
Translation-Based Compositional Reasoning
for Software Systems?

Fei Xie1, James C. Browne1, and Robert P. Kurshan2

1 Dept. of Computer Sciences, Univ. of Texas at Austin, Austin, TX 78712, USA
Email:ffeixie, browneg@cs.utexas.edu Fax: +1 (512) 471-8885

2 Cadence Design Systems, 35 Spring St., New Providence, NJ 07974, USA
Email: rkurshan@cadence.com Fax: +1 (908) 898-1435

Abstract. Software systems are often model checked by translating them into a
directly model-checkable formalism. Any serious software system requires appli-
cation of compositional reasoning to overcome the computational complexity of
model checking. This paper presents Translation-Based Compositional Reason-
ing (TBCR), an approach to application of compositional reasoning in the context
of model checking software systems through model translation. In this approach,
given a translation from a software semantics to a directly model-checkable for-
mal semantics, a compositional reasoning rule is established in the software se-
mantics and mapped to an equivalent rule in the formal semantics based on the
translation. The correctness proof of the composition reasoning rule in the soft-
ware semantics is established based on this mapping and the correctness proof of
the equivalent rule in the formal semantics. The compositional reasoning rule in
the software semantics is implemented and applied based on the translation from
the software semantics to the formal semantics and reusing the implementation
of the equivalent rule in the formal semantics. TBCR has been realized for a com-
monly used software semantics, the Asynchronous Interleaving Message-passing
semantics. TBCR is illustrated by two applications of this realization.

Keywords. Translation-based compositional reasoning, model checking, compo-
sitional reasoning, model translation

1 Introduction and Overview

Model checking [1–3] has major potential for improving reliability of software systems.
Model checking is often applied to software systems by translating them into a model-
checkable formalism to avoid the difficulty and labor of developing special-purpose
model checkers.

On account of the intrinsic computational complexity of model checking, we need
to support compositional reasoning [4–9] where model checking a property on a sys-
tem is accomplished by decomposing the system into components, checking component
properties locally on the components, and deriving the property of the system from the
component properties. Application of compositional reasoning to software systems re-
quires establishing a compositional reasoning rule in the semantics of these systems,

? This research was partially supported by NSF grant 010-3725.

proving the correctness of the rule, and implementing the rule. A rule is implemented
when methods have been provided for discharging its premises which are usually verifi-
cation of component properties, validity check of possible circular dependencies among
component properties, and derivation of a system property from component properties.

Directly proving the correctness of compositional reasoning rules for software sys-
tems is often difficult. Software systems are usually modeled in specification languages
such as Executable UML [10] and SDL [11], or coded in programming languages such
as Java and C/C++. These languages are sufficiently complicated in syntax and seman-
tics so that it is very difficult (if not infeasible) to directly prove for these languages
that a compositional reasoning rule is sound. Additionally, such a language often has
varying operational semantics. A formal semantics is only formulated for software sys-
tems specified in this language when these systems are to be translated into a model-
checkable formalism and verified. On the other hand, proof and implementation of com-
positional reasoning rules for directly model-checkable formal semantics such as the
semantics of Promela [12], SMV [13], and S/R [14] is often easier due to the formal-
ity and simplicity of these semantics. It is often the case that a set of compositional
reasoning rules have already been proven and implemented for these semantics.

This paper defines, describes, and illustrates Translation-Based Compositional Rea-
soning (TBCR), an approach to application of compositional reasoning in the context
of model checking software systems through model translation. This approach has two
phases: (i) establishment of compositional reasoning rules in the semantics of software
systems and correctness proof of the rules; (ii) application of the proven rules in model
checking software systems. Given a translation from a software semantics to a directly
model-checkable formal semantics, a compositional reasoning rule in the software se-
mantics is established and proven for correctness as follows:

– The compositional reasoning rule is defined in the software semantics.
– The rule in the software semantics is mapped to an equivalent rule in the formal

semantics based on the translation.
– The correctness proof of the rule is established based on the above mapping and on

the correctness proof of the equivalent rule in the formal semantics.

Given a software system and a property to be checked on the system, the proven com-
positional reasoning rule in the software semantics is then applied as follows:

– The system is decomposed into components on the software semantics level.
– Premises of the rule are formulated in the software semantics. These premises are

discharged by translating them to their counterparts in the formal semantics and
discharging their counterparts in the formal semantics through reusing the imple-
mentation of the equivalent rule in the formal semantics.

– If these premises are successfully discharged, then it can be concluded on the soft-
ware semantics level that the system has the property to be checked.

There has been a large body of research [4–9] (surveyed in [9]) on compositional
reasoning in the formal methods community, which mostly focuses on developing com-
positional reasoning rules and proving their correctness. Our research, instead, focuses
on effective application of compositional reasoning to software systems in the context
of model checking these systems via model translation. Rationales for our approach are:

– Software systems, to be model checked, usually have to be translated into a directly
model-checkable formalism.

– Formulation of and reasoning about the properties of software systems and their
components are more naturally accomplished in the software semantics.

– Compositional reasoning rules have already been established, proven, and imple-
mented for several directly model-checkable formalisms.

We have realized TBCR for a commonly used software semantics, the Asynchronous
Interleaving Message-passing (AIM) semantics. In this realization, compositional rea-
soning rules in the AIM semantics are proven, implemented, and applied in the context
of a translation from the AIM semantics to the!-automaton semantics [15] using the
I/O-automaton semantics [16] as an intermediate semantics. (We choose I/O-automata
as the intermediate semantics to reuse a translation from the I/O-automaton semantics
to the!-automaton semantics, established by Kurshan, Merritt, Orda, and Sachs [17].)
This realization has been applied in an integrated state space reduction framework [18]
and in model checking of component-based software systems [19].

The balance of this paper is organized as follows. In Section 2, we give the prelim-
inaries of the I/O-automaton semantics and the!-automaton semantics. A realization
of TBCR for the AIM semantics is defined and described in detail in Section 3. Two
applications of the realization of TBCR for the AIM semantics and their case studies
are presented in Section 4. We conclude in Section 5.

2 Preliminaries

2.1 I/O-automaton Semantics

The following definitions for I/O-automaton are from [17].

Definition 1. An I/O automatonA is a quintuple(�A; SA; IA; ÆA; RA) where:

– the signature�A is a triple �A = (�A
IN
; �A

OUT
; �A

INT
), where�A

IN
, �A

OUT
,

�A
INT

are pairwise disjoint finite sets of elements, called input, output, internal
actions, respectively. We denote by�A

EXT
= �A

IN
[�A

OUT
the set of external

actions, by�A
LOC

= �A
OUT

[�A
INT

the set of local actions, and we abuse notation,
denoting by�A also the set of all actions�A

LOC
[�A

IN
;

– SA is a finite set of states;
– IA � SA is a set of initial states;
– ÆA � SA � �A � SA is a transition relation which is complete in the sense that

for all a 2 �A
IN

, s 2 SA there existss0 2 SA with (s; a; s0) 2 ÆA. For a 2 �A
LOC

ands; s0 2 SA such that(s; a; s0) 2 ÆA, we say thata is enabled ats and enables
the transition(s; s0); Each element ofÆA is called a step ofA;

– RA is a partition of�A
LOC

, each element of which is termed a fairness constraint
ofA.

Definition 2. An execution ofA is a finite string or infinite sequence of state-action
pairs ((s1; a1); (s2; a2); : : :), wheres1 2 IA and for all i, si 2 SA, ai 2 �A and
(si; ai; si+1) 2 ÆA.

Definition 3. An executionx ofA is fair if, for all C 2 RA:

– if x is finite then no action inC is enabled in the final state inx;
– if x is infinite then either some action inC occurs infinitely often inx or else

infinitely many states inx have no enabled action which is inC.

Definition 4. Given a set4 � �A, the projection of an executionx= ((si; ai)) of A
onto4, denoted by�4(x), is the subsequence of actions obtained by removing from
the action sequence(ai) all actionsai 62 4.

Definition 5. A behavior ofA is the projection of a fair execution ofA on the set�A
EXT

(i.e., the fair execution, with states and internal actions removed). The languageL(A)
ofA is the set of all behaviors ofA.

Definition 6. Of two I/O automataA andB, we say thatA implementsB (denoted by
A � B) if, for 4 = �A

EXT
\�B

EXT
,4 6= ;,�4(L(A)) � �4(L(B)).

Definition 7. For I/O automataA1; A2; : : : ; Ak, with respective pairwise disjoint sets
of local actions, their parallel composition, denoted byA1jjA2jj : : : jjAk, is an I/O au-
tomatonA defined as follows. The set of internal actions ofA is the union of the re-
spective sets of internal actions of the component automata, and likewise for the output
actions; the input actions ofA are the remaining actions of the components not thus ac-
counted for. The set of states ofA, SA, is the Cartesian product of the component state
sets, likewise for the initial statesIA. The transition relationÆA is defined as follows:
for s = (s1; : : : ; sk), s0 = (s01; : : : ; s

0

k
) anda 2 �A, (s; a; s0) 2 ÆA if and only if for

all i = 1; : : : ; k, (si; a; s0i) 2 ÆA
i

or a 62 �A
i

and s0
i
= si. RA is the union of the

fairness partitions of the respective components.

2.2 !-automaton Semantics

We use theL-process model of!-automaton semantics. Detailed specification of this
model can be found in [15]. The concepts essential for understanding this paper are
given below for the convenience of the reader.

Definition 8. For anL-process,!, its language,L(!), is the set of all infinite sequences
accepted by!.

Definition 9. For L-processes,!1; : : : ; !n, their synchronous parallel composition,
! = !1
 : : :
 !n, is also anL-process andL(!) = \L(!i).

Definition 10. For L-processes,!1; : : : ; !n, their Cartesian sum,! = !1 � : : :� !n,
is also anL-process andL(!) = [L(!i).

For a language,L, let CL(L) denote the safety closure [20] ofL. 1

1 For a languageL of sequences over a set of variables,V , the safety closure ofL, denoted
by CL(L), is defined as the set of sequences overV wherex 2 CL(L) if and only if for all
j < jxj there existsy such thatx[0::j] : y belongs toL [8]. (jxj denotes the length ofx and
x : y denotes the concatenation ofx andy wherex andy are sequences overV .) In [15],
CL(L) is termed as the smallest limit prefix-closed language that containsL.

Definition 11. The safety closureCL!(!) of anL-process! is anL-process whose
language is the safety closure of the language of!, L(CL!(!)) = CL(L(!)).

Given anL-process!, CL!(!) can be derived from! by computing the Strong Con-
nected Components (SCCs) of the state graph of! and for each SCC with an accepting
state, marking every state of that SCC as accepting.

Under the!-automaton semantics, model checking is reduced to checkingL-process
language containment. Suppose a system is modeled by the composition!1
 : : :
!n
of L-processes,!1; : : : ; !n, and a property to be checked on the system is modeled
by anL-processes,!. The property holds on the system if and only if the language of
!1
 : : :
 !n is contained by the language of!, L(!1
 : : :
 !n) � L(!).

Definition 12. Given twoL-processes!1 and!2, !1 implements!2 (denoted by!1 �
!2) if L(!1) � L(!2).

3 Realization of TBCR for AIM Semantics

This section presents how TBCR is realized for the AIM semantics. First, we informally
describe the AIM semantics. Then, we formalize the AIM semantics, which enables
the establishment, correctness proof, implementation, and application of compositional
reasoning rules. After that, we describe how a compositional reasoning rule for the
AIM semantics is established. Then, we prove this rule based on a translation from the
AIM semantics to the!-automaton semantics using the I/O-automaton semantics as an
intermediate semantics. Finally, we present the implementation of this rule through the
translation from the AIM semantics to the!-automaton semantics.

3.1 Informal Description of AIM Semantics

Under the AIM semantics, a system is a composition of processes that interact asyn-
chronously via message-passing. Every process has a private message queue and lo-
cally defined variables. Behaviors of a process are captured by an extended Moore state
model and each state in the state model may have an associated state action that is
composed from executable statements such as an assignment statement, a messaging
statement, and an “if” statement. At any given moment of a system execution, there
is exactly one process that is executing either a state action or a state transition in a
run-to-completion fashion.

3.2 Formalization of AIM Semantics

A state in the extended Moore state model of an AIM process represents a set of states
in the state space of the process. A state action in the extended Moore state model
represents multiple sequences of state transitions in the state transition structure of the
process. To formally represent the extended Moore state model, we introduce a variable,
pc, whose current value captures the current state in the Moore state model and the
current position in the state action associated with the state. The message queue of the
process is also formally represented by a variable,queue, whose domain includes all

possible message permutations that may appear in the queue. Under this representation
of message queues, the execution of a messaging statement in a process modifies the
queuevariable of the receiver process. With the above representations, we formally
define an AIM process.

Definition 13. An AIM process,P , is a six-tuple, (S, I, M, E, T, F), where:

– S, the state space ofP , is the Cartesian product of the domains of the variables
defined in the process and the two additional variables, pc and queue.

– I is a set of initial states.
– M is a messaging interface which is a pair, (M i, Mo), whereM i is the set of

messages thatP inputs andMo is the set of messages thatP outputs.
– E is a set of events each of which is a state transition of the Moore state model,

or an executable statement (such as an assignment statement, a messaging state-
ment sending a message defined inMo, or an “if ” statement), or a reception of
a message defined inM i. ELOC is a subset ofE including all state transitions
and executable statements inE. EEXT is a subset ofE including all messaging
statements and message receptions inE.

– T is a set of state transitions defined onS andE, each of which is of the form,
(s; e; s0), wheres; s0 2 S ande 2 E.

– F is a partition ofELOC . Each element ofF is termed a fairness constraint.

Definition 14. An execution ofP is a finite string or an infinite sequence of state-event
pairs ((s0, e0), (s1, e1), : : :) which conforms to the run-to-completion requirement (i.e.,
the action statements from a state action appear adjacently in the execution), where
s0 2 I and for all i, si 2 S, ei 2 E and(si; ei; si+1) 2 T . Fair executions ofP are
defined analogously to fair executions of an I/O-automaton.

Definition 15. A behavior ofP is the projection of a fair execution ofP onEEXT of
P . The language ofS, L(S), is the set of all behaviors ofS.

Definition 16. Given two AIM processesP andQ, P implementsQ (denoted byP j=
Q) if for 4 = EEXT (P) \ EEXT (Q) and4 6= ;, �4(L(P)) � �4(L(Q)).

Definition 17. The interleaving composition of a finite set of interacting AIM pro-
cesses,P0, P1, : : :, andPn, denoted byP0[]P1[] : : : []Pn, is an AIM process,P , derived
as follows.S is the Cartesian product ofS0, S1, : : :, andSn. I is the Cartesian product
of I0, I1, : : :, andIn.M i includes the remaining messages inM i

0,M
i
1, : : :, andM i

n that
are not accounted for in the composition, andMo is the union ofMo

0 ,Mo
1 , : : :, andMo

n.
E is the union ofE0,E1, : : :, andEn. T is defined as follows: fors = (s0; s1; : : : ; sn),
s0 = (s00; s

0
1; : : : ; s

0
n), ande 2 E, (s; e; s0) 2 T if and only if for alli 2 [0; n], e 2 Ei

and(si; e; s0i) or e 62 Ei ands0
i
= si. F is the union of the fairness partitions of the

respective components.

In this formalized AIM semantics, a system, components of the system, and prop-
erties of the system and the components are all represented by processes.

3.3 Establishment of Compositional Reasoning Rules

We establish compositional reasoning rules for the AIM semantics by porting existing
rules in directly model-checkable formal semantics to the AIM semantics. We have
ported to the AIM semantics two rules that have already been established, proven,
and implemented in the!-automaton semantics, the rule proposed by Amla, Emer-
son, Namjoshi, and Trefler in [8],Rule 1, and the rule proposed by McMillan in [7].
Below we show howRule 1is ported to the AIM semantics.

Rule 1 For AIM processesP1,P2, andQ, to show thatP1[]P2 j= Q, find AIM processes
Q1 andQ2 such that the following conditions are satisfied.

C1: P1[]Q2 j= Q1 andP2[]Q1 j= Q2

C2: Q1[]Q2 j= Q

C3: EitherP1[]CLP (Q) j= (Q+Q1 +Q2) or P2[]CLP (Q) j= (Q+Q1 +Q2)

LetP1[]P2 denote a system composed from two components,P1 andP2.Q is a property
to be checked on the system.Q1 andQ2 are properties ofP1 andP2, respectively.
Condition C1 checks ifP1 has the property,Q1, assumingQ2 holds onP2, and ifP2 has
the property,Q2, assumingQ1 holds onP1. Condition C2 checks ifQ can be derived
from Q1 andQ2. Condition C3 conducts the validity check of circular dependencies
betweenQ1 andQ2. (The counterpart of Rule 1 in the!-automaton semantics, denoted
by Rule1!, is of the same form but with processes,j=, [],CLP , and+ replaced by their
!-automaton counterparts.)

To port compositional reasoning rules to the AIM semantics, additional semantics
concepts may need to be introduced for the AIM semantics. In the case of Rule 1, the
concepts of safety closure of an AIM process and sum of AIM processes were defined:

Definition 18. For an AIM process,Q, the safety closure ofQ, CLP (Q), is an AIM
process whose language is the safety closure [20] of the language ofQ,L(CLP (Q)) =
CL(L(Q)). (CLP (Q) can be derived fromQ by removing the fairness constraints of
Q.)

Definition 19. The Cartesian sum of AIM processesP andQ, denoted byP +Q, is the
AIM process that behaves either asP or asQ and with the property ofL(P + Q) =
L(P) [L(Q).

3.4 Proof via Semantics Translation

We first establish a translation from the AIM semantics to the!-automaton semantics
and then prove the soundness of Rule 1 based on the translation and the soundness proof
of Rule 1!. To establish the translation from the AIM semantics to the!-automaton
semantics, we use the I/O-automaton semantics as an intermediate semantics.

Translation of AIM Processes to I/O-automata An AIM process,P , is translated
to an I/O-automaton,A, through a two-step procedure. The first step maps semantic
constructs ofP to semantic constructs ofA and the second step implements the run-to-
completion requirement inA.
Step 1:Mapping semantic constructs

– The state space and the initial state set ofP are mapped to the state space and
the initial state set ofA correspondingly, which is achieved by mapping the vari-
ables ofP to the corresponding variables ofA. (Note that the state space of an I/O
automaton is also encoded by the domains of its variables.)

– Events ofP are translated to actions ofA as follows:
� A state transition in the extended Moore state model ofP is mapped to an in-

ternal action ofA that simulates the state transition by modifying the variables,
pcandqueue, accordingly.

� An assignment statement is mapped to an internal action that modifies the vari-
able to be assigned by the assignment and the variable,pc.

� An “if” statement is mapped to an internal action that modifies the variable,pc,
to reflect the decision made in the “if” statement.

� A messaging statement is mapped to an output action that is also an input action
of the I/O-automaton corresponding to the receiver.

� A message reception is mapped to an input action that modifies the variable,
queue, and is also an output action of the sender I/O-automaton.

– Messages in the input (or output, respectively) interface ofP are mapped to input
(or output) actions ofA.

– A state transition,(sP ; eP ; s0P), ofP is mapped to a state transition,(sA; aA; s
0

A
),

of A wheresA, aA, ands0
A

are the corresponding translations ofsP , eP , ands0
P

as
described above.

Step 2:Implementing run-to-completion requirement

– The I/O-automaton,A, resulting from Step 1 is extended with an additional boolean
variable,RtC, and two output actions,EnterandLeave. TheEnteraction cannot be
enabled unless the value ofRtC is false.

– WhenA is composed withA0, the I/O-automaton translation of another AIM pro-
cess,P 0, theEnterandLeaveactions ofA are included byA0 as input actions and
vice versa.

– The transition relation ofA is extended so that beforeA executes the first I/O-
automaton action in the sequence of I/O-automaton actions corresponding to a state
action ofP ,A executes theEnteraction and afterA executes the last I/O-automaton
action in the sequence of I/O-automaton actions corresponding to a state action of
P , A executes theLeaveaction. (A0 is extended in the same way.)

– The transition relation ofA0 is extended so that asA executes theEnteraction,A0

sets itsRtC to true and asA executes theLeaveaction,A0 sets itsRtC to false and
vice versa.

Therefore, when a set of I/O-automata translated from AIM processes are ready to ex-
ecute theirEnteractions, only one of them can proceed, execute itsEnteraction, and
get into the run-to-completion section. The automaton signals its leaving the run-to-
completion section by executing itsLeaveaction. We refer to the translation from an
AIM process to its corresponding I/O-automaton asTP

A
.

Theorem 1. Given an AIM process,P = P1[] : : : []Pn, and its I/O automaton transla-
tion,A = TP

A
(P1)jj : : : jjTPA (Pn), for4 = �A

P
where�A

P
is the set of external actions

ofA excluding all Enter and Leave actions and4 6= ;, L(P)=�4L(A).

Proof of Theorem 1: By the construction ofA fromP , L(P) = �4L(A). ut

Translation of AIM Processes to!-automata Kurshan, Merritt, Orda, and Sachs [17]
have established a translation from I/O-automata to!-automata,TA! , and also proved
that the translation is linear-monotone with respect to language containment (shown in
Theorem 2).

Theorem 2. For two I/O-automata,A = A1jj : : : jjAm andB = B1jj : : : jjBn, A �
B () L(TA! (A1)
 : : :
L(TA! (Am)) � L(TA! (B1)
 : : :
L(TA! (Bn)).

Based on the translation from AIM processes to I/O-automata,TP
A

, and the trans-
lation from I/O-automata to!-automata,TA! , we constructed a translation from AIM
processes to!-automata,TP! . For a given AIM process,P ,

– P is first translated to an I/O-automatonTP
A
(P);

– TP
A
(P) is then translated to an!-automatonTA! (TP

A
(P)).

We demonstrate with Theorem 3 thatTP! is also linear-monotone with respect to lan-
guage containment.

Theorem 3. For two AIM processes,P = P1[] : : : []Pm andQ = Q1[] : : : []Qn, P j=
Q () L(TP! (P1)
 : : : TP! (Pm)) � L(TP! (Q1)
 : : : TP! (Qn)).

Proof of Theorem 3: Follows directly from Theorem 1 and Theorem 2. ut

Lemma 1. For an AIM process P,CL!(TP! (P)) � TP! (CLP (P)).

Proof of Lemma 1:

) fDefinition 18, Definition 16g

P j= CLP (P)

) fTheorem 3g

L(TP! (P)) � L(TP! (CLP (P)))

) fMonotonicity of language closureg

CL(L(TP! (P))) � CL(L(TP! (CLP (P))))

) fDefinition 11g

L(CL!(TP! (P))) � CL(L(TP! (CLP (P))))

) fA safety property is the safety closure of itself.g

L(CL!(TP! (P))) � L(TP! (CLP (P)))

) fDefinition 12g

CL!(TP! (P)) � TP! (CLP (P))

ut

Lemma 2. For AIM processesP1; : : : ; Pn, TP! (P1 + : : : + Pn) � TP! (P1) � : : : �
TP! (Pn).

Proof of Lemma 2: Follows directly from Definition 19, Theorem 3, Definition 10,
and Definition 12. ut

Theorem 4. Rule 1 is sound for arbitrary AIM processes,P1, P2, andQ.

Proof Sketch of Theorem 4: Suppose Conditions C1, C2, and C3 hold onP1, P2, and
Q. Due to Theorem 3, Lemma 1, and Lemma 2, the counterparts of Conditions C1, C2,
and C3 in the!-automaton semantics hold onTP! (P1), TP! (P2), andTP! (Q). There-
fore, by Rule1! (the counterpart of Rule 1 in the!-automaton semantics),TP! (P1)

TP! (P2) � TP! (Q). By Theorem 3, we conclude thatP1[]P2 j= Q. (Detailed proof of
this theorem can be found in the appendix.) ut

3.5 Implementation and Application of Rule 1 through Model Translation

TBCR suggests that a compositional reasoning rule in the AIM semantics be imple-
mented based on the translation from the AIM semantics to the!-automaton semantics
and by reusing the implementation of its equivalent rule in the!-automaton semantics.
We first introduce an implementation of the AIM-to-!-automaton translation and an
implementation of Rule1! (the!-automaton semantics counterpart of Rule 1) in the
!-automaton semantics. We then discuss how Rule 1 is implemented and applied.

Translation from xUML to S/R xUML [10] is an executable dialect of UML whose
semantics conforms to the AIM semantics given in this paper. S/R [14] is an automa-
ton language whose semantics conforms to the!-automaton semantics. In previous
research [18][21], we have implemented a translator from xUML to S/R. Given a sys-
tem modeled in xUML and a property specified in an xUML level logic, the design
and the property are translated to an S/R model and an S/R query. The S/R query is
checked on the S/R model by the COSPAN [14] model checker. The property holds
on the system if and only if the S/R query is successfully verified on the S/R model.
As shown in Figure 1, the xUML-to-S/R translation syntactically translates an xUML

Semantics
Conformance

Semantics Mapping

Semantics
Conformance

AIM

xUML S/R
xUML−to−S/R translation

Omega−automata

Fig. 1.xUML-to-S/R translation implements semantics mapping from AIM to!-automata.

model into S/R, which also implements the semantics mapping from the AIM semantics
to the!-automaton semantics.

Existing Implementation of Rule1! in S/R Rule1! has been implemented in S/R [8].
Since in S/R, systems, components, assumptions, and properties are all modeled as!-
automata which can be trivially composed, verification of component properties (Con-
dition C1) and derivation of a system property from component properties (Condition
C2) are discharged in the same way as a property is checked on a system. Validation
of circular dependencies (Condition C3) additionally requires construction of the safety
closure of an!-automaton (which has been discussed in Section 2.2).

Implementation and Application of Rule 1 in xUML The xUML-to-S/R transla-
tor requires that an xUML model to be translated specify a closed system. To support
Rule 1, the translator is extended to allow a closed system formed by a component of a
system and its assumptions on the rest of the system (i.e. properties that the component
assumes the rest of the system to have). The extension is simplified by the fact that in
S/R, systems, components, assumptions, and properties to be checked are all modeled as
!-automata which can be trivially composed. Based on the implementation of Rule1!

in S/R and the extended xUML-to-S/R translator, compositional reasoning using Rule 1
is applied in model checking software systems modeled in xUML as follows:

– Given a system modeled in xUML and a property to be checked, the system is
decomposed on the xUML level and premises of Rule 1 are formulated in xUML.

– These premises are discharged by translating them to their counterparts in S/R using
the extended xUML-to-S/R translator and discharging their counterparts using the
implementation of Rule1! in S/R.

Correct application of Rule 1 then depends on the correctness of the translation from
xUML to S/R and the correctness of the implementation of Rule1! in S/R.

4 Applications

We presents two major applications of the realization of TBCR for the AIM semantics.

4.1 Application in Integrated State Space Reduction Framework

In previous research [18], we presented an integrated state space reduction framework
for model checking executable object-oriented software system designs. This frame-
work is presented for system designs modeled in xUML, but can also be readily used
to structure integrated state space reduction for other representations. As shown in Fig-
ure 2, the framework structures the application of state space reduction algorithms into
three phases, the user-driven state space reduction phase, the xUML-to-S/R translation
phase, and the S/R model checking phase. Different algorithms are applied in each
phase and the application of an algorithm may span multiple phases. (In Figure 2, an
algorithm is only associated with the phase in which it is initiated.) Interactions among
these algorithms are utilized to maximize aggregate effect of state space reduction.

TBCR is one of the most powerful state space reduction algorithms applied in this
framework. Its application spans across all the three phases:

– In the user-driven state space reduction phase, a system (or a large component of
the system) specified in xUML is decomposed into components and properties of
the components are specified. Premises of Rule 1, verification of component prop-
erties, derivation of system properties from component properties, and validation of
possible circular dependencies among component properties, are all formulated (on
the AIM semantics level) as verification sub-tasks generated in the decomposition.

– These sub-tasks are either recursively reduced (on the AIM semantics level) with
user-driven state space reduction into simpler sub-tasks, or translated into the S/R
automaton language through the xUML-to-S/R translation phase and discharged
(on the!-automaton level) in the S/R model checking phase.

User−driven State Space Reduction

S/R Model S/R Query

S/R Model Checking

Success Report / Error Track

xUML Model

xUML−to−S/R Translation

Verification Task

Basic Model Checking Process

xUML Query

Subtask

Reduced
xUML Model xUML Query

Reduced

Partial Order Reduction

Abstraction
Symmetry Reduction

Compositional Reasoning

Symbolic Verification
Localization Reduction

Fig. 2.Reduction hierarchy of integrated state space reduction framework

The general framework has been instantiated for the domain of distributed trans-
action systems by utilizing domain-specific design patterns. The instantiation has been
applied in model checking an online ticket sale system. Figure 3 shows the decomposi-

Customers
Dispatcher
Agents
Ticket Server

Agent

Customers

Dispatcher

Agents
Ticket Server

Agents

Ticket Server

T0, M0

T11, M11

T12, M12

T13, M13

T22, M22

T21, M21 T3, M3

Fig. 3. Decomposition of online ticket sale system

tion of the system generated in checking an availability property,P : After a request from
a customer is received, a reply is eventually sent back to the customer. In Figure 3,M0
denotes the complete model that consists of thecustomers, thedispatcher, theagents,
and theticket serverwhile M11, M12, M13, M21, M22, andM3 denote the submodels
of M0 derived in the decomposition.T0 is a verification task defined onM0: Checking
the property,P , on the model,M0. T0 is decomposed into a set of verification subtasks,
T11, T12, andT13, which check properties ofM11, M12, andM13 locally. These prop-
erties ofM11, M12, andM13are specified according to the decomposition. (Derivation
of P from these properties ofM11, M12, andM13 and validation of possible circular
dependencies between these properties are also verification sub-tasks, however, such
subtasks are not shown in Figure 3 for the sake of conciseness.) A verification subtask,

for instance,T13, may be further decomposed. To dischargeT0, only the verification
subtasks on the leaf nodes of the decomposition tree must be discharged. A verification
subtask is discharged by translating the corresponding submodel with its assumptions
on other submodels into S/R and checking the corresponding properties on the resulting
S/R model. Detailed discussion of this case study can be found in [18].

4.2 Application in Integration of Model Checking into Component-Based
Development of Software Systems

Overview In [19], we defined, described, and applied an approach to integration of
model checking into component-based development (CBD) of software systems, which
is based on compositional reasoning and can be summarized as follows:

– As a software component is built, temporal properties of the component are formu-
lated, verified, and then packaged with the component.

– Selecting a component for reuse considers not only its functionality but also its
temporal properties.

– Verification of properties of a composed component reuses verified properties of its
sub-components and is based on compositional reasoning.

Traditional applications of compositional reasoning take a top-down approach: To check
properties of a system, the system is decomposed into modules recursively in a top-
down fashion. (The application of TBCR in the integrated state space reduction frame-
work, presented in Section 4.1, follows the top-down approach.) This integration of
model checking into CBD combines the top-down application of TBCR with the bottom-
up component composition process of CBD and discharge premises of a compositional
reasoning rule by reusing previous component verification efforts as possible. Using
Rule 1 as the compositional reasoning rule, the combination is conducted as follows:

– A property of a component is defined together with assumptions on the environment
of the component and is verified on the component under these assumptions. When
the component is reused in the composition of a larger component, the property is
enabledif the environment assumptions made in its verification hold on other com-
ponents in the composition and/or the environment of the composed component.

– As a primitive component (a component built from “scratch” and not composed
from other components) is verified, its properties are directly model checked on the
executable representation of the component such as its executable design model.

– As a composed component is verified, premises of Rule 1 are discharged as follows:
Condition C1: Verification of sub-component properties is reused from previous
verification efforts.
Condition C2: A property of the composed component is derived by being ver-
ified on an abstraction of the component, which is constructed from environment
assumptions of the component and verified properties of its sub-components. A
verified sub-component property is included in the abstraction if it isenabledin the
composition and related to the property of the composed component according to
the cone-of-influence analysis.
Condition C3: Validation of circular dependencies among sub-component proper-
ties is executed to decide if a sub-component property is properlyenabled.

In our implementation of this integration of model checking into CBD, the executable
representations of components are specified in xUML. Therefore, formulation of and
reasoning about the component properties are conducted in the AIM semantics. Fol-
lowing the TBCR approach, premises of Rule 1 are formulated in the AIM semantics
and checked by translating them to their counterparts in S/R and then model checking
their counterparts on the!-automaton level.

Case Study The integration of model checking into CBD has been applied to im-
prove reliability of run-time images of TinyOS [22], a component-based run-time en-
vironment for networked sensors. In this case study, we discuss how the integration is
applied in verifying a run-time image of TinyOS, the Sensor-to-Network component,
which is composed from the Sensor component and the Network component. The Sen-
sor (or Network, respectively) component outputs messages of the types,Outputand
DoneAck(or Data AckandSent), and inputs messages of the types,OP AckandDone
(or Data andSentAck). Figure 4 shows an abstracted communication diagram of the

Network Component

Data (Output)

Senser Component

Done (Sent)

Sent_Ack (Done_Ack)
Sensor−to−Network Component

OP_Ack (Data_Ack)

Fig. 4. Sensor-to-Network component

Sensor-to-Network component, where an annotation of the form of “Input message type
(Output message type)” denotes that an output message type of a component is mapped
to an input message type of the other component. In Figure 4, the arrows coming in
and going out of the dashed box denote interrupts from the hardware platform and their
corresponding replies. For the sake of conciseness, we omit the assumptions of the
component on the hardware platform in the following discussion.

The goal of this case study is to check whether the Sensor-to-Network component
has the following property (denoted byQ): The component transmits sensor readings
on physical network repeatedly. The formal specification ofQ is shown in Figure 5.
RFM.Pendingis a variable defined in the Network component. Setting and then clear-
ing this variable indicate a transmission over the physical network.Q1 andQ2 are two
properties formulated on the Sensor component.Q1 asserts that the Sensor component
outputs sensor readings repeatedly andQ2 asserts that the Sensor component properly
handles its output hand-shakes.Q3 andQ4 are two properties formulated on the Net-
work component.Q3 asserts that the Network component transmits on physical network
repeatedly if it inputs repeatedly andQ4 asserts that the component properly handles
its input hand-shakes.
Condition C1: Verification of sub-component properties In previous verification
studies,Q1 andQ2 have been verified on the Sensor component by assumingQ4 holds
on its environment. (Q4, when used as an assumption ofQ1 andQ2, is formulated on

Properties of Sensor-to-Network Component:
Property Q

Repeatedly(RFM.Pending);
Repeatedly(Not RFM.Pending);

Properties of Sensor Component:
PropertyQ1

Repeatedly(Output);

PropertyQ2

After (Output)Never (Output)UntilAfter (OP Ack);
After (Done)Eventually (DoneAck);
Never (DoneAck) UntilAfter (Done);
After (DoneAck) Never (Done Ack) UntilAfter (Done);

Properties of Network Component:
PropertyQ3

IfRepeatedly (Data)Repeatedly(RFM.Pending);
IfRepeatedly (Data)Repeatedly(Not RFM.Pending);

PropertyQ4

After (Data)Eventually(DataAck);
Never (DataAck) UntilAfter (Data);
After (DataAck) Never (DataAck) UntilAfter (Data);
After (Sent)Never (Sent)UntilAfter (SentAck);

Fig. 5. Properties of TinyOS components

input and output message types of the Sensor component.)Q3 andQ4 have been ver-
ified on the Network component by assumingQ2 holds on its environment. Since the
Sensor and Network components are both primitive components, the verification was
conducted by translating the xUML design models of the two components into S/R and
model checking on the S/R level.
Condition C3: Validation of circular dependenciesAn abstraction of the Sensor-to-
Network component was constructed for verifyingQ. Verification ofQ on the abstrac-
tion failed since the abstraction cannot includeQ1, Q2, Q3, andQ4 due to the circular
dependency betweenQ2 andQ4. The circular dependency betweenQ2 andQ4 was
validated by checking whether one of the following conditions holds:

– Sensor [] CLP (Q2[]Q4) j= (Q2[]Q4 +Q2 +Q4);
– Network [] CLP (Q2[]Q4) j= (Q2[]Q4 +Q2 +Q4).

These two verification tasks were discharged by translating them into S/R and model
checking on the S/R level. Both conditions hold in this case.
Condition C2: Derivation of properties of composed componentThe abstraction
was then refined by includingQ1 andQ3 since the circular dependencies betweenQ2

andQ4 have been validated.Q was successfully verified on the refined abstraction by
translating the abstraction into S/R and model checking on the S/R level.

Since conditions C1, C2, and C3 have been successfully discharged, it can then be
concluded with Rule 1 thatQ holds on the Sensor-to-Network component.

5 Conclusions

TBCR is a simple and effective approach to application of compositional reasoning in
the context of model checking software systems via model translation. It simplifies the
correctness proof of compositional reasoning rules in software semantics and reuses ex-
isting proofs and implementations of compositional reasoning rules in directly model-
checkable semantics. The feasibility and effectiveness of TBCR has been demonstrated
by its realization for the AIM semantics and by two applications of this realization.

Acknowledgment

We gratefully acknowledge Nina Amla and Nancy MacMahon for their generous help.
We also thank the anonymous referees for their valuable suggestions.

References

1. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching time temporal logic. Logic of Programs Workshop (1981)

2. Quielle, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. 5th
International Symposium on Programming (1982)

3. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press (1999)
4. Pnueli, A.: In transition from global to modular reasoning about programs. Logics and

Models of Concurrent Systems (1985)
5. Alur, R., Henzinger, T.: Reactive modules. LICS (1996)
6. Abadi, M., Lamport, L.: Conjoining specifications. TOPLAS (1995)
7. McMillan, K.L.: A methodology for hardware verification using compositional model check-

ing. Cadence TR (1999)
8. Amla, N., Emerson, E.A., Namjoshi, K.S., Trefler, R.: Assume-guarantee based composi-

tional reasoning for synchronous timing diagrams. TACAS (2001)
9. de Rover, W.P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel, M., Zwiers,

J.: Concurrency Verification: Introduction to Compositional and Non-compositional Proof
Methods. Cambridge Univ. Press (2001)

10. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model Driven Architecture.
Addison Wesley (2002)

11. ITU: ITU-T Recommendation Z.100 (03/93) - Specification and Description Language
(SDL). ITU (1993)

12. Holzmann, G.: Design and Validation of Computer Protocols. Prentice Hall (1991)
13. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
14. Hardin, R.H., Har’El, Z., Kurshan, R.P.: COSPAN. CAV (1996)
15. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-

Theoretic Approach. Princeton University Press (1994)
16. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers (1996)
17. Kurshan, R.P., Merritt, M., Orda, A., Sachs, S.R.: Modeling asynchrony with a synchronous

model. Formal Methods in System Design 15(3) (1999)
18. Xie, F., Browne, J.C.: Integrated state space reduction for model checking executable object-

oriented software system designs. FASE (2002)
19. Xie, F., Browne, J.C.: Verified systems by composition from verified components.

ESEC/FSE (2003)
20. Alpern, B., Schneider, F.: Defining liveness. Information Processing Letters21 (1985)

21. Xie, F., Levin, V., Browne, J.C.: ObjectCheck: a model checking tool for executable object-
oriented software system designs. FASE (2002)

22. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture direc-
tions for networked sensors. ASPLOS-IX (2000)

Appendix: Detailed Proof of Theorem 4

Proof of Theorem 4:

P1[]Q2 j= Q1

) fTheorem 3g

TP! (P1)
 TP! (Q2) � TP! (Q1) (1)

P2[]Q1 j= Q2

) fTheorem 3g

TP! (P2)
 TP! (Q1) � TP! (Q2) (2)

Q1[]Q2 j= Q

) fTheorem 3g

TP! (Q1)
 TP! (Q2) � TP! (Q) (3)

P1[]CL
P (Q) j= (Q+Q1 +Q2)

) fTheorem 3g

TP! (P1)
 TP! (CLP (T)) � (TP! (Q+Q1 +Q2))

) fLemma 1, Lemma 2g

TP! (P1)
 CL!(TP! (T)) � (TP! (Q)� TP! (Q1)� TP! (Q2)) (4)

P2[]CL
P (Q) j= (Q+Q1 +Q2)

) fTheorem 3g

TP! (P2)
 TP! (CLP (Q)) � (TP! (Q+Q1 +Q2))

) fLemma 1, Lemma 2g

TP! (P2)
 CL!(TP! (Q)) � (TP! (Q)� TP! (Q1)� TP! (Q2)) (5)

f(1); (2); (3); (4); (5)g

) fRule 1!g

TP! (P1)
 TP! (P2) � TP! (Q)

) fTheorem 3g

P1[]P2 j= Q (6)

ut

