Data};

• S={N Ret, RRet, Sent, DataAck}.

The properties that have been verified on the Network component
are listed in Figure 6 with their assumptions. These properties as-

Properties:
IfRepeatedly (Data)Repeatedly(RFM.Pending);
IfRepeatedly (Data)Repeatedly(Not RFM.Pending);

After (Data)Eventually(DataAck);
Never (DataAck) UntilAfter (Data);
After (DataAck) Never (DataAck) UntilAfter (Data);

After (Sent)Never (Sent)UntilAfter (SentAck);

Assumptions:
After (Data)Never (Data)UntilAfter (DataAck);

After (Sent)Eventually (SentAck);
Never (SentAck) UntilAfter (Sent);
After (SentAck) Never (SentAck) UntilAfter (Sent);

After (NTQ.Empty = FALSE)Eventually (N Schd);
After (N Schd)Never (N Schd + RIntr) UntilAfter (N Ret);

After (RFM.Pending)Eventually (R Intr);
After (R Intr) Never (N Schd + RIntr) UntilAfter (R Ret);

Figure 6: Properties of Network Component

sert that the Network component transmits on the physical network
repeatedly if it receives inputs repeatedly, and it correctly handles
the signal-and-reply relationship betweenData andData Ackand
betweenSentandSentAck. The set,V , of the Network component
consists of two variables,RFM.PendingandNTQ.Empty.

4.3 Sensor-to-Network Component
This section introduces how an instance of TinyOS, the Sensor-

to-Network component, is composed from the Sensor component
and the Network component, and discusses how properties of the
composed component are verified by utilizing the properties that
have been verified on its sub-components.

The executable representation,E, of the Sensor-to-Network com-
ponent is composed from the executable representations of the Sen-
sor component and the Network component. The abstracted com-
munication diagram of the Sensor-to-Network component is shown
in Figure 7, where an annotation of the form of “input message type

Network Component

Data (Output)

Sensor Component

Done (Sent)

Sent_Ack (Done_Ack)
Sensor−to−Network Component

OP_Ack (Data_Ack)

Figure 7: Sensor-to-Network component

(output message type)” denotes the mapping of an output message
type of a component to an input message type of the other compo-
nent. The messaging interface,I , of the Sensor-to-Network com-
ponent is as follows:

• R={C Intr, A Intr, S Schd, NSchd, RIntr};

• S={C Ret, ARet, SRet, NRet, RRet}.

The properties to be checked on the Sensor-to-Network component
are listed in Figure 8 with their assumptions. These properties as-



Properties:
Repeatedly(RFM.Pending);
Repeatedly(Not RFM.Pending);

Assumptions:
Repeatedly(C Intr);
After (C Intr) Never (C Intr + A Intr + S Schd

+ N Schd + RIntr) UntilAfter (C Ret);

After (ADC.Pending)Eventually (A Intr);
After (A Intr) Never (C Intr + A Intr + S Schd

+ N Schd + RIntr) UntilAfter (A Ret);

After (STQ.Empty = FALSE)Eventually (S Schd);
After (S Schd)Never (C Intr + A Intr + S Schd

+ N Schd + RIntr) UntilAfter (S Ret);

After (NTQ.Empty = FALSE)Eventually (N Schd);
After (N Schd)Never (C Intr + A Intr + S Schd

+ N Schd + RIntr) UntilAfter (N Ret);

After (RFM.Pending)Eventually (R Intr);
After (R Intr) Never (C Intr + A Intr + S Schd

+ N Schd + RIntr) UntilAfter (R Ret);

Figure 8: Properties of Sensor-to-Network Component

sert that the Sensor-to-Network component repeatedly transmits on
the physical network if the assumptions hold on its environment.
We refer to these properties together as the “repeated transmis-
sion” property hereafter. The set,V , of the Sensor-to-Network
component consists of four variables,ADC.Pending, STQ.Empty,
RFM.Pending, andNTQ.Empty.

In order to check the “repeated transmission” property on the
Sensor-to-Network component, we constructed an abstraction of
the component following the steps given in Section 3.5.1:

• Replace the output message types of the Sensor (or Network,
respectively) component with the corresponding input mes-
sage types of the Network (or Sensor) component as shown
in Figure 7;

• Create an AIM system,SN , which consists of the follow-
ing three stub AIM processes: (i)SP , whose input mes-
sage types areC Intr, A Intr, S Schd, OP Ack, and Done,
whose state model outputs messages of the types,C Ret,
A Ret, S Ret, Data, andSentAck, and whose variables are
Pending andEmpty; (ii) NP , whose input message types
areN Schd, R Intr, Data, andSentAck, whose state model
outputs messages of typesN Ret, R Ret, OP Ack, andDone,
and whose variables arePending andEmpty; (iii) ENV ,
whose input message types areC Ret, A Ret, S Ret, N Ret,
andR Ret, and whose state model outputs messages of the
types,C Intr, A Intr, S Schd, NSchd, andR Intr;

• Execute the cone-of-influence analysis, the “enabled” func-
tion in Figure 1, and the validity check of circular dependen-
cies on the properties of the Sensor component and the Net-
work component, and execute the cone-of-influence analysis
on the assumptions in Figure 8, which leads to inclusion of
the properties in Figure 9 into the abstraction.

We then checked the “repeated transmission” property onSN by
following the steps given in Section 3.5.2. It is easy to observe
that the property holds on the abstraction under the assumptions in
Figure 8. Therefore, we concluded that the property also holds on
the executable representation of the Sensor-to-Network component
under the given assumptions.

Repeatedly(Data);
After (Data)Never (Data)UntilAfter (OP Ack);

IfRepeatedly (Data)Repeatedly(RFM.Pending);
IfRepeatedly (Data)Repeatedly(Not RFM.Pending);
After (Data)Eventually(OP Ack);
Never (OP Ack) UntilAfter (Data);
After (OP Ack) Never (OP Ack) UntilAfter (Data);

Figure 9: Properties included in abstraction

4.4 Verification via Abstraction Refinement
An abstraction of a composed component may be refined by in-

troducing, verifying, and enabling properties of the sub-components
of the composed component or even by revising and re-verifying
the sub-components. We illustrate how an abstraction is refined
with the verification ofProperty 1on the Sensor-to-Network com-
ponent. (Space limitations prohibit showing the formal specifica-
tions of the properties given hereafter.)

PROPERTY 1. The Sensor-to-Network component transmits any
hardware sensor reading exactly once.

An abstraction of the Sensor-to-Network component for check-
ing Property 1was constructed. Model checking ofProperty 1on
the abstraction returned false. By analyzing the error trace from
COSPAN, we observed that the abstraction is too abstract to enable
model checking ofProperty 1and has to be refined. To refine the
abstraction, we introduced and checkedProperty 2on the Network
component.

PROPERTY 2. The Network component transmits any of its in-
puts exactly once assuming that a new input arrives only after it
outputs a Sent message to indicate its last input has been success-
fully transmitted.

Property 2was successfully verified on the Network component,
but it was not enabled in the composition of the Sensor-to-Network
component. To enable the property on the Network component, we
introduced and verifiedProperty 3on the Sensor component.

PROPERTY 3. The Sensor component outputs any hardware sen-
sor reading exactly once and after an output, it will not output
again until after a message of the type, Done, is received.

The verification ofProperty 3on the sensor component returned
false due to a bug of the Sensor component. In the Sensor com-
ponent, each time a hardware sensor reading is put in the output
buffer, a thin thread [16] is created to output the data. There is a
flag that should be set when a sensor reading has been output and
a Donemessage has not been received. However, the thin thread
fails to set the flag correctly. When the physical sensor outruns the
physical network, since the output flag is not set, the sensor com-
ponent may output again before it receives theDonemessage for
its last output. This violates the second assertion inProperty 3.

The bug was corrected and all properties of the Sensor com-
ponent, includingProperty 3, were re-verified. A new Sensor-
to-Network component was composed from the corrected Sensor
component and the Network component. An abstraction of the
newly composed component was constructed, on whichProperty 1
was successfully verified.

Remarks: In this example, the verification ofProperty 1on the
Sensor-to-Network component requires introducing and verifying
additional properties of its sub-components, which is only for the
purpose of demonstrating abstraction refinement and does not in-
dicate that we frequently need to introduce and verify additional



properties of a component. Since our approach targets product lines
of software systems, careful domain analysis and a few reuses often
could lead to a quite stable set of properties for a component.

5. ANALYSIS OF CASE STUDY
Application of our approach to integration of model checking

into CBD to the TinyOS components leads to the detection of a
coordination error which is related to component composition, and
a significant reduction in model checking complexity.

5.1 Detection of Coordination Error
By model checking of the “repeated transmission” property and

Property 1on the Sensor-to-Network component, we have detected
a coordination error as described in Section 4.4. This error would
be hard to detect with conventional testing methods such as test-
case based testing.

5.2 Model Checking Complexity Reduction
Direct verification of a property on a composed component with

model checking is often infeasible due to state space explosions. In
our approach, model checking of a property on a composed compo-
nent is reduced to three sub-tasks: model checking of the properties
of the sub-components, construction and refinement of an abstrac-
tion of the component, and model checking of the property on the
abstraction. Complexities of these sub-tasks are often significantly
lower than the complexity of directly model checking the prop-
erty on the component. Verified properties of the sub-components
can often be reused. The complexity of model checking a newly
introduced property of a sub-component is lower since the sub-
component has a smaller state space, and may be further reduced
if the sub-component is also a composed component. Since the
abstraction construction usually only involves a few environment
assumptions and verified sub-component properties, it often has a
modest complexity. Although the abstraction refinement may re-
quire user interactions, it is expected to be facilitated by domain-
specific knowledge. An abstraction of a component only captures
the aspect of the component required for verification of a specific
property and usually consists of a few simple automata, therefore
the verification of the property on the abstraction finishes fairly fast.

We illustrate the reduction attained in our approach on model
checking complexity with the statistics from the TinyOS case study.
Table 1 shows four model checking runs for verifying the “Re-

Run Component Time Memory
1 Sensor-to-Network 89m15.45s 208.48M
2 Sensor 10m41.01s 33.673M
3 Network 18.0s 6.8239M
4 Abstraction of SN 0.1s 0.1638M

Table 1: Verification Complexity Comparison

peated transmission” property on the Sensor-to-Network compo-
nent. Run 1 checks the property on the composed component di-
rectly for comparison purposes. Run 2 (or Run 3, respectively)
checks the properties in Figure 4 (or Figure 6) on the Sensor (or
Network) component. Run 4 checks the “Repeatedly transmission”
property on the abstraction of the Sensor-to-Network component.
The complexities for model checking the sub-components and the
abstraction are an order-of-magnitude lower than the complexity
of directly checking the composed component. Furthermore, the
verification results for the Sensor and Network components were
reused from previous studies. The statistics shown in Table 1 only

involves one level of composition. In a multi-level composition,
this approach can model check higher level composed components
that cannot be directly model checked due to state space explosions.

6. RELATED WORK
There has been extensive research [21, 2, 1, 19, 3, 11] on com-

positional reasoning in the formal methods community. Most of
the prior work applies compositional reasoning in a top-down ap-
proach: To check properties of a large system, the system is de-
composed into modules recursively in a top-down fashion. Our
research is based on the prior work, but combines the top-down
approach with the bottom-up component composition process of
CBD. Properties of components are verified as they are composed
from simpler components in a bottom-up fashion and verification
of these properties is based on compositional reasoning.

A closely related work to our research is Compositional Reacha-
bility Analysis (CRA) by Graf and Steffen [14], Yeh and Young [28],
Cheung and Kramer [5, 6, 7, 4, 8], et. al. CRA analyzes a system
or its modules in the context of the system. Modules are repre-
sented by Labeled Transition Systems (LTSs) or similar composi-
tional representations of state space graphs. It is assumed that there
exist LTSs of the lowest level modules. The LTS of a higher level
module is composed from LTSs of its sub-modules and is mini-
mized according to the property to be checked and context con-
straints. Property decomposition has not yet been supported in
CRA, therefore a property involving multiple modules may lead
to a complex global LTS. Another related work is Modular Feature
Verification by Fisler and Krishnamurthi [12], which targets sys-
tems developed by Feature-Oriented Programming (FOP). In FOP,
components are features that are orthogonal to the component con-
cepts used in this paper. Our approach supports both component
verification in the context of a system, and component verification
with only environment assumptions and without a specific com-
position context. A component is represented by a set of verified
temporal properties. Properties of a primitive component are ob-
tained by directly model checking its original representation that
can be in any model-checkable languages such as model-checkable
subsets of UML, SDL, JAVA, or C/C++. Properties of a composed
component are obtained by model checking its abstractions con-
structed from its environment assumptions and verified properties
of its sub-components. Our approach also supports property de-
composition by applying top-down compositional reasoning.

There is also related research on automatic generation of as-
sumptions in compositional reasoning, such as [13]. [13] proposes
an approach to automatic generation of assumptions for safety prop-
erties in the context of representing systems and their components
using LTSs. In this approach, an automatically generated assump-
tion can be quite complex and hard to check on other components.

7. CONCLUSIONS AND FUTURE WORK
An approach to integration of model checking into the CBD of

software systems has been presented. The case study on TinyOS
demonstrates the applicability of this approach, the detection of a
coordination error, and a significant reduction in model checking
complexity. The reduction in model checking complexity seems
scalable. This approach can be readily applied on many software
computation models.

The next steps for the research are to execute further and more
detailed case studies on several software product lines and to au-
tomate formulation of component properties and environment as-
sumptions as possible. A more in-depth case study with TinyOS
is in progress. Two directions for automatic property and assump-



tion formulation are application of domain-specific heuristics and
application of theorem proving to help derive the properties of a
composed component from the properties of its sub-components.
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APPENDIX

A Property Specification Language for xUML
An xUML level property specification language has been defined
for model checking of xUML models. This language is presented
in terms of a set of property templates that have intuitive meanings
and also have rigorous mappings to a property specification lan-
guage written in S/R, the native language of the COSPAN model
checker. An example of one such template is

After(e) Eventually(d)

where theenablingconditione and thedischargingconditiond are
propositional logic predicates over semantic entities of an xUML
model. The semantic meaning is that after each occurrence ofe
there eventually follows an occurrence ofd. Although similar to
the LTL formulaG(e → XF (d)), our property does not require
a secondd in case the discharge conditiond is accompanied by a
seconde, whereas an initiale is not discharged by an accompa-
nying d. This asymmetry meets many requirements of software
specification. (On account of this asymmetry, our property cannot
be expressed in LTL.)

Our property specification language is linear time, with the ex-
pressiveness ofω-automata. The templates define parameterized
automata. Additional templates could be formulated in terms of
the given ones if doing so simplifies property specification. A prop-
erty formulated in this language consists of declarations of propo-
sitional logic predicates over semantic entities of an xUML model
and declarations of temporal predicates. A temporal predicate is de-
clared by instantiating a property specification template: each argu-
ment of the template is replaced by a propositional logic expression
composed from previously declared propositional predicates.


