Integrated State Space Reduction for Model
Checking Executable Object-oriented Software
System Designs

Fei Xie and James C. Browne

Dept. of Computer Sciences, Univ. of Texas at Austin, Austin, TX 78712, USA
Email: {feixie, browne}@Qcs.utexas.edu Fax: +1 (512) 471-8885

Abstract. This paper presents a general framework for integrated state
space reduction in model checking executable object-oriented software
system designs. The framework structures the application of state space
reduction algorithms into three phases with different algorithms applied
in each phase. The interactions between these algorithms are explored
to maximize the aggregate effect of state space reduction. Automation
support for the framework has been proposed and partially implemented.
The framework is presented for system designs modeled in xUML [1][2],
an executable dialect of UML, but can also be used to structure in-
tegrated state space reduction for other representations. To further im-
prove the applicability of the framework, domain-specific design patterns
can be explored to instantiate the framework for different application
domains. An instantiation of the framework for distributed transaction
systems is defined and its partial implementation has been applied to the
design model of an online ticket sale system. The dimension of software
system designs that are model checkable is found to be greatly extended.

1 Introduction

Executable object-oriented modeling languages such as xUML [1][2], an exe-
cutable dialect of UML, are widely applied in industry to model software system
designs. Model checking [3][4] can potentially enhance the reliability and ro-
bustness of executable object-oriented software system designs. However, model
checking software system designs of arbitrary size is intractable due to the well-
known state space explosion problem. Therefore, state space reduction algo-
rithms have to be applied to reduce the model checking complexity.
Executable object-oriented software system designs are ideal candidates for
model checking due to their complete execution semantics and natural incor-
poration of state models. Furthermore, their major features potentially enable
effective state space reductions, for instance, compositional structures may lead
to effective decompositions, inheritance relationships may facilitate abstractions,
and multiple instances of a class may simplify the identification of symmetries.
This paper defines and describes a general framework for integrated state
space reduction in model checking executable object-oriented software system
designs. The framework assumes that the executable system designs can be
translated into model checkable languages and is discussed using system designs

modeled in XUML. An earlier paper [5] has been focused on model checking an
xUML model by translating the model into the S/R [6] automaton language. Un-
der the framework, state space reduction algorithms are applied in an integrated
way to xUML models before and during the translation and to the resulting
S/R models. Interactions between these algorithms are explored to maximize
the aggregate effect of state space reduction.

Many software system designs are constructed following domain-specific de-
sign patterns that provide information about structures and behaviors of these
systems. Reduction algorithms such as decomposition, abstraction, and sym-
metry reduction, whose effectiveness depends on structures and behaviors of
software systems, can be readily formulated on design models due to the fact
that execution behaviors of different components are more observable at the
design level and due to the existence of domain-specific design patterns. State
space reduction algorithms are often applied in combinations. These facts taken
together suggest instantiating the general state space reduction framework for
different application domains based on domain specific design patterns.

Distributed transaction systems, which are commonly constructed in a design
pattern of dispatchers, agents, and servers with customer initiated transactions
as observable units of work, are examples of a family of systems for which a
structured process for applying state space reduction algorithms at the design
model level can be formulated. This paper illustrates the general framework with
its instantiation for distributed transaction systems, a systematic process for
reducing model checking a property on the design model of a transaction system
to discharging a well-defined set of less complex model checking problems. The
process represents a transaction as message sequences, associates the property
to be checked with a transaction, partitions the model into sub-models, and
decomposes the property into sub-properties and assumptions defined over these
sub-models. The process is evaluated by its application in model checking an
online ticket sale system. The dimension of transaction systems that can be
model checked is materially extended by the systematic process.

There has been extensive research on state space reduction algorithms for
either hardware systems or software systems, which is surveyed in [4]. Our
work, instead of focusing on particular state space reduction algorithms, ex-
plores the integrated application of reduction algorithms in the context of the
general framework and investigates how domain specific design patterns can
help adapt the general framework to different application domains to achieve
more automatic and effective state space reduction. Our work is distinguished
from the integrated state space reduction for hardware systems [7][8] by focusing
on software systems and incorporating both reduction algorithms effective for
asynchronous semantics and those effective for synchronous semantics.

Section 2 defines the general framework, informally describes the state space
reduction algorithms currently applied in the context of the framework, and
gives some guidelines for when to apply each state space reduction algorithm
and for the application order of these algorithms. Section 3 sketches the par-
tially implemented automation support for the general framework. Section 4

defines, describes, and illustrates the instantiation of the general framework on
distributed transaction systems. Section 5 evaluates the instantiation with results
from model checking an online ticket sale system. Section 6 gives the conclusion.

2 Integrated State Space Reduction

In this section, a structured framework for integrated application of state space
reduction algorithms to executable object-oriented software system designs is de-
fined. The framework is presented for system designs modeled in xUML, but can
be used to structure integrated state space reduction for other representations.
The state space reduction algorithms being applied in the context of this frame-
work are described and interactions between these algorithms are discussed.

2.1 General Framework

The model checking process for an xXUML model, previously reported in [5], is a
sequential application of the following two procedures on the xUML model:

— xUML-to-S/R translation that translates the xXUML model and an xXUML
level query to be checked on the model to an S/R model and an S/R query;

— S/R level model checking that checks the S/R query on the S/R model by
invoking the COSPAN model checker.

¢ Localization Reduction

(Success Report / Error TracB

[xUML Model] [xUML Query]
el Eiide il e iSO PRPUPRN
: Decomposition
I User—driven State Space Reduction I< »»»»»»»»»»»»»»»»»»»»»»»» : Abstraction
{ Symmetry Reduction
I Subtask poo mmmmmmmmmm—m———"
, Reduced Reduced :
xUML Model xUML Query :
. I xUML—-to—S/R Translation I< <<<<<<< [EEEIE PR . Partial Order Reductio
' [S/R Model] [S/R Query] :
E I S/R Model Checking I< ,,,,,,, E ,,,,,,,,,,,,,, Symbolic Verification

Basic Model Checking Process

Fig. 1. Reduction Hierarchy of General Framework
The process, referred to as the basic model checking process in Figure 1, works
effectively on xUML models with small numbers of class instances, but can-
not scale due to the state space explosion problem. On the other hand, for

well-structured xUML models, there are system structure and property specific
reduction algorithms at the xUML model level, which cannot be recognized by
the xXUML-to-S/R translator and the COSPAN model checker, but which can ef-
fect major state space reduction on the resulting S/R model that is to be model
checked. Therefore, the general framework prefaces the basic model checking
process with a user-driven state reduction procedure.

The general framework establishes a three-level hierarchy for integrated state
space reduction, as shown in Figure 1. Different reduction algorithms are invoked
on different levels of the hierarchy and applied to models of different forms:

— In the user-driven state space reduction procedure, user-driven reduction
algorithms such as decomposition, abstraction, and symmetry reduction are
applied to reduce a complex model checking task 7', a complex query on a
complex xUML model, into a set of subtasks. FEach subtask checks a sub-
query of the original query on a sub-model of the original model. A sub-model
is either a component or an abstraction of the original model. Each subtask
is either discharged by invoking the basic model checking process or further
reduced. The reductions applied are validated by invoking the basic model
checking process or conducting a simple theorem proving.

— In the xUML-to-S/R translation procedure, automatic reduction algorithms,
such as static partial order reduction, are applied, which transform an xXUML
model prior to its translation into S/R with respect to a given xUML query
and construct an equivalent model that has a smaller state space.

— In the S/R level model checking procedure, automatic reduction algorithms
implemented by COSPAN, such as symbolic model checking and localization
reduction, are applied. These algorithms make use of the semantic informa-
tion of an S/R model to reduce the state space to be explored by COSPAN.

Under the general framework, the extended model checking process for xUML
models operates recursively and interactively as shown in Figure 2. A model

Enqueue(ToDo, To); Done ={ }; /* ToDo is a queue and Done is a set. */
Do
T = Dequeue(ToDo);
If (T is Directly Model Checkable) Then
If (Basic-model-checking-process(T")) Then
Done = Done + {T'}; Continue;
Else
Error-report-generation(T"); Invoke-user-interface ();
End;
<Ti,...,T, > = User-driven-state-space-reduction(7');
If (Valid(T, < Th,...,Tn >) Then Enqueue(ToDo, T1,...,Ty);
Else
Error-report-generation(7T', < T4, ..., T, >); Invoke-user-interface();
End;
Until (Empty(ToDo));

Fig. 2. Recursive and Interative Model Checking Process Under General Framework

checking task, Ty, is recursively reduced into subtasks. A reduction conjecture

from users is always validated before its resulting model checking subtasks are
discharged. The basic model checking process becomes a model checking engine
for discharging subtasks. When a reduction conjecture or a subtask is verified to
be false, user interaction is requested. Upon user inputs, either a new reduction
conjecture is introduced, or the model checking process is aborted.

2.2 Major State Space Reduction Algorithms

There are many possible state space reduction algorithms that can be applied
to xXUML models under the general framework. Some of them are summarized
as they are applied to xUML models.

Decomposition The compositional hierarchy, the asynchronous message com-
munication semantics, and the interleaving execution semantics of xXUML make
decomposition a natural state space reduction algorithm for xUML models.

— Query Decomposition A query on an xXUML model can often be broken
into a set of sub-queries on the model, its components, or its abstractions so
that checking the sub-queries is simpler than checking the original query and
verification of the sub-queries guarantees verification of the original query.

— Component-based Decomposition To facilitate the query decomposi-
tion, the hierarchical structure of an xXUML model may be explored to de-
compose the model into components that have simple and clear interfaces
between each other. Dependencies between components are formulated as as-
sumptions of every component on other components. Therefore, a sub-query
can be checked on a component under its assumptions, which consumes less
memory and time than checking the sub-query on the original model.

— Case Splitting In many xUML models, concurrent operations may be
grouped into units of work, for example, transactions in an e-business sys-
tem. Commonly there is little interaction between these units of work. If a
query on the whole system can be decomposed into sub-queries on units of
work and the units of work can be decoupled when these sub-queries are
checked, significant state space reduction can often be achieved.

Abstraction Three abstraction algorithms can be applied:

— State Model Abstraction If a query is over one or several components of
a system, state models in the components not directly involved in the query
may be abstracted to reduce the state space to be explored for checking the
query. If the abstraction is sound (Executions of the abstract system contain
all behaviors of the original system.), then if the query is verified to be true on
the abstract system, it will also be true on the original system. The most com-
mon form of state model abstraction is the non-deterministic abstraction. For
instance, a decision point in a state model may be made non-deterministic
and a set of state models that are only differentiated by their unique identi-
fiers may be simulated by a state model with a non-deterministic identity. A
major advantage of non-deterministic abstraction over other kinds of state
model abstraction is that its correctness is automatically guaranteed.

— Data Abstraction If a mapping can be found between data values of an
xUML model and a small set of abstract data values, then an abstract xUML
model that simulates the original model can be constructed by extending the
mapping to states and transitions. Since the state space of the abstract model
is usually smaller, it is often easier to check properties on the abstract model.

— Localization Reduction Given a model and a property, localization reduc-
tion [9], also known as cone of influence reduction [4], eliminates variables in
the model that do not influence the variables in the property. The checked
property is preserved, but the size of the model to be checked is smaller.

Symmetry Reduction Symmetry reduction can often reduce the number of
queries to be checked on an xXUML model or the state space size of the model.

— Symmetric Query Reduction Given two queries on an xUML model, if a
nontrivial mapping can be defined between variables in the model or between
values of variables, which maps the model to itself and the two queries to
each other, then only one of the two queries need to be checked on the model.

— Quotient Model Reduction Having symmetry in a model implies the ex-
istence of nontrivial permutation groups that preserve both the state labeling
and the transition relation. The quotient model induced by this relation is
often smaller than the original model. Moreover it is bisimulation equivalent
to the original model. Therefore, all queries on the original model can be
instead checked on the quotient model.

Partial Order Reduction Partial order reduction takes advantages of the
fact that, in many cases, when components of a system are not tightly coupled,
different execution orders of actions or transitions of different components may
result in the same global state. Then, under some conditions [10] [11] [12], in
particular, when the interim global states are not relevant to the query being
checked, model checkers only need to explore one of the possible execution orders.
This may radically reduce model checking complexity.

Asynchronous interleaving semantics of xXUML suggest application of static
partial order reduction [13] to an xUML model prior to its translation into S/R,
which transforms the xXUML model by restricting its transition structure with
respect to a query to be checked. This enables integrated application of partial
order reduction while applying symbolic model checking to the S/R model.

Symbolic Model Checking Symbolic model checking represents the state
transition structure of an xUML model with binary decision diagrams, which
enables manipulation of entire sets of states and transitions instead of individual
states and transitions. This heuristic is fully automatic and has shown encour-
aging reduction promise on some xXUML models. (to be elaborated in Section 5).

2.3 Interactions between Reduction Algorithms

Under the general framework, state space reduction algorithms are applied to
xUML models in an integrated way. To maximize the aggregate effect of state

space reduction, the selection of reduction algorithms and the application order
of the selected reduction algorithms need to be carefully considered.

Selection of Reduction Algorithms The structure of an xXUML model and
the knowledge of its execution behavior can help select the reduction algorithms
to be applied to the model:

a. Symmetry reduction is often selected if there exist many instances of the
same class;

b. Partial order reduction is often selected if there is intensive execution inter-
leaving;

c. Symbolic model checking is often selected if there is much randomness.

d. Localization reduction is always applied to S/R models.

xUML models from different application domains, different xUML models from
the same application domain, or different queries on the same xXUML model may
lead to different selections of reduction algorithms. Therefore, domain, model,
and query specific knowledge also need to be involved in the algorithm selection
process besides the selection guidelines provided.

Application Order of Reduction Algorithms To maximize the state space
reduction effect, it is always attempted to apply each reduction algorithm to the
minimum models with which the algorithm has to deal. Therefore, the framework
hard-codes some application ordering relations between reduction algorithms:

— Algorithms in the user-driven reduction procedure are always applied prior
to algorithms in the xXUML-to-S/R translation procedure.

— Algorithms in the xUML-to-S/R translation procedure are always applied
prior to algorithms in the S/R level model checking procedure.

— In the S/R level model checking procedure, localization reduction is always
applied prior to symbolic model checking.

There is no ordering relation defined between reduction algorithms applied in
the user-driven reduction procedure because the ordering relations between these
algorithms are also domain, model, and query specific.

2.4 Instantiations of General Framework for Application Domains

The framework defines a general process for structuring integrated state space
reductions, but requires certain amount of user interaction. System designs from
the same application domains commonly follow a set of domain-specific design
patterns and require satisfaction of queries in similar formats. Therefore, domain-
specific design patterns and query patterns can often be explored to establish
an instantiation of the general framework for a given domain. The instantia-
tion should provide additional guidelines for selecting reduction algorithms and
additional relations for ordering these reduction algorithms. With these extra
efforts, the instantiation may significantly reduce the user interaction required
and make the integrated state space reduction for the given domain more auto-
matic and effective. In Section 4, we demonstrate how the general framework is
instantiated by instantiating it for distributed transaction systems.

3 Automation of Integrated State Space Reduction

Automation support, which is crucial to the wide application of the general
framework, is provided through selecting an appropriate model checker, extend-
ing the xUML-to-S/R translator, and introducing a reduction manager.

3.1 Selection of Model Checker

COSPAN, which has synchronous and parallel semantics, is selected as the model
checking engine for xUML models because it supports both symbolic model
checking, which is not readily supported by effective model checkers with asyn-
chronous interleaving semantics, and localization reduction. Localization reduc-
tion is always applied to any S/R model while symbolic model checking can be
switched on or off by setting an option of COSPAN.

3.2 Extension to xUML-to-S/R Translator

The xUML-to-S/R translator was extended by incorporating the optimization
module of SDLCheck [14] that implements static partial order reduction and
other software-specific model checking optimizations. These optimizations trans-
forms the xUML model with respect to the xXUML query before the translation
into S/R and can be switched on or off without affecting the translation.

3.3 Reduction Manager

A reduction manager has been designed and is under development, which coor-
dinates the recursive model checking process in Figure 2. If the current subtask
is not directly model checkable, the manager invokes a user interface to input:

— Selected reduction algorithms and their application order;

— Sub-queries of a complex xUML query;

— Boundaries and environment assumptions of a system component;

— Correspondence between sub-queries and components (or units of work);
— Class instances involved in a unit of work;

— Abstract state models and their corresponding concrete state models;
Abstract data types and their mapping relations to concrete data types;
— Symmetries between class instances (or queries).

The inputs form a reduction conjecture. The manager applies the selected user-
driven reduction algorithms in the user-defined order and generates subtasks.
The manager then validates the reduction conjecture by invoking either the
basic model checking process or a theorem prover. If the reduction conjecture
is not valid, an error handling user interface is invoked to report the error and
request a new reduction conjecture or termination of the model checking process.

If the current subtask is model checkable, the manager invokes the basic
model checking process to discharge the task. Several tasks can be discharged
simultaneously if there is no dependency between them. If a subtask is checked
to be false, the manager rolls the whole model checking process back to the
reduction that generates the false task and invokes the error handling interface.

4 Framework Instantiation on Transaction Systems

Transaction systems such as banking systems and online sale systems play more
and more important roles in the electronic infrastructure of our society. These
systems are complex and require high reliability. Their designs follow similar
patterns. Therefore, it is worthwhile to instantiate the integrated state space
reduction framework for model checking xUML models of transaction systems.

4.1 Common Patterns of Transaction Systems

A transaction system executes transactions concurrently. A transaction consists
of sequences of interactions between system components. Transactions may be of
different types and transactions of the same type are often symmetric. The cor-
rectness of the system can be established by determining the correctness of each
transaction it performs and the correctness of interactions between transactions.

Definition 1 The model, M, of a transaction system, S, is the xtUML model
of S, which consists of a set of interacting class instances. A model, M', is a
sub-model of M if M' consists of a subset of class instances of M.

Definition 2 A transaction type, T, of M is a message sequence template,
which consists of sequences of message types defined in M. An instance of T
is a transaction ezecuted by M, whose message sequences follow T. A type, T',
is a sub-type of T if each sequence in T' is a sub-sequence of a sequence in T.

Definition 3 A transaction property, P, is a temporal logic predicate over all
instances of a transaction type, T, or over an instance of T.

Definition 4 A model checking task is a tuple, < M,T,P,A >, where M is
a model, T is a transaction type defined on M, P is a transaction property
defined on T, and A is the set of assumed temporal properties defined on the
environment of M. The environment of M is the aggregation of all inputs to M.
A model checking task, < M',T',P', A" >, is a subtask of < M,T,P,A > if M’
is a sub-model of M, T' is a sub-type of T, and P' is a temporal predicate that
is defined on M' and derived from P through reductions such as decompositions,
and A' is the union of A and a set of assumed properties on M — M'. Each
assumed property in A or A" is a tuple of a temporal predicate and a model (or
the environment) on which the predicate is defined.

Definition 5 A model checking task, < M, T, P, A >, is directly model checkable
if it can be discharged by the basic model checking process using a reasonable
amount of time and memory.

4.2 Domain Specific Reduction Algorithm

The domain specific reduction algorithm for checking a task, < M, T, If’, A >, on
a transaction system is given in Figure 3. For simplicity, only the reduction aspect
of the algorithm is covered in Figure 3. The algorithm constructs the reduction
tree for < M, T, P, A > on-the- fly. The root of the tree is < M,T,P,A >. Each

Enqueue(ToDo, < M, T, P, A >); Done ={ };
Do
<T,M,P,A > = Dequeue(ToDo);
If (< T, M, P, A > is Directly Model Checkable) Then
Model check < T, M, P, A >; Done = Done + {< T, M, P, A >}; Continue;
End;
If (P is a query over all instances of T') Then
Reduce P with Symmetry Reduction to P; where P; is on Instance 1 of T’
Enqueue(ToDo, < T, M, P;, A >); Continue;
End;
If (M consists of instances from different classes) Then
Current = The first class that appears in T
Decompose M into M1={All instances of Current} and Ma=M — M;;
Decompose T into 71 performed by M; and T> performed by Ma;
Decompose P into Pi,...,P; on My and P;+1,..., Py on Ma;
U1 :{P177P1}7 U :{Pi+17"'7pm}; D, :{ }7 D, :{ }v
While('Empty(U1) or !Empty(Us))
If ("Empty(U1)) THEN
P’ = Remove-an-element(U;); A’ = {Assumptions of P' on M}
Enqueue(ToDo, < T1,M1,P’,A’ >); D, =D + {P’}; Ups=Us+ A — Do;
End;
If ('"Empty(Uz)) THEN
P" = Remove-an-element(U2); A" = {Assumptions of P" on M}
Enqueue(ToDo, < TQ,Mz,P”,A” >); Dy = D> + {P”}; Up=U; +A" — Dy;
End;
End;
End;
If (M consists only of all instances of a class, C') Then
Reduce M with Case Splitting to M; where M; = {Instance 1 of C'};
Enqueue(ToDo, < T, M1, P, A >); Continue;
End;
Until (Empty(ToDo));

Fig. 3. Domain Specific Reduction Algorithm for Transaction Systems

non-root node in the tree is a subtask of its parent. The tree is expanded in a
breadth first fashion. Every execution of the do loop either discharges a task
at a leaf of the tree or expands the tree by reducing the task into its subtasks
through symmetry reduction, decomposition, or case splitting. The expansion
stops when all subtasks at the leaves of the tree are directly model checkable.

4.3 Case Study: An Online Ticket Sale System

The xUML model of an online ticket sale system [15], My, is employed to il-
lustrate the domain specific reduction algorithm for transaction systems. There
are four classes in the system: Customer, Dispatcher, Agent, and Ticket Server.
Both the Dispatcher class and the Ticket Server class have only one instance. The
Agent class and the Customer class may have an arbitrary number of instances.
The system processes ticketing transactions of the type, Ty, concurrently for
many customers. The message sequence diagram of Ty is shown in Figure 4. Tj
has four branching points where the decisions made affect the message sequences:

10

Customer (C) Dispatcher (D) Agent (A) Ticket_Server (TS)

_Branching Point 1

TrylLater AsSgnmen;
Branching Point 2
pad | Laer Ot —<7]

Branching Point 3 - Spldout

Tiokariad | oL

. _Branching Point 4

3 W

Fig. 4. Message Sequence Diagram of Ticketing Transaction

1. Upon processing a request message from a customer, the dispatcher assigns an
idle agent to the customer if there is an idle agent; Otherwise, the dispatcher
replies to the customer with a TryLater message;

2. Upon processing a Hold message from an agent, the ticket server replies to
the agent with: A Held message if the number of tickets available is greater
than the requested number; A Later message if the sum of tickets available or
being held is greater than the requested number; An Out message otherwise;

3. Upon receiving a TicketHeld message from an agent, the customer may or
may not reply to the agent with its payment;

4. If the valid payment from the customer is received before the agent times
out, the agent sends a Ticket message to the customer and a Buy message to
the ticket server; Otherwise, it sends a Release message to the ticket server.

A property which should hold on each transaction of the type, Tp, is that after
a request message from a customer is processed by the dispatcher, eventually the
system will send a TicketHeld message, or a TryLater message, or a SoldOut
message back to the customer. The property is formulated as Py in Figure 5
using an xUML level query logic derived from a query logic defined in [7]. For
simplicity, in Figure 5 some details are left out and i (or j) is used to index a
general instance of the Customer class (or the Agent class, respectively).

Although the structure of the system is simple, the arbitrary number of cus-
tomers and agents make directly model checking Py infeasible even for the most
powerful model checkers. Therefore, the domain specific reduction algorithm is
applied to reduce the model checking task, < My, Ty, Py, ® >. The assumption
set is empty since customers are also modeled as class instances in M. The
sub-queries involved in the reduction process are defined in Figure 5. The sub
transactions and the sub-models involved in the process are shown in Figure 6.
The reduction tree generated by the process is shown in Figure 7. Assumptions
of a subtask are represented in Figure 7 by dashed arrows which lead to the

11

Py : After Request(i) Eventually TicketHeld(i) or TryLater(i) or SoldOut(i)
P, : After Request(1l) Eventually TicketHeld(1) or TryLater(1) or SoldOut(1)

P»;: After Request(1) and Forall k { D.Agent_Free[k] = FALSE }
Eventually TryLater(1)
P»5: After Request(l) and Exists k { D.Agent_Free[k] = TRUE }
Eventually Assignment(j, 1) and A(j).$ = Idle
/* A(j)-$ represents the current state of the class instance, A(j). */
P,3: After Assignment(j, 1) and A(j).$ = Idle
Eventually TicketHeld(1) or TryLater(1) or SoldOut(1)

Ps;: After A(j).$ = Idle Always A(j).$ = Idle UntilAfter Assignment(j)
Ps5: After Assignment(j) and A(j).$ = Idle Eventually Reset(j)
Ps3: After Reset(j) Eventually A(j).$ = Idle

Py;: After A(1).$ = Idle Always A(1).$ = Idle UntilAfter Assignment(1)
Pys: After Assignment(1) and A(1).$ = Idle Eventually Reset(1)
Py3: After Reset(1l) Eventually A(1).$ = Idle
P,y After Assignment(1) and A(1).$ = Idle
Eventually TicketHeld(1) or TryLater(1) or SoldOut(1)

Ps : After Hold(j) Eventually Held(j) or Later(j) or Out(j)

Ps : After Hold(1) Eventually Held(1) or Later(1) or Out(1)

Fig. 5. Original Query and All Intermediate Sub-queries

subtasks that check the assumed properties on the corresponding sub-models.
Reductions applied in the process are grouped into six general steps as follows:

Step 1: Symmetry Reduction P, is a temporal predicate over all transactions
of the type Tp. Since customers are symmetric to each other, checking Py on M,
is reduced to checking P, on My where P; is a predicate only over the transaction
that involves Customer 1.

Step 2: Decomposition 7 is decomposed into three sub transaction types,
Ti1, T12 and Ty3. Accordingly, My is decomposed into three sub-models, M1,
M5, and M;3. Transactions of the types, 111, T12 or T3, are conducted by M1,
M5, or Mi3 respectively. P; is decomposed into three sub-queries: Ps1, Ps2, and

T11, M11

Customers
Dispatcher
Agents

Ticket Server

T21,M21 T21, M3

Fig. 6. Decomposition Relations between Sub-models Involved in Reduction

12

<TO, MO, PO> Legend

(1) <.> Verification Subtask

—_— Reduction Relation
= — —> Assumption Relation
Reduction Step

<T12, M12, P21> <T12, NII12, P22> <T13, M13, P23>

P e

\ S
<T13, M13, P31> <T13, M13, P32> <T13, M13, P33>

(3) I e

<T13, M13, P41> <T13, M13, P42> <T13, M13, P43> <T13, M13, P44>

(8) o [— A ——— A

<T21,M21, PAl> <T21,M21, P42> <T21,M21, PA3> <T21, M21, P44>

~~~~~~~ Y T R
(5 ) i

<T21, M3, P41> <T21, M3, P42> <T21, M3, P43> <T21, M3, P44>

<M22. T22. P6>

Fig. 7. Reduction Tree for Verifying Py on Online Ticket Sale System

Ps3. Py is directly model checkable on M7, without any assumption on Mj; or
M 3. Psy is directly model checkable on M7, by assuming that P31, Pss, and Ps3
hold on M;is.

Step 3: Symmetry Reduction In M3, agents are symmetric. P31, P32, Pss,
and P»3 have no assumption on M;; and M;5. Therefore, checking P31, Pss, Ps3,
and P23 on M13 is reduced to checking P41, P42, P43, and P44 on M13.

Step 4: Decomposition T3 is further decomposed into two sub-types: To;
and Ts2. Accordingly, M3 is decomposed into two sub-models: Ms; and Mjs.
Transactions of the types T5; or Ty are conducted by Ms; or Mso respectively.
Checking Py1, Pia, Ps3, and Pyq on M3 is reduced to checking Py1, Pio, Pis,
and P4 on Mss by assuming Ps; holds on Mas.

Step 5: Case Splitting In M, under the assumption Ps; on Mss, transactions
of the type T5; and performed by agents are independent of each other. Therefore
P41, Pyo, Py3, and Py4 is instead checked over M3 by assuming Ps on Mss.

Step 6: Symmetry Reduction In My, transactions of the type, T5s, are
symmetric. Therefore, checking Ps on Mas is reduced to checking P on Mss.

5 Evaluation of Integrated State Space Reduction

Under the general framework, reduction algorithms applied in the user-driven
reduction procedure recursively break a complex model checking task into sub-
tasks that are directly model checkable while reduction algorithms applied in the
other two procedures facilitate directly model checking larger tasks. In this sec-
tion, experiment results from the model checking study of the online ticket sale
system are employed to evaluate the integrated application of these algorithms.

5.1 Evaluation of User-Driven Reduction Algorithms

Statistics from model checking Property Py in Figure 5 on the xUML model of
the online ticket sale system are employed to demonstrate the effectiveness of

13



the user-driven reduction algorithms. The memory and time usage for directly
model checking P, is compared with the memory and time usage for checking
the subtasks generated by applying these reduction algorithms.

Directly model checking Py on the xUML model with two customer instances
and two agent instances requires two separate model checking runs, one for each
customer instance. With state partial order reduction (SPOR) and symbolic
model checking (SMC) applied, each run takes 152.79 megabytes and 16273.7
seconds. The complexity of the xUML model increases rapidly as the number
of customers increases. Directly model checking Py on the xUML model with
6 customer instances cannot be fulfilled. Therefore, directly model checking the
xUML model with arbitrary number of customers is not feasible.

The memory and time usage for model checking each subtask from the reduc-
tion tree in Figure 7 is shown in Table 1. It can be observed that the memory and

Criteria. P21 P22 P41 P42 P43 P44 P6
Memory 0.30M 0.95M 0.28M 0.29M 0.28M 0.29M 0.35M
Time 0.02S 1.81S 0.01S 0.04S 0.01S 0.04S 0.63S

Table 1. Time and Memory Usage of Subtasks in Verifying Py

time usage for each subtask is substantially lower than that for directly model
checking Py on the xUML model with two customers. The model checking result
from the reduction process can be scaled up to xXUML models with arbitrary
number of customer and agent instances by further applying non-deterministic
abstraction and symmetry reduction. The complexity of symmetric query reduc-
tion is not shown due to an unfinished feature of our reduction system. However,
the complexity is theoretically bounded by the complexity of the static structure
of an xUML model because the reduction only checks the static structure of the
model instead of exploring the full state space of the model.

5.2 Evaluation of SPOR, SMC, and Their Combined Application

Being able to directly discharge larger model checking tasks reduces user interac-
tion and makes the integrated state space reduction more automatic. Currently,
to scale up directly model checkable tasks, SPOR is applied in the xUML-to-S/R
translation and SMC is applied in the S/R level model checking. To demonstrate

SPOR SMC Memory Usage Time Usage
Off Off 167.072M 1937488
On Off 16.0604M 10476.5S
off On 142.746M 471.328
On On 102.527M 280.1S

Table 2. Model Checking Memory and Time Usage Comparison
the reduction ability of SPOR and SMC, Property P»; in Figure 5 is directly
checked on the whole model under the four possible on/off combinations of SPOR
and SMC. The model checking complexities under the four combinations are
compared in Table 2. It can be observed that both SPOR and SMC lead to

14



significant reduction on the model checking complexity. SPOR offers a better
memory usage while SMC offers a better time usage. Their combined applica-
tion achieves the best time usage with a medium memory usage.

6 Conclusion

This paper defines and describes a general framework for integrated state space
reduction in model checking executable object-oriented software system designs.
The framework is presented for system designs modeled in xUML, but is readily
applicable to other representations. Partially implemented automaton support
for the framework is discussed. The framework is illustrated by its instantiation
for distributed transaction systems and is evaluated by applying the instantiation
in model checking an online ticket sale system. The dimension of the software
system designs that are model checkable is found to be substantially extended.

7 Acknowledgement

We gratefully acknowledge Robert P. Kurshan, Vladimir Levin, Huaiyu Liu,
Nancy Macmahon, and Kedar Namjoshi for their generous help.

References

1. Kennedy Carter: http://www.kc.com/html/xuml.html. Kennedy Carter (2001)

2. Project Tech.: http://www.projtech.com/pubs/xuml.html. Project Tech. (2001)

3. Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons
Using Branching Time Temporal Logic. Logic of Programs Workshop (1981)

4. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press (1999)

5. Xie, F., Levin, V., Browne, J.C.: Model Checking for an Executable Subset of UML.
Proc. of 16th IEEE International Conf. on Automated Software Engineering (2001)

6. Hardin, R.H., Har’El, Z., Kurshan, R.P.. COSPAN. Proc. of 8th International

Conf. on Computer Aided Verification (1996)

Cadence: FormalCheck User Guide. Cadence (2001)

McMillan, K.L.: A Methodology for Hardware Verification Using Compositional

Model Checking. Cadence Technical Report (1999)

9. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press (1994)

10. Godefroid, P., Pirottin, D.: Refining Dependencies Improves Partial-Order Verifi-
cation Methods. 5th International Conf. on Computer Aided Verification (1993)

11. Peled, D.: Combining Partial Order Reductions with On-the-fly Model-Checking.
Formal Methods in System Design (1996)

12. Valmari, A.: A Stubborn Attack on State Explosion. Proc. of 2th International
Conf. on Computer Aided Verification (1990)

13. Kurshan, R.P., Levin, V., Minea, M., Peled, D., Yenigiin, H.: Static Partial Order
Reduction. Proc. of 4th International Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (1998)

14. Levin, V., Yenigiin, H.: SDLCheck: A Model Checking Tool. Proc. of 13th Inter-
national Conf. on Computer Aided Verification (2001)

15. Wang, W., Hidvegi, Z., Bailey, A.D., Whinston, A.B.: E-Processes Design and
Assurance Using Model Checking. IEEE Computer Vol. 33 (2000)

© N

15



