
Model Checking for an Executable Subset of UML

Fei Xie1 Vladimir Levin2 James C. Browne1

1 Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712, USA

ffeixie, browneg@cs.utexas.edu

2 Computing Sciences Research Center

Bell Laboratories

Murray Hill, NJ 07974, USA

levin@research.bell-labs.com

Abstract

This paper presents an approach to model checking soft-
ware system designs speci�ed in an executable subset of
UML, xUML. The approach is enabled by the execution
semantics of xUML and is based on automatic transla-
tion from xUML to S/R [5], the input language of the
COSPAN [5] model checker. Translation algorithms are
de�ned and described, which cover class models, state
models of classes, actions associated with states in state
models, execution semantics, etc. The translation at-
tempts to reduce the state space of the resulting S/R
model that is to be veri�ed by COSPAN. An xUML level
logic for specifying properties to be checked is de�ned.
Automated support is provided for translating properties
speci�ed in the logic to S/R representations and mapping
error traces generated by COSPAN to xUML representa-
tions. The approach is illustrated by some results from a
veri�cation study of a simpli�ed robot control system.

1 Introduction and Overview

The Uni�ed Modeling Language (UML) [14] is the stan-
dard speci�cation language for object-oriented software
system designs. However, the actions associated with
states or transitions in standard UML statecharts are
speci�ed only as uninterpreted strings. Therefore, the
UML model of a system design is neither executable nor
compilable to an executable program in a programming
language. As a result validation and veri�cation of the
system design has to be deferred until the system (or at
least its components) is implemented in a programming
language.
The Object Management Group (OMG) has �nalized

a proposal for Action Semantics for UML [15], submit-
ted by the Action Semantics Consortium [1]. Combin-
ing the proposed action semantics and an appropriate
subset of UML de�nes a speci�cation language for exe-
cutable object-oriented software system designs. There

are commercial products that implement subsets of UML
with action semantics following the proposed action se-
mantics. xUML [6, 18] is one of these subsets. An
xUML model representing a software system design is ex-
ecutable; therefore it can be tested for both functionality
and performance via simulation, and also can be formally
veri�ed through model checking. This paper presents an
approach to model checking xUML models, gives the de-
tails of the automatic translation of xUML models to
S/R [5] models that can be veri�ed by the COSPAN [5]
model checker, and illustrates the approach with some re-
sults from a veri�cation study of a simpli�ed robot control
system. The steps in the approach are:

a. A system design is speci�ed in xUML as an exe-
cutable model;

b. The xUML model is tested by execution with a dis-
crete event simulator;

c. A property to be checked against the system design
is speci�ed in an xUML level logic;

d. The xUML model and the property are automati-
cally translated to a model and a query in the S/R
automaton language by an xUML-to-S/R translator;

e. The S/R query is automatically checked against the
S/R model by COSPAN;

f. If a query fails, an error track is generated by
COSPAN and is automatically translated into an er-
ror report in the name space of the xUML model.

Steps c, d, and f are the subject of this paper.
The model checker, COSPAN, implements the

automata-theoretic approach to model checking [7]. Un-
der this approach, a system is modeled by an L-!-
automaton [7] P , where P is represented as a synchronous
parallel composition P = P1
 P2
 : : :
 Pk of compo-
nents (all modeled as L-!-automata). The query to be
checked is also represented by an L-!-automaton T . Ver-
i�cation consists of the automata language containment
test L(P) � L(T), whether the language of P is contained
in the language of T .
We have selected COSPAN, which has synchronous

parallel semantics, as our veri�cation engine because

1

COSPAN implements multiple state space reduction al-
gorithms and one of these algorithms, Symbolic Veri�ca-
tion [12], is not readily implementable in model check-
ers with asynchronous interleaving semantics. COSPAN
also enables Partial Order Reduction [20, 4, 17] through
Static Partial Order Reduction [8]. Integration of Static
Partial Order Reduction with Symbolic Veri�cation yields
a potentially powerful method for state space reduction
not readily implementable in model checkers with asyn-
chronous interleaving semantics (See Sect. 4.1). We
will, in a later paper, analyze the circumstances where
each state space reduction algorithm is most e�ective.
COSPAN, because of its parallel execution semantics,
may also o�er advantages for model checking system de-
signs with true parallel semantics.

The core of our approach is the automatic translation
of xUML models with asynchronous interleaving execu-
tion semantics, dynamic creation and deletion of class in-
stances, and potentially unbounded state spaces to S/R
models with synchronous parallel execution semantics, a
static set of interacting processes, and �nite state spaces.
Model transformations leading to S/R models with min-
imal state spaces form another major part of our work.

Research on model checking software systems has been
mainly focused on system representations at either de-
sign level or programming language implementation level.
Model checking designs facilitates early detection of de-
sign errors while model checking implementations [16, 21]
may uncover errors introduced in the implementation
phase. In this research, model checking is applied to ex-
ecutable designs which have not yet been implemented
but for which implementations can be manually coded or
automatically generated by direct compilation based on a
prede�ned architecture. Due to space limitation, we only
compare with the most closely related research. We judge
the most closely related research to be the automatic veri-
�cation tool for UML from the University of Michigan [2],
and the vUML tool [11]. Both tools translate and verify
UML models based on ad hoc execution semantics which
did not include action semantics. Neither supports for-
mulation of properties to be checked on the UML model
level. We also addressed translation of generalization re-
lationships between classes in UML models. There is also
previous work on verifying UML statecharts [3, 9, 13] by
translating statecharts into veri�able languages.

The rest of this paper is organized as follows: in Sec-
tion 2 a brief overview of the semantics of xUML and S/R
is given. Section 3 presents the major algorithms in the
automatic translation from xUML to S/R. Model trans-
formations reducing state spaces are discussed in Section
4. Section 5 introduces the automatic analysis support
that facilitates model checking xUML models. Section
6 illustrates our approach by model checking the xUML
model of a simpli�ed robot control system. Conclusions

and future work are given in Section 7.

2 Semantics of xUML and S/R

The semantic gap between asynchronous xUML models
and synchronous S/R models makes the xUML-to-S/R
translation a signi�cant translation process. To facili-
tate easier understanding of the translation algorithms,
we briey sketch the semantics of xUML and S/R.

2.1 xUML Semantics

Currently our translator is able to translate a signi�cant
subset of xUML. Modeled under the current translatable
subset, a system is composed of instances of classes, which
are either active, having dynamic behaviors, or passive,
having no dynamic behaviors and used to store data.
There can be association and generalization relationships
among classes. A large system can be recursively parti-
tioned into packages, which are groups of classes closely
coupled by associations and generalizations.

2.1.1 State Models

Behaviors of the instances of an active class are speci�ed
by a state model that consists of:

� States. A state is a stage in the state model.

� Message types. Each message type de�nes a kind
of messages that instances of the class can receive
during system execution.

� Transitions. A transition speci�es which new state
is achieved when an instance of the class in a given
state receives a message of a particular type.

� Actions. An action is an activity or operation that is
associated with a state and must be executed when
an instance arrives in that state.

2.1.2 Actions

Actions can be divided into �ve categories as follows:

� Read or write actions that read or write attributes of
class instances, or dynamically create or delete class
instances.

� Computation actions that perform various mathe-
matical calculations.

� Messaging actions that send messages to active class
instances.

� Composite actions that are control structures and
recursive structures that permit complex actions to
be composed from simpler actions.

� Collection actions that apply other actions to col-
lections of elements, avoiding explicit indexing and
extracting of elements from these collections.

2

2.1.3 Generalizations

Under a generalization, subclasses inherit the attributes
and message types (if de�ned) of the superclass, but the
subclasses do not inherit the state model of the superclass.
Every active subclass de�nes its own state model.

2.1.4 Execution Semantics

The execution semantics of xUML is an asynchronous in-
terleaving semantics with the following properties:

� Creation and Deletion of Class Instances. Class in-
stances can be created either statically at system
initialization, or dynamically during system execu-
tion. An active class instance having a born-to-die
state model deletes itself when it enters a termina-
tion state. A passive class instance can be deleted
by actions executed by active class instances.

� Asynchronous Message Passing. Active class in-
stances communicate with each other through asyn-
chronously message passing. Every active class in-
stance has a private message queue that is FIFO and
in�nite. All messages directed to an active class in-
stance are kept in its message queue after being gen-
erated and before being consumed.

� Active Class Instance Scheduling. An active class
instance is ready to be scheduled for execution if ei-
ther it has entered its current state and is ready to
execute the associated action of the current state, or
it has �nished the action of its current state and is
ready to perform a state transition that is enabled
by the �rst message in its private message queue.

At any given point of a system execution, exactly one
active class instance is nondeterministically sched-
uled to execute from among all active class instances
that are ready. The scheduled active class instance
either performs a state transition by consuming the
�rst message in its private message queue, or exe-
cutes the action associated with its current state.
Both the execution of an action and the performance
of a state transition are run-to-completion.

� Disposition of Unexpected Messages. When a class
instance notices the �rst message in its message
queue is unexpected in its current state, it can choose
to ignore the message or to ag a system error. The
message disposition rules are recorded in the message
disposition table of each state model.

2.2 S/R Semantics

In the S/R automaton language, a system is composed of
synchronously interacting processes. In the following dis-
cussion, all \processes" refer to S/R processes. A process
represents an L-!-automaton and consists of:

� State Variables. The current state of the process
is determined by the current values of all its state
variables. The state space of the process is bounded
by the ranges of all its state variables.

� Selection Variables. Selection variables de�ne selec-
tions, the outputs of the process. At each state, the
value of a selection variable is nondeterministically
selected from a set of values possible in that state.

� Inputs. Each process imports a subset of all the se-
lection variables of other processes as its inputs.

� State Transition Predicates. State transition pred-
icates specify how the process changes its state by
updating its state variables as functions of its cur-
rent state, selection variables, and inputs.

� Selection Rules. Selection rules assign values to se-
lection variables as functions of state variables. Such
a function is nondeterministic if several values are
possible for one selection variable in some state.

2.2.1 Selection/Resolution Model

The system execution model of S/R, namely the \selec-
tion/resolution" model [7], is a clock-driven synchronous
execution model, under which a system of processes be-
haves in a two-phase procedure every logical clock cycle,
as shown in Figure 1:

P1 P2 Pk

. . .

. . .

Process Selections

Process StateResolution Phase

Selection Phase

Figure 1: Selection/Resolution Model

� [1: Selection Phase] Each process \selects" a value
possible in its current state for each of its selection
variables. The values of all the selection variables
of all the processes form the global selection of the
system.

� [2: Resolution Phase] Each process \resolves" the
current global selection by updating its state vari-
ables upon enabled state transition predicates and
moving to a new state.

The communication between processes is synchronous:
every process posts its selections through its selection
variables in the selection phase of a clock cycle and in-
puts the selections from other processes in the resolution
phase of the same clock cycle.

3 Automatic Translation of
xUML Models to S/R Models

The automatic translation of an xUML model must yield
an S/R model that is not only semantically faithful to
the xUML model but also with a �nite and �xed state

3

space. The translation algorithms are given in detail since
the translation is di�erent from previous translations in
that it targets the S/R automaton language with a syn-
chronous execution model and includes the translation of
action semantics. The algorithms enable model checking
of substantial and signi�cant xUML models.

3.1 Translating
Class Instances to Processes

A class instance, either active or passive, is translated to
a process. The private message queue of every active class
instance is modeled by a separate process. Attributes of
a class instance are translated to the state variables of
the process corresponding to the class instance.

3.2 Simulating
Asynchrony with Synchrony

To translate xUML models to S/R models, we simulate
asynchronous execution semantics of xUML models with
synchronous execution semantics of S/R models.

3.2.1 Modeling Asynchronous Message Passing

Asynchronous message passing between active class in-
stances is simulated by synchronous communication be-
tween processes through modeling the private message
queue of every active class instance as a separate pro-
cess. Let processes IP1 and IP2 model two active class
instances and processes QP1 and QP2 model their corre-
sponding private message queues. A message, m, is sent
from IP1 to IP2 asynchronously as shown in Figure 2:

IP2IP1

2

QP1 QP2

3
1

Figure 2: Modeling Asynchronous Communication

� [1: IP1 ! QP2] IP1 passes m to QP2 through syn-
chronous communication.

� [2: Bu�ered] QP2 keeps m until IP2 is ready for
consuming a message and m is the �rst message in
the queue modeled by QP2.

� [3: QP2 ! IP2] QP2 passes m to IP2 through syn-
chronous communication.

Message types de�ned in an active class are mapped to
constants in the S/R model. These constants de�ne an
enumeration type which establishes the value range of the
state variables that are declared in the processes model-
ing message queues of instances of the class and used to
record the types of the messages kept in the queues.

3.2.2 Modeling Asynchronous Execution

The asynchronous execution semantics of xUML is simu-
lated by the synchronous execution semantics of S/R:

� Every process modeling an active class instance has
a selection variable, ready, which indicates whether
the active object instance modeled is ready for ex-
ecuting an xUML action, or performing an xUML
state transition.

� A global scheduler, also modeled by a process, inputs
the ready variables from all the processes modeling
active class instances. When a rescheduling occurs,
the global scheduler nondeterministically schedules a
process from among all the processes modeling the
active class instances that are ready. The global
scheduler has a selection variable, scheduled, and the
current value of scheduled indicates which active class
instance is currently scheduled.

� All the processes modeling active class instances in-
put scheduled from the global scheduler. Only the
process that models the scheduled active class in-
stance can perform an S/R state transition corre-
sponding to an xUML action or an xUML state tran-
sition in the state model of the scheduled active class
instance. All other processes modeling active class
instances follow a self-loop S/R state transition back
to their current S/R states.

3.2.3 Handling Unexpected Messages

When a process modeling the message queue of a class
instance encounters a message that is to be ignored, it de-
queues and discards the message. During model checking,
a system error ag caused by an unexpected message will
be caught by an automatically generated safety property.
The translator generates such a safety property based on
the message disposition tables for state models.

3.3 Translating State Models

The behavior of an active class instance is speci�ed by
its state model that consists of states, actions, and state
transitions. Figure 3 illustrates a state from an xUML
state model with its associated action and transitions.

Counting

C1: Idle

counter = counter + 1;
if (counter==10) counter = 0;

Outgoing State Transition

Transition Enabling Message Type

Incoming State TransitionState Action

Figure 3: An Sample xUML State

4

To translate a state model, the translator �rst con-
structs the control ow graph of the state model. In the
control ow graph, an action associated with a state is
partitioned into primitive blocks. A primitive block con-
sists of one or more sub-actions of the action. Two ad-
jacent control points bracket either a primitive block or
a state transition. Figure 4 illustrates the control ow

counter == 10

counter = counter + 1

Consuming

false

C1: Idle

true

Control Point 2

counter = 0

Control Point 4

Control Point 5

State Transition

Control Point 1

Control Point 3

Primitive Blocks

Figure 4: Control Flow Graph Segment

graph segment corresponding to the state with its asso-
ciated action and transitions in Figure 3. The primitive
block between Control Point 1 and 2 in Figure 4, counter
= counter + 1, consists of three sub-actions: a read ac-
tion, a plus action, and a write action.
Partitioning of the action associated with a state into

primitive blocks must preserve the run-to-completion se-
mantics. For instance, all the primitive blocks between
Control Points 1 and 4 in Figure 4 compose the action in
Figure 3 and form a run-to-completion unit that must be
executed without interruption. Therefore supplemental
information is attached to the control points.
The state model, based on its control ow graph, is

translated to semantic constructs of the process modeling
the active class instance as follows:

� A state variable $ of enumeration type is de�ned in
the process and each control point in the control ow
graph is one-to-one mapped to a value in the value
range of $.

� The primitive block or state transition immediately
following a control point is mapped to a set of state
transition predicates or selection rules that depend
on the value of $ corresponding to the control point.

The S/R process segments resulting from the state with
its associated action and outgoing transition in Figure 3
are shown in Figure 5. For example, the primitive block,
counter = 0, following Control Point 3 is mapped to two
state transition predicates that are enabled when $ has
the value of cp3 and the process is scheduled by the global
scheduler: One transition predicate sets the state variable
corresponding to counter to 0 (Line 9); The other updates
$ from cp3 to cp4 (Line 16). The outgoing state transition
is mapped to a state transition predicate that updates $
from cp4 to cp5 when enabled (Line 17).

A process may take several selection/resolution cycles
to perform a state action of the class instance it models
if the action is partitioned into several primitive blocks.
In order to guarantee the run-to-completion semantics of
actions, a selection variable, in action, is de�ned in the
process, as shown in Figure 5. Once in action is true, the
process is scheduled continuously by the global scheduler
until the process sets in action to false. in action is set
to false if and only if $ has a value corresponding to a
control point following by a state transition or the �rst
primitive block of an action; otherwise it is set to true.

3.4 Translating Actions

Computation actions of xUML are straightforwardly
translated to their S/R counterparts. The translation of
actions of other types is elaborated below.

3.4.1 Read or Write Actions

Intra-instance attribute reads (writes) are mapped to ref-
erences to (state transition rules for) the corresponding
state variables.
An inter-instance attribute read is simulated as follows:

The process modeling the owner of the attribute outputs
the value of the attribute through one of its selection vari-
ables and the selection variable is input by the process
modeling the reader.
Translation of inter-instance attribute writes is more

complex because state variables of a process cannot be
directly updated by other processes. Let the process seg-
ment in Figure 5 belong to a process, PX , which models
a class instance, X . Let the attribute of X , modeled by
counter, be accessed by a write action from another class
instance, Y , and the control point before the write ac-
tion is cp. The inter-instance write action is simulated
as follows: A selection variable, counter Y , is de�ned in
the process, PY , which models Y . A state transition
rule updating counter, asgn counter -> PY.counter Y ?
(Scheduler.Selection = PY) * (PY.$ = cp), is added to
PX . When PY.$=cp and PY is scheduled, in the next
clock cycle PY sets counter Y to the value to be writ-
ten to counter. In the same clock cycle, PX instead of
doing a self-loop state transition, resolves the state tran-
sition rule and sets counter to the value of counter Y
that is input by PX from PY . This is an extension to
the scheduling rules in Section 3.3.2, which enables the
translation of inter-instance writes.

3.4.2 Messaging Actions

A messaging action is mapped to a state transition pred-
icate and a set of selection rules. The state transition
predicate updates $ from the control point immediately
before the action to the control point immediately after

5

Selection Variable
ready_indicator
& Its updating Selection Rules

stvar $: (..., cp1, cp2, cp3, cp4, ...) 1

selvar __in_action : boolean
asgn __in_action := ... | true ? ($ = cp1) | false ? ($ = cp4) | ...

2
3

selvar __ready_indicator : boolean
asgn __ready_indicator := ... + ($ = cp1) + ($ = cp2) + ($ = cp3)
 + (($ = cp4) * Queue.HasMsg * Scheduler.None_in_action) + ...

4
5
6

stvar counter : integer
asgn counter −>
 0 ? ($ = cp3) * (Scheduler.Scheduled = SELF)

8
9

7

10

trans
 ...

 ...
 −> cp4 : else;

 −> cp2 : else;

State Transition Predicates

12
13

16
17
18

14
15

State Variable $

State Variable counter
& Its Updating State
Transition Predicates

Updating $

Selection Variablein_action

11

& Its updating Selection Rules

 | (counter + 1) ? ($ = cp2) * (Scheduler.Scheduled = SELF)

 cp2 −> cp3 : (VALUE = 10) * (Scheduler.Scheduled = SELF)
 cp1 −> cp2 : (Scheduler.Scheduled = SELF) −> cp1 : else;

 −> cp4 : ~(VALUE = 10) * (Scheduler.Scheduled = SELF)

 cp3 −> cp4 : (Scheduler.Scheduled = SELF) −> cp3 : else;
 cp4 −> cp5 : (Queue.FirstMsg = C1) * (Scheduler.Scheduled = SELF)

Figure 5: S/R Translation of the xUML State in Figure 3

the action. The selection rules output the message and
a synchronization signal through selection variables. The
synchronization signal enables the process modeling the
message queue of the receiver to get the message in the
same clock cycle when the selection rules are enabled.

3.4.3 Composite Actions

There are three kinds of composite actions: group actions,
conditional actions, and loop actions. A group action is
composed of a sequence of sub-actions and is partitioned
into one or more primitive blocks that are translated re-
spectively. The translator also generates state transition
predicates that advance $ from one primitive block to the
next primitive block.
A conditional action is composed of a test, which is

mainly a computation action, and several branches. Ev-
ery branch is a group action and translated as discussed
above. The test is translated to a set of state transi-
tion predicates that lead to the S/R translations of these
branches according to the result of the test.
The loop action provides repeated execution of a con-

tained action so long as a test results in an appropriate
value. The test is translated into two state transition
predicates: Depending on the test result, one leads to
the S/R translation of the contained action and the other
exits the loop action.

3.4.4 Collection Actions

A collection action can be sequential or parallel. A se-
quential collection action applies a sub-action on elements
of a collection in sequence. It is unfolded into a loop ac-
tion with a test checking whether there are still untouched
elements in the collection, and the sub-action as the con-
tained action. The resulting loop action is translated as
discussed above. A parallel collection action applies a

sub-action on elements of a collection in parallel. Trans-
lation of the sub-action is extended so that all elements
are processed simultaneously.

3.5 Translating Generalizations

Under a generalization, subclasses may inherit attributes
and message types from superclasses. The superclass at-
tributes inherited by subclasses are also mapped to state
variables of the processes modeling the subclass instances.

The superclass message types are also mapped to con-
stants which are included in the value ranges of the state
variables that record the message types in the processes
modeling the message queues of the subclass instances.
This solution requires no change to the translation of ei-
ther a messaging action that sends a message of a super-
class message type to an instance of a subclass or a state
transition that consumes such a message.

3.6 Guaranteeing
Finite and Fixed State Spaces

Most model checkers including COSPAN, require that the
models to be checked have �nite and �xed state spaces.
Our translator can translate xUML models with in�nite
or dynamic state spaces if necessary information is pro-
vided by designers through annotating the xUML models
with an annotation language provided.

3.6.1 Ranging Data Types

A continuous in�nite data type, like the oat type, is
discretized and represented by an integer interval type.
COSPAN assumes every integer variable without an ex-
plicitly given value range lies in a default range.

6

3.6.2 Simulating Class Instance Dynamics

If instances of a class C, can be dynamically created and
deleted during system execution, the dynamic creation
and deletion is simulated as follows:
� An upper bound, N , on the number of instances of
C that can co-exist at the same time during system
execution, is estimated by system designers.

� The translator generates N processes, P [0] : : : P [N�
1]. Each P [i], 0 � i < N , models an instance of C.

� In each P [i], 0 � i < N , an additional state variable,
alive, is used to indicate whether P [i] is currently
representing an existing instance of C. The alive

variable of each P[i], 0 � i < N , is initialized false.
� When an instance of C is created, some P [j], 0 � j <

N , whose alive is false, is selected and alive of P [j]
is set to be true. P [j] then participates in system
execution by interacting with other processes.

� When an instance of C need to be deleted, alive of
the corresponding P [k], 0 � k < N , is set to be false
and P [k] stops interacting with other processes.

3.6.3 Managing Message Queue Overow

A message queue modeled by a process must have
bounded size. This opens possibility of message queue
overow that may a�ect veri�cation results. We deal with
message queue overow as follows:
� For each message queue, an upper bound on the num-
ber of messages that can be in the queue simultane-
ously is set by default or by system designers.

� Processes modeling the message queues are con-
structed based on the upper bounds.

� When the veri�cation of a query reports false, an
error track processing tool is used to analyze for ac-
tions that were trying to place a message into a full
queue. When there is such a case, the veri�cation
will be invalidated and will be redone with a larger
size for the message queue that was full.

4 Model Transformations
Reducing State Spaces

State space reduction is critical to scalable application of
model checking to xUML models. The state space com-
plexities of the resulting S/R models directly a�ect the
sizes of the xUML models that can be model checked.
Therefore a signi�cant part of our research is devoted to
transforming xUML models before translation to S/R in
order to get S/R models with minimal state spaces.

4.1 Static Partial Order Reduction

Di�erent state space reduction algorithms are applicable
in each of the several approaches to model checking. Sym-
bolic Veri�cation [12] is readily applied to synchronous

automata while partial order reduction (POR) [20, 4, 17]
is readily applied to asynchronous interleaving automata.

POR takes advantages of the fact that in many cases,
when components of a system are not tightly coupled,
di�erent execution orders of actions or transitions of dif-
ferent components may result in the same global state.
Then, under some conditions [20, 4, 17], in particular,
when the interim global states are not relevant to the
property being checked, model checkers only need to ex-
plore one of the possible execution orders. This may rad-
ically reduce veri�cation complexity.

The asynchronous interleaving semantics of xUML
suggests application of Static Partial Order Reduction
(SPOR) [8] to an xUML model prior to its translation
into S/R, which transforms the xUML model by restrict-
ing its transition structure with respect to a property to
be veri�ed (For di�erent properties, SPOR may translate
an xUML model into di�erent S/R models). This enables
integrated application of POR while applying Symbolic
Veri�cation to the resulting S/R model.

4.2 Identi�cation of Static Attributes

In xUML models, class instances may have static at-
tributes whose values never change during system exe-
cution. We implemented a labeling algorithm that tags
static attributes during the xUML model parsing phase.
Instead of being translated to state variables, static at-
tributes are translated into constants or selection vari-
ables which do not contribute to the state space.

4.3 Identi�cation of Self Messages

A self message is a message that a class instance sends to
itself. The messaging action sending a self message and
the transition consuming the message are identi�ed and
translated as a whole to a single state transition predicate
if the execution order of actions and state transitions can
be preserved. An S/R state transition resulting from the
state transition predicate has the same e�ect as sending
and consuming the message.

4.4 Transformations
Supporting Symbolic Veri�cation

In order to symbolically verify an S/R model with
COSPAN, an explicit value range must be provided for
every variable in the S/R model. An annotation language
allowing designers to provide these ranges in xUML mod-
els has been implemented. We are also exploring trans-
formations that lead to S/R models whose state spaces
can be reduced more easily by symbolic veri�cation.

7

5 Analysis Support and Tools

5.1 xUML-level Property Speci�cation

Speci�cation of properties to be checked is a critical fac-
tor in e�ective model checking. E�ective model check-
ing of xUML models by software engineers requires that
the properties to be checked be speci�ed in an xUML
level logic. But COSPAN only accepts input queries for-
mulated in S/R. Therefore we have de�ned an xUML
level property speci�cation logic, provided an interface
for specifying xUML level properties in this logic, and
implemented a translator for xUML level properties to
S/R queries.
A property formulated in this logic consists of declara-

tions of propositional logic predicates over xUML model
constructs and declarations of temporal predicates. The
temporal predicates are declared by instantiating a set of
templates. A template consists of a temporal logic opera-
tor and a pattern of arguments. Each temporal predicate
is an instantiation of some template where each argument
is a propositional logic expression built up from the pre-
viously declared propositional predicates. Space does not
permit display of the full set of temporal logic templates
but an example property is given in Section 6 and the
full speci�cation of the logic can be found on at the url,
http://www.cs.utexas.edu/users/feixie/xUML.

5.2 Post-Processing of Error Tracks

When a query fails on an S/R model, COSPAN generates
an error track specifying an execution trace that is incon-
sistent with the query. We provided a translator that
automatically maps the error track to an error report in
the xUML notation. The error report consists of an ex-
ecution trace of the corresponding xUML model, which
violates the corresponding xUML level property.

6 Case Study

A real-world application used to illustrate our approach
and validate the xUML-to-S/R translator is a robot con-
trol system[19]. Currently a simpli�ed version of the
robot control system, which is able to control a robot
with one arm, has been veri�ed. There are two joints
on the arm and at the end of the arm is an end e�ec-
tor that moves around and performs designated functions
such as grabbing. The movement of the end e�ector re-
quires the two joints change their angle positions. Two
major robotics algorithms are implemented in the system:

� Robot Control Algorithm
Given a target position of the end e�ector, every joint
calculates its target angle position. If the target an-
gle position of every joint is less than or equal to its

physical angle limit, the end e�ector proceeds to the
target position; otherwise, a fault recovery is invoked.

� Fault Recovery Algorithm
When a fault recovery is invoked, the angle position
of the joint that violates the physical constraint is
set to its physical angle limit while the other joint is
required to recalculate its target angle position.

Joint_ID

EE_ID
JCH_ID
limit
current_angle
acknowledgement

Arm_ID

Joint

2

2 2

2
1

Joint_Checker

JCH_ID
counter

1
1

EE_ID
max_x
max_y
max_z
status
c_p_x
c_p_y
c_p_z
c_p_alpha
c_p_beta
c_p_theta
max_alpha
max_beta
max_theta

End_Effector

ee_reference
delta

Arm_ID
transformer

Arm

TS_ID
J_ID
new_angle1
new_angle2
status

Trial_Configuration

1

1

Recovery_ID
JCH_ID
recovery_status

Recovery

1

Figure 6: Class Model of Robot Control System

There are 6 classes, shown in Figure 6, in the xUML
model of the simpli�ed robot control system. Class Joint
has two instances while every other class has one instance.
In total, the seven class instances have 44 attributes,
and 31 message types four of which have associated data
items. A typical state model, the state model of the Joint
class, is shown in Figure 7. It consists of 7 states and 11
state transitions. States have associated actions that can
be fairly complicated.
The xUML model was automatically translated into an

S/R model (not shown due to space limitation). In the
S/R model, there are 15 processes, 74 state variables, and
129 selection variables in total. During the translation,
19 attributes are identi�ed as static and translated into
selection variables instead of state variables. The 74 state
variables are categorized by usage as follows:
� 7 recording the current states of class instances;
� 25 modeling non-static attributes;
� 42 simulating the message queues of class instances.

42 state variables are used to encode the message queues
of the class instances, which is inevitable no matter what
kind of model checkable language into which the xUML
model is translated because under the asynchronous mes-
sage passing mechanism, the local state of each message
queue contributes to the global state of the whole system.
About 20 di�erent properties have been checked against

the xUML model [19]. Here we use a safety property to
demonstrate how a property is de�ned and checked. The
system design requires the robot control algorithm and
fault recover algorithm work cooperatively. The safety
property speci�es a coordination between the two algo-
rithms: when a fault recovery has been invoked, the sec-
ond joint cannot move into the \Move EE" state. The
property is de�ned as follows:

8

1. Idle

3. Checking_Limits4. Not_Valid

10. Adjusting

5. Valid

11. Move_EE2. Acknowledge

J1: adjust
 (Joint_ID, new_angle)

J2: configure
 (Joint_ID)

J4: not_valid
 (Joint_ID)

J3: valid
 (Joint_ID)

if (current_angle > limit)
 Generate J4: not_valid(Joint_ID);
else
 Generate J3: valid(Joint_ID);

J9: to_idle
 (Joint_ID)

J8: acknowledge
 (Joint_ID)

if (End_Effector(EE_ID).status!=1){
 Generate A3: invalid_arm_config(Arm_ID);
 Generate J9: to_idle(Joint_ID);}
else{
 Generate JCH1: zero_counter(1,Joint_ID);
 if (Joint_Checker(1).counter!=0){
 Generate TS1: dummy_creation(1,200);
 Generate J9: to_idle(Joint_ID);}
 else
 acknowledgement=1;
 if (Arm(1).transformer==0)
 Generate A4: to_not_valid_state(Arm_ID);
}

J7: check_limits
 (Joint_ID)

current_angle=new_angle;
Generate J7: check_limits(Joint_ID);

J6: move_ee
 (Joint_ID)

J5: idle
 (Joint_ID)

Generate JCH3: to_plus(1);
Generate JCH4: back_from_plus(1);

if(Joint_ID==2) {
 if(End_Effector(EE_ID).status!=1)
 Generate EE1: position_ee(EE_ID);
}
else{
 if(End_Effector(EE_ID).status==1)
 Generate TS2: acknowledge(1,100);

 Generate J5: idle(Joint_ID);
}

J5: idle
 (Joint_ID)

Generate EE3: change_position(1);
Generate J5: idle (Joint_ID);

J5: idle
 (Joint_ID)

acknowledgement=0;
Generate TS1: dummy_creation(1,200);
Generate J5: idle(Joint_ID);

Figure 7: State Model of Joint Class

DECLARE Joint 2 in Move EE <<Joint 2>> $Move EE
DECLARE Recovery Called <<Recovery 1>>

recovery status = 1

NEVER(Joint 2 in Move EE AND Recovery Called)
The �rst statement de�nes a propositional predicate,
Joint 2 in Move EE, whose value is evaluated to be true
if and only if Joint 2 is in the \Move EE" state. The
second statement de�nes a propositional predicate, Re-
covery Called, whose value is evaluated to be true if and
only if the \recovery status" attribute of the Recovery in-
stance is equal to 1. The third statement declares a tem-
poral predicate over the system: at any given moment
of a system execution, Joint 2 in Move EE and Recov-
ery Called cannot be true at the same time.
The property was translated to an S/R query and

checked by COSPAN against the S/R model. A fail-
ure was reported by COSPAN, which means the prop-
erty does not hold of the xUML model. The error track
generated by COSPAN was translated into an error re-
port that demonstrates a system execution path in which
Joint 1 invoked a recovery, but Joint 2 was not aware of
the recovery and proceeded from the \Valid" state to the
\Move EE" state.
The error was corrected by a change to the action as-

sociated with the \Valid" state in the Joint state model.
The change requires that Joint 2 check whether a recov-
ery has been invoked by accessing the \recovery status"
attribute of the Recovery instance when it arrives at the
\Valid" state. If a recovery has been invoked, it moves
to the \Idle" state instead of the \Move EE" state. The
corrected xUML model was again translated into S/R.
COSPAN checked the query against the new S/R model
and reported a success, which means the property holds
of the corrected xUML model.
In order to evaluate the reduction power of SPOR,

both the faulty xUML model and the corrected xUML

model were translated to S/R models in two di�erent
ways: SPOR o� and SPOR on. The sizes and the veri�-
cation complexity of the resulting S/R models are listed
in Table 1. SPOR gives order of magnitude reduction
on the veri�cation complexities of both the faulty model
and the corrected model. Also SPOR does not increase
the number of state variables in the S/R models and only
introduces a few more selection variables that do not con-
tribute to the state space.
Although the combination of SPOR and Symbolic Ver-

i�cation did not lead to further reduction on the veri�ca-
tion complexity of the simpli�ed robot controller model,
it has facilitated veri�cation of other xUML models that
cannot be veri�ed otherwise. These results will be re-
ported in a later paper.

7 Conclusions and Future Work

We present an approach to model checking xUML models
of complex and concurrent software systems. The ap-
proach is enabled by the executable nature of xUML,
based on automatic translation of asynchronous xUML
models to synchronous S/R models, and enhanced by
xUML model transformations leading to S/R models with
manageable state spaces. The approach has been success-
fully applied to systems of modest complexity and results
have been reported in [19].
The current translator handles a signi�cant subset of

xUML, but will be extended to cover the veri�able subset
of xUML. Since the complexity of the resulting S/R mod-
els strongly a�ect the eÆciency of model checking, more
translation optimizations leading to S/R models with rel-
atively smaller state spaces will be explored. Our ap-
proach will be applied to more complex real-world soft-
ware systems to evaluate its scalability. Also the back-

9

Model SPOR No. of State No. of Selection States Running Memory
O�/On Variables Variables Searched Time Usage

Faulty O� 74 129 21490 402.6 sec 3.18M
Faulty On 74 137 2451 47.4 sec 0.53M

Corrected O� 74 129 55256 1054.7 sec 7.94M
Corrected On 74 137 5081 97.7 sec 0.89M

Table 1: Model Checking Complexity Comparison

end and SPOR modules of our translator are currently
being developed together with corresponding modules of
SDLcheck [10], in the course of a more general project
aiming at model checking support for object-oriented
technologies that may involve both xUML and SDL.

8 Acknowledgments

We would like to acknowledge Robert P. Kurshan for his
important role in initiating, supporting, and collaborat-
ing on this project. We would also like to thank Natasha
Sharygina for providing the illustration based on the sim-
pli�ed robot control system and giving us valuable feed-
back, and Husnu Yenigun for his critical contribution to
the implementation of the translator.

References

[1] Action Semantics Consortium,
http://www.umlactionsemantics.org.

[2] K. Compton, Y. Gurevich, J. K. Huggins, and W.
Shen, An Automatic Veri�cation Tool for UML,
Univ. of Michigan, EECS Dept. Tech. Report CSE-
TR-423-00, 2000.

[3] S. Gnesi, D. Latella, M. Massink, Model Checking
UML Statechart Diagrams Using JACK, Proc. of 4th
IEEE International Symposium on High-Assurance
Systems Engineering, Washington DC, USA, 1999.

[4] P. Godefroid, D. Pirottin, Re�ning Dependencies
Improves Partial-Order Veri�cation Methods, Proc.
of 5th International Conference on Computer Aided
Veri�cation, Springer LNCS no.697, 1993.

[5] R. H. Hardin, Z. Har'El, R. P. Kurshan, COSPAN,
Proc. of 8th International Conference on Computer
Aided Veri�cation, Springer LNCS no. 1102, 1996.

[6] Kennedy Carter,
http://www.kc.com/html/xuml.html.

[7] R. P. Kurshan, Computer-Aided Veri�cation of Co-
ordinating Processes: The Automata-Theoretic Ap-
proach, Princeton University Press, 1994.

[8] R. P. Kurshan, V. Levin, M. Minea, D. Peled,
and H. Yenig�un, Static Partial Order Reduction,
Proc. of 4th International Conference Tools and Al-
gorithms for the Construction and Analysis of Sys-
tems, Springer LNCS no. 1384, 1998.

[9] G. Kwon, Rewrite Rules and Operational Semantics
for Model Checking UML Statecharts, Proc. of 3rd
International Conference on UML, York, UK, 2000.

[10] V. Levin, H. Yenigun, SDLcheck: A Model Checking
Tool, to appear in the proceeding of CAV 2001.

[11] J. Lilius, I. Porres, vUML: a Tool for Verifying UML
Models, Proc. of the Automatic Software Engineer-
ing Conference, Cocoa Beach, FL, USA, 1999.

[12] K. L. McMillan, Symbolic Model Checking, Kluwer,
1993.

[13] E. Mikk, Y. Lakhnech, M. Siegel, G. Holzmann, Im-
plementing Statecharts in Promela/Spin. Proc. of
IEEE Workshop on Industrial Strength Formal Spec-
i�cation Techniques, Boca Raton, FL USA, 1998.

[14] OMG, OMG Uni�ed Modeling Language Speci�ca-
tion, Version 1.3. OMG, 1999.

[15] OMG, Action Semantics for the UML, OMG, 2000.

[16] D. Y. W. Park, U. Stern, J. U. Sakkebak, and D. L.
Dill, Java Model Checking, Proc. of the Automatic
Software Engineering Conference, France, 2000.

[17] D. Peled, Combining Partial Order Reductions with
On-the-y Model-Checking, Formal Methods in Sys-
tem Design no. 8, 1996.

[18] Project Technologies,
http://www.projtech.com/pubs/xuml.html.

[19] N. Sharygina, R. P. Kurshan, J. C. Browne, A For-
mal Object-oriented Analysis for Software Reliabil-
ity, Proc. of FASE, Genova, Italy, 2001.

[20] A. Valmari, A Stubborn Attack on State Explosion,
Prof. of 2th International Conference on Computer
Aided Veri�cation, Springer LNCS no. 531, 1990.

[21] W. Visser, K. Havelund, G. Brat, and S. J. Park,
Model Checking Programs, Proc. of the Automatic
Software Engineering Conference, France, 2000.

10

