Presentation at Microsoft Research, April 10, 2003

Verification Case Studies with ObjectCheck

Fei Xie

Department of Computer Sciences

The University of Texas at Austin

(Joint work with James C. Browne, Robert P. Kurshan, and Vladimir Levin)

Presentation Outline

- Overview and Architecture of ObjectCheck
- Modeling and Verification of a TinyOS Run-time Image with ObjectCheck
- More Case Studies
- Summary and Future Work
- Work Built on ObjectCheck

ObjectCheck Overview

- An integrated development, validation, and modechecking environment for software system designs;
 - System designs are specified in xUML;
 - xUML is an executable subset of UML;
- Developed in conjunction with
 - FormalCheck (Robert P. Kurshan, et. al.);
 - SDLCheck (Vladimir Levin and Husnu Yenigun);
 - Goal: Software/hardware co-design and co-verification;
 - Sub-goal: Model checking of software system designs in xUML.

Executable UML (xUML)

- Has well-defined *Execution Semantics;*
- Utilizes *UML Action Semantics* recently adopted by OMG;
- Can be compiled to procedural codes;
- Tools provided by:
 - Project Technologies;
 - Kennedy Carter;
 - Hyperformix (SES);

Presentation Outline

- Overview and Architecture of ObjectCheck
- Modeling and Verification of a TinyOS Run-time Image with ObjectCheck
- More Case Studies
- Summary and Future Work
- Work Built on ObjectCheck

Case Study on TinyOS

- A run-time image of TinyOS, a component-based operating system for networked sensors;
- xUML models for TinyOS components have been constructed from their C source codes to enable:
 - Model-driven development on design level;
 - Software/hardware co-design and co-verification;
- Two properties are to be checked:
 - *Repeated transmission* on physical network;
 - No consecutive 0's in any sequence-number sequence.

More on TinyOS

- An OS for networked sensors that have
 - Limited computation ability and energy supply;
 - High concurrency requirements;
 - Diversities in designs and usages;
 - High reliability requirement;
- Is component-based
 - Run-time images are specialized for different sensors;
 - Only necessary components are selected and composed.
- More information -- <u>http://webs.cs.berkeley.edu/tos</u>

🔈 🛟

Ъ

Objectbench 3.1

Index What How

Object

Events

Subsystem:

Sensor to Network

Location: Sensor Output Lifecycle

📐 🛟 🛛 🖓 OIM OCM 🗐

Object

Events

Subsystem:

Sensor to Network

Location: Task Queue S Lifecycle

Objectbench 3.1

Index What How

Ъ

\odot	0	##	166) T	, Scope	Settings	No Log File			
	Stop	Continue	Cont View	Cont Threa	d Cont Break	: Step	Step View	Step Thread	Step Inst	
) () () () () () () () () () () () () ()	3, NULL, 0, N 31> step (3, NULL, 0, N 3, NULL, 0, N 35> step { 3, NULL, 0, N 6, NULL, 0, N	ULL, "Clock(1)" port}; ULL,"Clock(1)" ULL,"Clock(1)\ port}; ULL,"Clock(1)" ULL,"Sensor_Ou	} @ 0 # 140 } @ 0 # 142 nSensor_Outp } @ 0 # 151 tput(1)"} @	traversed and generating 'S put(1)"} @ 0 # queued 'SO1: 0 # 163 proce	from '1. Idle 01: C_Intr' to 146 traversed C_Intr' to Sen ssing 'S01: C_	' to '2. Tick Sensor_Outpu arc di_3cc2f sor_Output(1) Intr'	king' in submodel ut(1) 581e16_3_78 from 1	'Clock Lifecy 'Clock Lifecyc	cle′ le' to 'Sen	Ŷ
C	ommand>									

File Edit Setup Control Window Help

Sensor Output Lifecycle.grf

enzo.cs.utexas.edu% objectbench Setting up Objectbench Query Language ... Setup completed

Please input the name of the tob file

(type "quit" to abort the generation process)

../working/sn.tob

===>

٠

Buffers Files Tools Edit Search Mule Help

```
<mark>p</mark>roject s2n
 consistsof
     domain s2n
     syntype Interrupt_Type = integer
         constants [0 4] default 0
     endsyntype
     arraytype Integer_Array = Integer
          6
     endarraytype
     0 0
         subsystem Sensor_to_Network
         0 0
              internal
                  object Hardware
                  НШ
                      Id 'HW_ID' *
                      Interrupt_Type 'Choice' .
                      item
                          HW_Running Yes 1
                          ('HW_ID', 1)
                          ('Choice', 0)
                      enditem
                      1
                      0
                      event HW1: C_Ret ( id key )
                      event HW2: A_Ret ( id key
                      event HW3: R_Ret ( id key
                      event HW4: T_Ret ( id key )
                      event HW5: Loop ( id key )
                      state HW_Running HW_SDL_Running
                          0
                          0
                          Choice = ANY("Interrupt_Type")
                          if (Choice == 0) Generate CL1: HW_C_Intr (1)
                          if (Choice == 1) {
                           if (ADC(1).On == TRUE) Generate ADC3: HW_A_Intr (1)
        sn.tob
                           (Fundamental)--L1--C0--Top-
Loading timer...done
```


Buffers Files Tools Edit Search Mule Help

```
/* Logic Propositions */
DECLARE RFM_Pending <<SYSTEM S2N/BLOCK SENSOR_TO_NETWORK/PROCESS RFM>> PENDING;
DECLARE HW_Choice <<SYSTEM S2N/BLOCK SENSOR_TO_NETWORK/PROCESS HARDWARE>> CHOICE;
/* Properties */
Repeatedly(#RFM_Pending == 1);
Repeatedly(#RFM_Pending != 1);
/* Assumptions */
AssumeRepeatedly(#HW_Choice == 0);
AssumeRepeatedly(#HW_Choice == 1);
AssumeRepeatedly(#HW_Choice == 2);
AssumeRepeatedly(#HW_Choice == 3);
AssumeRepeatedly(#HW_Choice == 4);
```

_ 8 ×

Close

📮 Tera Term - enzo.cs.utexas.edu ¥T

File Edit Setup Control Window Help

enzo.cs.utexas.edu% tob2sr -ob -at -query query1.qry sn.tob tob2sr is executing... tob2sr: Total time spent = 250 msec. enzo.cs.utexas.edu% _ 🗆 🗡

Close

•

Buffers Files Tools Edit Search Mule Help

```
🐨 Generated by tob2sr (Version : 0.37.1) on Mon Mar 24 14:39:00 2003
 * The command line was:
      tob2sr -ob -at -query query1.gry sn.tob
 #if ! defined(__QUERY_LOCAL)
 /*****
        SDL SYSTEM DESCRIPTION
 1/*
                                */
 TYPE DEFINITIONS
 /*
                                */
 # define __DummySignal O
 /* incoming signals of processes and channels */
 # define Process_HARDWARE_HW5 1
 # define Process_HARDWARE_HW4 2
 # define Process_HARDWARE_HW3 3
 # define Process_HARDWARE_HW2 4
 # define Process_HARDWARE_HW1 5
 type Process_HARDWARE_Signals : ( __DummySignal, Process_HARDWARE_HW5, Process_HARDWARE_HW4, Process_HARDWARE_\
HŴ3, Process_HARDWARE_HW2, Process_HARDWARE_HW1 )
 # define Process_CLOCK_CL2 1
 # define Process CLOCK CL1 2
 tupe Process_CLOCK_Signals : ( __DummuSignal, Process_CLOCK_CL2, Process_CLOCK_CL1 )
 # define Process ADC ADC3 1
 # define Process_ADC_ADC2 2
 # define Process_ADC_ADC1 3
 tupe Process_ADC_Signals : ( __DummySignal, Process_ADC_ADC3, Process_ADC_ADC2, Process_ADC_ADC1 )
 # define Process_PHOTO_P4 1
 # define Process_PHOTO_P3 2
 # define Process PHOTO P2 3
 # define Process PHOTO P1 4
 type Process_PHOTO_Signals : ( __DummySignal, Process_PHOTO_P4, Process_PHOTO_P3, Process_PHOTO_P2, Process_PH\
OTO_P1 )
 # define Process_SENSOR_OUTPUT_SO6 1
# define Process_SENSOR_OUTPUT_SO3 2
 --:-- sn__query1.<u>sr</u>
                     (Fundamental)--L1--C0--Top----
Loading timer...done
```

_ 8 ×

Close

∎Mark set

Buffers Files Tools Edit Search Mule Help

```
Process TASK QUEUE N TQN1 ? ( Sender = p Process HARDWARE) |
         ___DummuSignal
 selvar __InputSig : Process_TASK_QUEUE_N_Signals
 asgn __InputSig := __SigArrau[__SlotToBeConsumed]
 end BufferProcess TASK QUEUE N
 l#endif
 #if ! defined( MODEL LOCAL)
 /ж
              QUERY PART
                                  ж/
 #define DIRECTSUMof 2
 #include <QRY.h>
 1/*
              USER QUERY
                                  */
 /*****
 /* Query variable definitions */
 #define __QV__RFM_Pending (Process_RFM.V_PENDING)
 #define __QV__HW_Choice (Process_HARDWARE.V_CHOICE)
 /* Properties */
 monitor __Property__1 : Repeatedly_ (0, (__QV__RFM_Pending=1))
 monitor __Property__2 : Repeatedly_ (1, (__QV__RFM_Pending~=1))
 /* Assumptions from the query file */
 monitor __Assumption__1 : AssumeRepeatedly_ ((__QV__HW_Choice=0))
 monitor __Assumption__2 : AssumeRepeatedly_ ((__QV__HW_Choice=1))
 monitor __Assumption__3 : AssumeRepeatedly_ ((__QV__HW_Choice=2))
 |monitor __Assumption__4 : AssumeRepeatedly_ ((__QV__HW_Choice=3))
[monitor __Assumption__5 : AssumeRepeatedly_ ((__QV__HW_Choice=4))
#endif
(Fundamental)--L3394--CO--Bot-
       sn__gueru1.sr
 --:--
```


🖳 Tera Term - enzo.cs.utexas.edu ¥T

File Edit Setup Control Window Help

Mon Apr 7 17:16:31 CDT 2003 enzo.cs.utexas.edu [SunOS 5.8 sun4u]: /v/filer1a/v0q031/feixie/project/OBChec k/demo/tos/working1 cospan -bq1 -Kt -#status -#dupstvars -#time -D MODEL LOCAL sn query1.sr -D QUERY LOCAL sn quervl.sr

_ 🗆 🗙

Close

٠

cospan: Version 8.23.206 (Bell Labo<u>ratories) 1 Feb 2002</u>

Single pass for option -q1

cospan: Version 8.23.206 (Bell Laboratories) 1 Feb 2002

+ time sr F -I/projects/formalcheck/COSPAN/SUN/include -#status -#dupstvars I/projects/formalcheck/COSPAN/SUN/include -b -#reduction -Kt -#status -#dupst vars -D MODEL LOCAL sn query1.sr -D QUERY LOCAL sn query1.sr -#qtree -#st atus -#dupstvars -#reduction -#status -#dupstvars -#gtree

sr F: -#bddversion=d1

Status: Begin parsing at 0 sec 0 megabytes.

sn guerv1.sr: Mon Apr 7 17:16:17 2003

/projects/formalcheck/COSPAN/SUN/include/QRY.h: Mon Mar 18 10:42:35 2002 /projects/formalcheck/COSPAN/SUN/include/QRY+.h: Mon Mar 18 10:42:35 2002 Status: Begin checks and tree rewrites at 0.1 sec 0.73728 megabytes. sn query1.rf: list entry count:

93 pruned, 211 active, 0 freed by reduction

39 data variables declared or with width >= -#databits=4

144 selection/local variables

0 resized variables

67 bounded state variables: 2.58e53 states

0 unbounded state variables

5 boolean cysets

2 boolean recurs

2 free selection/local variables: 60 selections/state

0 pausing processes

Tera Term - enzo.cs.utexas.edu ¥T	
ile Edit Setup Control Window Help	Clos
tatus: Begin tree to bdd-expr translation at 0.96 sec 0.90112 megabyte (-b: 142 macro'd selvars, 2 retained selvars)	33.
tatus: Begin bdd-expr to local bdd translation at 1 sec 3.53075 megaby 4 bdd nodes.	ytes 11
n queryl.sr: Synchronous model	
tatus: Begin global bdds at 15.8 sec 8.43776 megabytes 27089 bdd nodes i initial states.	5.
tatus: Begin forward search at 21.02 sec 8.43776 megabytes 39310 bdd 1 .64949e+06 states reached.	nodes.
tate set generations 2258	
tatus: Begin usage statistics at 989.83 sec 68.78 megabytes 1975701 bo	dd node
ounded stvar range coverage: 67 variables, 64.43% average coverage 24 enumerated and boolean: 20 values of 2 variables unreached 43 integer: 30 variables with unreached values; 46.08% average	covera
worst coverage: 0.10% for 1 variables	
32 bounded variables (47.76%) have unreached values	
tatus: Begin cycle check method 1 at 990.37 sec 68.78 megabytes 197570 odes.)1 bdd
tatus: Begin forward envelope computation at 1018.41 sec 68.78 megabyt 828 bdd nodes.	es 197
975828 bdd nodes, 1017.66 seconds, 65.2493 megabytes	
n_queryl.sr: Task performed!	
eal 17:00.0	
lser 16:58.6	
ys 1.0	
ee query1.log.out	
nzo.cs.utexas.edu%	

Buffers Files Tools Edit Search Mule Help

```
/* Logic Propositions */
DECLARE HW_Choice <<SYSTEM S2N/BLOCK SENSOR_TO_NETWORK/PROCESS HARDWARE>> CHOICE;
DECLARE RFM_Buf <<SYSTEM S2N/BLOCK SENSOR_TO_NETWORK/PROCESS RFM>> BUF;
DECLARE RFM_Data <<SYSTEM S2N/BLOCK SENSOR_TO_NETWORK/PROCESS RFM>> DATA;
DECLARE RFM_Trasmitting <<SYSTEM S2N/BLOCK SENSOR_TO_NETWORK/PROCESS RFM>> $RFM_TRANSMITTING;
/* Properties */
Never ((#RFM_Data == 0) AND (#RFM_Buf == 0) AND #RFM_Trasmitting);
/* AssumeRepeatedly(#HW_Choice == 0);
AssumeRepeatedly(#HW_Choice == 1);
AssumeRepeatedly(#HW_Choice == 2);
AssumeRepeatedly(#HW_Choice == 3);
AssumeRepeatedly(#HW_Choice == 4);
```

(Fundamental)--L1--CO--All--

-

📕 Tera Term - enzo.cs.utexas.edu ¥T

File Edit Setup Control Window Help

Mon Apr 7 17:16:55 CDT 2003 enzo.cs.utexas.edu [SunOS 5.8 sun4u]: /v/filer1a/v0q031/feixie/project/OBChec k/demo/tos/working2 cospan -bq1 -Kt -#status -#dupstvars -#time -D__MODEL_LOCAL sn__query2.sr -D_ QUERY LOCAL sn query2.sr

_ 🗆 🗙

Close

٠

cospan: Version 8.23.206 (Bell Laboratories) 1 Feb 2002

Single pass for option -q1

cospan: Version 8.23.206 (Bell Laboratories) 1 Feb 2002

+ time sr_F -I/projects/formalcheck/COSPAN/SUN/include -#status -#dupstvars -I/projects/formalcheck/COSPAN/SUN/include -b -#reduction -Kt -#status -#dupst vars -D__MODEL_LOCAL sn__query2.sr -D__QUERY_LOCAL sn__query2.sr -#qtree -#st atus -#dupstvars -#reduction -#status -#dupstvars -#qtree

sr_F: -#bddversion=d1

Status: Begin parsing at 0 sec 0 megabytes.

sn query2.sr: Mon Apr 7 17:16:53 2003

/projects/formalcheck/COSPAN/SUN/include/QRY.h: Mon Mar 18 10:42:35 2002 /projects/formalcheck/COSPAN/SUN/include/QRY+.h: Mon Mar 18 10:42:35 2002 Status: Begin checks and tree rewrites at 0.11 sec 0.73728 megabytes. sn guery2.rf: list entry count:

60 pruned, 243 active, 0 freed by reduction

39 data variables declared or with width >= -#databits=4

153 selection/local variables

1 resized variables

90 bounded state variables: 1.82e126 states

0 unbounded state variables

6 boolean cysets

0 boolean recurs

2 free selection/local variables: 60 selections/state

1 variable reference clippings, 0 expression clippings

📮 Tera Term - enzo.cs.utexas.edu ¥T 📃 📃	
File Edit Setup Control Window Help	
Status: Begin tree to bdd-expr translation at 1.04 sec 0.94208 megabytes. (-b: 151 macro'd selvars, 2 retained selvars)	
Status: Begin bdd-expr to local bdd translation at 1.16 sec 3.56352 megabyte 1652 bdd nodes.	:5
snquery2.sr: Synchronous model Status: Begin global bdds at 16.07 sec 8.81459 megabytes 30959 bdd nodes. 1 initial states.	
Status: Begin forward search at 23.74 sec 8.81459 megabytes 68301 bdd nodes. Stop at error:	
No transition enabled in process . Property 1 3916 states reached.	
State set generations 248	
Status: Begin error track at 59.72 sec 11.092 megabytes 164852 bdd nodes. Status: Begin usage statistics at 64.58 sec 11.1002 megabytes 164852 bdd noc s	le
Bounded stvar range coverage: 89 variables, 47.11% average coverage 24 enumerated and boolean: 30 values of 4 variables unreached 65 integer: 52 variables with unreached values; 30.50% average cover	a
ge	
worst coverage: 0.05% for 10 variables 56 bounded variables (62.92%) have unreached values	
156202 bdd nodes, 64.91 seconds, 7.81517 megabytes	
sn_query2.sr: Task failed (tree).	
snquery2.sr: (tree), exit 0	
real 1:06.6	
user 1:06.1	
sys 0.1	
see query2.log.out	
enzo.cs.utexas.edu%	-

📕 Tera Term - enzo.cs.utexas.edu VT

File Edit Setup Control Window Help

enzo.cs.utexas.edu% more sn query2.T

0(0) .Process HARDWARE.\$=state START 1 .Process HARDWARE.V CHOICE=0. BufferProcess HARDWARE. SigArray[0]=0 .BufferProcess HARDWARE. SigArray[1] =0 .BufferProcess HARDWARE. SigArray[2]=0 .BufferProcess HARDWARE. Sig Array[3]=0 .Process CLOCK.\$=state CL SDL IDLE 2 .BufferProcess CLOCK. SigArray[0]=0 .BufferProcess CLOCK. SigArray[1]=0 .BufferProcess CLOCK. SigArray[2]=0 .Process ADC.\$=state ADC SDL IDLE 3 .Process ADC.V ON=0 . Process ADC.V READING=0 .BufferProcess ADC. SigArray[0]=0 .Buff erProcess ADC. SigArray[1]=0 .BufferProcess ADC. SigArray[2]=0 .Proc ess PHOTO.\$=state P SDL IDLE 3 .Process PHOTO.V DATA=0 .BufferProcess PHOTO. SigArray[0]=0 .BufferProcess PHOTO. SigArray[1]=0 .BufferProcess PHOTO. SigArray[2]=0 .BufferProcess PHOTO. ParArray[0][0]=0 .BufferProcess PHOTO. ParArray[1][0]=0 .BufferProcess PHOTO. ParArray[2][0]=0 .Process SENS OR OUTPUT.\$=state SO SDL IDLE 3 .Process SENSOR OUTPUT.V BUF=0 .Process SENS OR OUTPUT.V DATA=0 .BufferProcess SENSOR OUTPUT. SigArray[0]=0 .Buff erProcess SENSOR OUTPUT. SigArray[1]=0 .BufferProcess SENSOR OUTPUT. SigArr ay[2]=0 .BufferProcess SENSOR OUTPUT. ParArray[0][0]=0 .BufferProcess SENSOR OUTPUT. ParArray[1][0]=0 .BufferProcess SENSOR OUTPUT. ParArray[2][0] =0 .Process_RFM.\$=state_RFM_SDL_IDLE_3 .Process_RFM.V_PENDING=0 . Process_RFM.V_BUF=-1 .Process_RFM.V_DATA=0 .BufferProcess_RFM.__SigArray [0]=0 .BufferProcess RFM. SigArray[1]=0 .BufferProcess RFM. SigArray [2]=0 .BufferProcess RFM. ParArray[0][0]=0 .BufferProcess RFM. ParArray [1][0]=0 .BufferProcess RFM. ParArray[2][0]=0 .Process GENERIC COMM .\$=state GC SDL IDLE 2 .Process GENERIC COMM.V BUF=0 .Process GENERIC COMM .V DATA=0 .BufferProcess GENERIC COMM. SigArray[0]=0 .BufferProces s GENERIC COMM. SigArray[1]=0 .BufferProcess GENERIC COMM. SigArray[2]=0 . BufferProcess GENERIC COMM. ParArray[0][0]=0 .BufferProcess GENERIC COMM. ParArray[1][0]=0 .BufferProcess GENERIC COMM. ParArray[2][0]=0 .Proc ess INT TO RFM.\$=state IR SDL IDLE 2 .Process INT TO RFM.V DATA=0 .Buff erProcess_INT_TO_RFM.__SigArray[0]=0 .BufferProcess_INT_TO_RFM.__SigArray[--More--(2%)

- 🗆 ×

Close

 Image: Tera Term - enzo.cs.utexas.edu VT

 File Edit Setup Control Window Help

 enzo.cs.utexas.edu% T2otr sn query2

 Output line too long.

 "": 37, 20

 Error in error track file!!!

 tr2tob: There are 248 states in the error track (1 in the post mortem part)

 T2otr: See the file "sn_query2.otr" for the error track...

 enzo.cs.utexas.edu%

📮 Tera Term - enzo.cs.utexas.edu ¥T	>
File Edit Setup Control Window Help	
enzo.cs.utexas.edu% more snquery2.otr	
=======================================	
State 1	
=======================================	
PROCESS HARDWARE is initially at STATE START	
< <system block="" hardware="" process="" s2n="" sensor_to_network="">>choice=0</system>	
PROCESS CLOCK is initially at STATE CL_SDL_IDLE	
PROCESS ADC is initially at STATE ADC SDL IDLE	
< <system adc="" block="" network="" process="" s2n="" sensor="" to="">>on=0</system>	
< <system adc="" block="" network="" process="" s2n="" sensor="" to="">>reading=0</system>	
PROCESS PHOTO is initially at STATE P_SDL_IDLE	
< <system block="" network="" photo="" process="" s2n="" sensor="" to="">>data=0</system>	
PROCESS SENSOR_OUTPUT is initially at STATE SO_SDL_IDLE	
< <system block="" process="" s2n="" sensor_output="" sensor_to_network="">>buf=0</system>	
< <system block="" process="" s2n="" sensor_output="" sensor_to_network="">>data=0</system>	
PROCESS RFM is initially at STATE RFM_SDL_IDLE	
< <system block="" process="" rfm="" s2n="" sensor_to_network="">>pending=0</system>	
< <system block="" process="" rfm="" s2n="" sensor_to_network="">>buf=1</system>	
< <system block="" process="" rfm="" s2n="" sensor_to_network="">>data=0</system>	
PROCESS GENERIC_COMM is initially at STATE GC_SDL_IDLE	
< <system block="" generic_comm="" process="" s2n="" sensor_to_network="">>buf=0</system>	
< <system block="" generic_comm="" process="" s2n="" sensor_to_network="">>data=0</system>	
PROCESS INT_TO_RFM is initially at STATE IR_SDL_IDLE	
< <system block="" int_to_rfm="" process="" s2n="" sensor_to_network="">>data=0</system>	
PROCESS TASK_QUEUE_S is initially at STATE TQS_SDL_IDLE	
< <system block="" process="" s2n="" sensor_to_network="" task_queue_s="">>full=0</system>	
< <system block="" process="" s2n="" sensor_to_network="" task_queue_s="">>emp=1</system>	
< <system block="" process="" s2n="" sensor_to_network="" task_queue_s="">>head=0</system>	
< <system block="" process="" s2n="" sensor_to_network="" task_queue_s="">>tail=0</system>	
PROCESS SO_TASK is initially at STATE SOT_SDL_IDLE	
-Mome(4%)	

-More--(4%)

🚇 Tera Term - enzo.cs.utexas.ed	u ¥T			
File Edit Setup Control Window	Help			Close
enzo.cs.utexas.	edu% ls			_
query2.log	sn_query2.M	sn_query2.nmp	snquery2.tr	
query2.log.out	snquery2.T	sn_query2.otr	zrun2	
query2.qry	snquery2.U	sn_query2.rf		
sn.tob	snquery2.err	sn_query2.sr		
enzo.cs.utexas.	edu% otr2sim sn_	_query2.otr sn	query2.sim HARDWARE	
enzo.cs.utexas.	edu%			

```
🚆 Tera Term - enzo.cs.utexas.edu ¥T
```

File Edit Setup Control Window Help

```
/***************** Interleaving orders: ****************/
delay 0;
HARDWARE(1).Seq S = 1;
HARDWARE(1).CHOICE = 0;
delay 1;
HARDWARE(1).Seq T = 15;
delay 1;
CLOCK(1).Seq S = 0;
delay 1;
CLOCK(1).Seq T = 0;
delay 1;
SENSOR OUTPUT(1).Seq S = 0;
delay 1;
SENSOR OUTPUT(1).Seq T = 0;
delay 1;
PHOTO(1).Seq S = 0;
delay 1;
PHOTO(1).Seq T = 0;
delay 1;
ADC(1).Seq_S = 0;
<mark>--More--(16%)</mark>
```

_ 🗆 🗡

Close

*

Objectbench				
	0	Objectbench 3.1	Domain: s2n	
		Index What How	Sim Page: Default	

Statistics from Model Checking "Repeated Output" Property

- Four model checking runs with different combinations of reduction algorithms
 - Start at the same time on the same host;
 - The host is a SUN with 8 CPUs and 2GB memory.

SPOR	SMC	Memory Usage	Time Usage
Off	Off	596M	19370S
Off	On	80M	1384S
On	Off	596M	17438S
On	On	102M	1379S

Conclusion: SMC helps and SPOR doesn't.

Presentation Outline

- Overview and Architecture of ObjectCheck
- Modeling and Verification of a TinyOS Run-time Image with ObjectCheck
- More Case Studies
- Summary and Future Work
- Work Built on ObjectCheck

Model Checking of NASA robot Controller

- A typical control-intensive embedded system;
- Conducted by Natasha Shyrigina using ObjectCheck;
 - 37 properties were checked.
 - 22 properties were successfully checked.
 - 6 bugs were found.

NASA Robot Controller

Properties to be Model checked

Table 4.4: Verification prop	serties -
------------------------------	-----------

Ν	Property	Robotic Description	Formal Description
1	EventuallyAl- ways(p=1)	Eventually the robot control terminates	Eventually permanently $p{=}1$
2	AlwaysUmill($p=0$, d=1 OR ($s=1$ AND v=1))	The program terminates when it either completes the task or reaches the state where there is no solution for the fault recovery	p=0 holds at any execution of the program until occurrence of either $b=1$ or the combination of $s=1$ and v=1
03	AfterAlwaysUn- til($q=i_{\pi} r=i_{\pi}$ p=l)	If the <i>EE</i> reaches an undesired position than the program terminates prior to a new move of the <i>EE</i>	At any point in the execution if $q-t$ than it is followed by r=t until p is set to 1
적	$Always(n=1 \rightarrow y=1)$	Whenever the EE is in the "Follow- ing-Desired-Trajectory" state than the Arm is in the "Valid" state	At any time during execution of the program when $r=1$ than $u=1$
5	$\begin{array}{l} AlwaysUntil(s=0,\\ ()(a_{1}>max_{1} \text{ OR }\\ a_{2}max_{3} \\ OR \ a_{3}$	Fault recovery is executed when any of the joint angles does not satisfy the allowed limits	s=0 holds at any execution until any of the following does not hold: $(a_1 > max_1 = OR = a_1 < min_1),, (a_n > max_n = OR = a_n < min_n)$
6	$\begin{array}{l} \text{Always}(s=1 \text{ AND } \\ j_1=1 \text{ AND } \\ s=1 \\ \text{AND } j_2=1 \end{array}$	Rault recovery is always executed for joints that reside in their most recent base position	At any execution of the program it is always the case that $s=1$ and all of the following hold $j_n=1,,j_n=1$
7	NeverUntil($r=1$ AND $s=1$, $r=0$)	When fault recovery is called, the <i>EE</i> can not move to a new position until fault is resolved	It is never the case that $r=1$ holds when $s=1$ holds. This condition can be terminated by $r=0$
00	IfEventuallyAlway- sEventuallyAl- ways((c.p > L.max OR c.p < L.min), n=1)	If an obstacle is reached by the <i>EE</i> than the obstacle avoidance procedure is performed	It is always the case that if c.p > L.max OR c.p < L.min holds than sometimes in the future $o=lholds$
9	Dealock Freedom	The program does not have deadlocks	The model does not have deadlocks

Table 4.5: Verificatio	n properties.	(continued)
------------------------	---------------	-------------

\mathbf{N}	Property	Robotic Description	Formal Description
10	Never((c.p > L -max OR c.p < L -min) AND r=1)	The robot never operates outside of allowed workspace	It is never the case that c.p < L-max OR c.p $> L$ -min holds and $r=t$ holds
11	Never(ah > v)	The program always performs computations for an actual robot: the general description of a robot is always reduced to that of an actual robot	At any execution of the program the current value of <i>ab</i> never exceeds the value of the <i>dof</i> parameter
12	NeverUn- til $(r=l_{q}k=l)$	No command to move the EE is scheduled before an initial EE position is computed	It is never the case that r=t holds until $fk=t$ holds
13	NeverUn- till($r=t_s(ab=v \text{ AND} atabas=\ell)$ OR $stabas=\ell$)	The EE does not proceed to a new position until an admowledgement from the JCH is reached	At any execution r=1 does not hold until either ch=dof and status=1 hold or status=0 holds
14	IfEventuallyAlwap- sEventually()(ab=v AND slatus=l),r=l)	The robot arm always follows the specified trajectory	If during the execution of the program $ch=dof$ AND s(abs=l) holds than sometime in the future $r=l$ holds
15	AfterEventually(NOT $nc = \partial_t p = t$)	Chained fault recovery is not permitted (if the fault recovery did not complete for an instance of the robot configuration, the fault recovery for a different robot configuration instance is not allowed)	At any execution if $rac=0$ holds than sometime in the future $p=i$ holds
16	Never $(r=i \text{ AND} c_p = obstacle_i$ AND AND $c_p = obstacle_n$ $= obstacle_n$	EE is never located at some undesired locations, obstacle _R , where n is the number of pre-defined EE positions	At any execution $r=l$ and $c_{*}p = obstacle_{1}$ AND AND $c_{*}p = obstacle_{2}$ are never possible at the same time
17	Always() op $l = 0$ $\rightarrow lac = l$)	Only validated solutions of TrailConfigurations are used for the optimization of the robot control	At any time when optimal-solution is not ∂_i tac=l holds

Model Checking of Online Ticket Sale System

- A typical commercial transaction system;
- Presented at FASE 2002;
- Focus: Integrated state space reduction.

An Online Ticket Sale System (Class Diagram)

An Online Ticket Sale System (A State Model)

if ((Agent Status[0] == TRUE)&&(Agent Status[1] == TRUE)) { choice = ANY("A ID TYPE"); Sold Out = TRUE; Agent Status[choice - 1] = FALSE: Generate A1: Assignment (choice , Served G, Served C, Requested Amount); Generate D3: Back to Idle (Dispatcher ID); else if ((Agent Status[0] == TRUE)&&(Agent Status[1] == FALSE)){ 5. Searching 4. Refusing Agent Status[0] = FALSE; Generate A1: Assignment (1, Served G, Served C, Requested Amount); else if ((Agent Status[0] == FALSE)&&(Agent Status[1] == TRUE)){ Agent Status[1] = FALSE; Generate A1: Assignment (2, Served G, Served C, Requested Amount); D3: Back to Idle D4: No Ticket D3: Back to Idle (Dispatcher ID) (Dispatcher ID) else (Dispatcher ID) Generate C5: Try Later (Served G, Served C); Generate D3: Back to Idle(Dispatcher ID); 1. Idle D5: Loop (Dispatcher ID) D1: Connection D3: Back to Idle (Dispatcher ID, (Dispatcher ID) G ID, C ID, Num) D2: Agent Free D3: Back to Idle if (Sold Out == TRUE) { (Dispatcher ID, A ID) (Dispatcher ID) Generate C4: No Ticket (G ID, C ID); Generate D3: Back to Idle (Dispatcher ID); 3. Resetting_Agent 2. Assigning Agent else { Served G = G ID; Served C = C ID; Agent Status[A ID - 1] = TRUE; Requested Amount = Num; Generate D5: Loop (Dispatcher ID); Generate D3: Back to Idle (Dispatcher ID);

Some Verification Statistics of Online Ticket Sale System

- Verification of a liveness property
 - After an agent is assigned to a customer, eventually the agent will be released.
- Statistics related to state space reductions

SPOR	SMC	Memory Usage	Time Usage
Off	Off	Out of Memory	_
Off	On	113.73M	44736.S
On	Off	17.3M	6668.3S
On	On	74.0M	1450.3S

Presentation Outline

- Overview and Architecture of ObjectCheck
- Modeling and Verification of a TinyOS Run-time Image with ObjectCheck
- More Case Studies
- Summary and Future Work
- Work Built on ObjectCheck

Summary and Future Work

• ObjectCheck

- Integrates industrial software development environments and model checkers with research tools;
- Provides comprehensive automation for development, validation, and model checking of xUML models;
- Has enabled verification of non-trivial software system designs modeled in xUML.
- Future work is focused on
 - State space reduction capability of ObjectCheck;
 - Hardware/software co-design and co-verification.

Related Work

- Most closely related work
 - UML Model Checking toolset from University of Michigan;
 - vUML tool from *Åbo Akademi University;*
- There is also related work on model checking of statecharts with different semantics.

Additional Information

http://www.cs.utexas.edu/users/ObjectCheck

• Selected publications:

- Fei Xie and James C. Browne. Verified Systems by Composition from Verified Components. Submitted for review.
- Fei Xie, James C. Browne, and Robert P. Kurshan. Translation-based Compositional Reasoning for Software Systems. Submitted for review.
- Fei Xie and James C. Browne. Integrated State Space Reduction for Model Checking Executable Object-oriented Software System Designs. In Proc. of FASE 2002.
- Fei Xie, Vladimir Levin, and James C. Browne. ObjectCheck: A Model Checking Tool for Executable Object-oriented Software System Designs. In Proc. of FASE 2002.
- Fei Xie, Vladimir Levin, and James C. Browne. Model Checking for an Executable Subset of UML. In Proc. of ASE, 2001.

Presentation Outline

- Overview and Architecture of ObjectCheck
- Modeling and Verification of a TinyOS Run-time Image with ObjectCheck
- More Case Studies
- Summary and Future Work
- Work Built on ObjectCheck

Work Built on ObjectCheck

- An integrated state space reduction framework;
- Integration of model checking into componentbased development of software.

Reduction Steps for Checking P_0

Evaluation of User-driven State Space Reduction

- Directly model checking P_0 on OTSS
 - Two customer instances and two agent instances;
 - SPOR and SMC are both applied.
 - Memory usage: 152.79M
 - Time usage: 16273.7S
- Memory and time usages for discharging subtasks at the leaf nodes of the reduction tree.

	<i>P</i> ₂₁	<i>P</i> ₂₂	P_{41}	<i>P</i> ₄₂	P_{43}	P_{44}	P_6
Memory	0.30M	0.95M	0.28M	0.29M	0.28M	0.29M	0.35M
Time	0.02S	1.81S	0.01S	0.04S	0.01S	0.04S	0.63S

Integration of Model Checking into Component-based Development

- Temporal properties of a component are
 - Established with assumptions on the environment of the component;
 - Verified under these assumptions and then packaged with the component.
- Selecting a component for reuse considers not only its functionality but also its temporal properties.
- Properties of a composed component are verified by reusing verified properties of its sub-components and applying compositional reasoning.

Sensor Component

Properties of Sensor Component

Properties:

Repeatedly (Output); After (Output) Never (Output) UntilAfter (OP_Ack); After (Done) Eventually (Done_Ack); Never (Done_Ack) UntilAfter (Done); After (Done_Ack) Never (Done_Ack) UntilAfter(Done);

Assumptions:

After (Output) Eventually (OP_Ack); Never (OP_Ack) UntilAfter (Output); After (OP_Ack) Never (OP_Ack) UntilAfter (Output); After (Done) Never (Done) UntilAfter (Done_Ack); Repeatedly (C_Intr); After (C_Intr) Never (C_Intr + A_Intr + S_Schd) UntilAfter (C_Ret); After (ADC.Pending) Eventually (A_Intr); After (A_Intr) Never (C_Intr + A_Intr + S_Schd) UntilAfter (A_Ret); After (STQ.Empty = FALSE) Eventually (S_Schd); After (S_Schd) Never (C_Intr + A_Intr + S_Schd) UntilAfter (S_Ret);