
In AAMAS-04 Workshop on Agent Mediated Electronic Commerce (AMEC 04),
New York, New York, USA, July 2004.

Bidding for Customer Orders in TAC SCM

David Pardoe and Peter Stone

The University of Texas at Austin, Austin TX 78712, USA
{dpardoe, pstone}@cs.utexas.edu

Abstract. Supply chains are a current, challenging problem for agent-
based electronic commerce. Motivated by the Trading Agent Competi-
tion Supply Chain Management (TAC SCM) scenario, we consider an
individual supply chain agent as having three major subtasks: acquiring
supplies, selling products, and managing its local manufacturing process.
In this paper, we focus on the sales subtask. In particular, we consider the
problem of finding the set of bids to customers in simultaneous reverse
auctions that maximizes the agent’s expected profit. The key technical
challenges we address are i) predicting the probability that a customer
will accept a particular bid price, and ii) searching for the most profitable
set of bids. We first compare several machine learning approaches to es-
timating the probability of bid acceptance. We then present a heuristic
approach to searching for the optimal set of bids. Finally, we perform ex-
periments in which we apply our learning method and bidding method
during actual gameplay to measure the impact on agent performance.

1 Introduction

Supply chains are a current, challenging problem for agent-based electronic com-
merce. One problem commonly faced by agents acting in supply chains is that
of negotiating with customers in order to sell goods. Such negotiations are often
handled through reverse auctions in which sellers submit sealed bids in response
to requests for quotes (RFQs) from customers. This situation becomes particu-
larly difficult when sellers must bid in multiple auctions simultaneously, because
an agent cannot await the outcome of one auction before bidding in another.
When deciding which auctions to bid in and what bids to place, an agent with
limited resources must be able to judge and balance the competing risks of not
winning enough auctions and of winning too many. In the former case, it is un-
able to fully utilize its resources towards profitability; in the latter, it will be
unable to meet its obligations to customers.

The Trading Agent Competition Supply Chain Management (TAC SCM)
scenario [1] provides a perfect testbed for the study of this problem. In TAC
SCM, agents competing as computer manufacturers must handle three basic
subtasks: acquiring components, managing a local manufacturing process, and
selling assembled computers to customers. Agents receive incomplete information
about the state of the game and have a limited amount of time in which to make
decisions, resulting in a challenging competition. The problem studied in this
paper is motivated by our work on TacTex [2], the third place entry from the
first TAC SCM competition. From our experience, we have identified the sales
subtask as the most crucial aspect of the TAC SCM scenario.

In this paper, we focus on the problem of determining the optimal set of bids
for an agent to make in response to RFQs for computers received from customers.
The key technical challenges we address are i) predicting the probability that

a customer will accept a particular bid price, and ii) searching for the most
profitable set of bids.

The remainder of this paper is organized as follows. In Sect. 2 we give a brief
summary of the TAC SCM scenario and provide information on related work. We
give a complete description of the problem we are solving in Sect. 3. In Sect. 4
we present a comparison of several machine learning approaches to estimating
the probability of bid acceptance. We describe a heuristic approach to finding
an optimal set of bids in Sect. 5. In Sect. 6 we measure the impact of learning on
agent performance by performing controlled experiments involving actual TAC
SCM games. Sect. 7 proposes directions for future work and concludes.

2 Background

In this section, we give a brief summary of the TAC SCM scenario, emphasizing
the parts that are most relevant to the sales subtask, and provide information
on related work.

2.1 The TAC SCM Game

In a TAC SCM game [3], six agents act as computer manufacturers in a simulated
economy that is managed by a game server. The length of a game is 220 simulated
days, with each day lasting 15 seconds of real time. At the beginning of each day,
agents receive messages from the game server with information concerning the
state of the game, such as the customer RFQs for that day. Agents have until
the end of the day (i.e. < 15s) to send messages to the server indicating their
actions for that day, such as bids on RFQs. The game can be divided into three
parts: production and delivery, component supply, and computer demand.

In this paper, we focus on the computer demand, or sales, aspect of the TAC
scenario. Customers wishing to buy computers send all six agents identical RFQs
consisting of:

– the type of computer desired (1 of 16);
– the quantity of computer desired (1–20);
– the due date (3-12 days in the future);
– a reserve price indicating the maximum amount the customer will pay; and
– a penalty that must be paid for each day the delivery is late. Orders are

canceled on the fifth late day.

Reserve prices range from 75% to 125% of the base price of the requested com-
puter type, multiplied by the quantity, and penalties range from 5% to 15% of
the reserve price. The base price of a computer is equal to the sum of the base
prices of its parts [3]. Agents respond to the RFQs by making offers to sell at a
certain price, with the agent offering the lowest bid on each RFQ winning the
order. Agents are unable to see the prices offered by other agents or even the
winning prices, but they do receive a report each day indicating the highest and
lowest price at which each type of computer sold on the previous day.

The number of RFQs that come from customers depends on the level of
customer demand, represented by a parameter D. The actual number of RFQs

each day is drawn from a Poisson distribution with D as its mean. Fluctuation
in demand is modeled by multiplying D by an amount representing the current
trend each day. This trend follows a random walk, and D is bounded between
80 and 320, with its initial value chosen uniformly randomly from this range.

2.2 Related Work

The problem of predicting the probability of winning an auction with a par-
ticular sealed bid is commonly approached through statistical methods such as
those surveyed in [4]. Such methods often require extensive historical information
about competitors’ past bids and assume a static environment. In TAC SCM,
probabilities vary considerably throughout the game, and almost no information
is available about competitors’ bids while the game is running. A machine learn-
ing approach similar to that used in this paper is developed by [5], which uses
a naive Bayes classifier to predict the probability of a bid winning based on the
bid price, features of the RFQ , and available information about other bidders.

A solution to the TAC SCM bidding problem similar to the one used in this
paper is presented in [6], which uses linear regression on recent bidding results
to form predictions of bid acceptance and then uses stochastic programming to
determine optimal bids. Additional approaches are described in [7] and [8].

3 Problem Specification

We now specify the problem we are addressing in this paper. We consider the
problem of an agent participating in a TAC SCM game that must decide what
bids to place on the RFQs it has received from customers on a given day. The
inputs to the agent’s decision process are the following:

– The set of customer RFQs;
– The agent’s available resources (components and assembled computers in

inventory along with the future production cycles); and
– Information about past auctions (the agent’s knowledge of its own bids and

the reported highest and lowest prices at which each type of computer sold)

Because there are many more computers requested each day than one agent
can produce, the goal of an agent is not to win every auction, but to find the set
of bids that maximizes the agent’s expected profit without committing the agent
to produce more computers than it possibly can. (Viewing TAC as a game, an
agent’s goal should be to maximize its profit relative to the profits of competing
agents, but due to the difficulty of determining the effect an agent’s bids will
have on other agents, we will assume our agent is only concerned with its own
profit. In a real supply chain, this profit maximization would be the true goal.)
A simple approach to this problem is to predict the highest price at which each
auction could be won and to bid this price on several of the more profitable
auctions, expecting to win each one. A more sophisticated approach involves
considering the possibility of placing high bids on many auctions in hopes of
winning some fraction of them.

This second approach is the one used by TacTex, our agent in the first TAC
SCM competition, and is the approach that is considered in this paper. An agent
implementing this approach has two requirements: the ability to form estimates
of the probability of winning an auction as a function of the bid price, and
a means of using these estimates to find the set of bids that maximizes the
agent’s expected profit. We consider these two agent components separately in
the next two sections. In Sect. 4, we experiment with different machine learning
approaches to predicting the probability of bid acceptance, and in Sect. 5, we
present a heuristic approach to the problem of bid selection.

4 Learning Auction-Winning Probabilities

Predicting the probability of winning an auction in TAC SCM is a challenging
problem for three main reasons: (i) agents receive very limited information on
auction results, (ii) no two auctions are the same due to the differing attributes
of each RFQ, and (iii) winning prices can fluctuate rapidly due to changing game
conditions. As a result, an approach based on analyzing past auction results from
the current game is unlikely to yield accurate predictions. We therefore turn to
machine learning methods using training data from many past games.

The problem we are trying to solve can be viewed as a multiple regression
problem. This could be solved by using a regression learning algorithm to learn
the probability of winning an auction as a function of factors including the bid
price. We instead follow a modified approach used by [9] to solve a similar condi-
tional density estimation problem from a different TAC scenario. This approach
involves dividing the price range into several bins and estimating the probability
of winning the auction at each bin endpoint. A post-processing step converts
the learned set of probabilities to a probability density function by interpolating
between bin endpoints and enforcing a monotonicity constraint that ensures that
probabilities decrease as prices increase. In this method, a separate predictor is
trained for each endpoint to predict the probability of winning at that point. The
concept to be learned by each predictor is therefore simpler than the concept
that would be learned if we used a single predictor for all prices. We leave an
empirical comparison with the latter approach for future work.

In this section we focus on the task of training these individual predictors.
We describe the format of the training data, compare the effectiveness of several
learning algorithms, and then look at the impact that the choice of training data
has on the predictions. It is important to note that training is done off-line, so
the game’s time constraints are not a factor.

4.1 Training Data Format

The data for our experiments is taken from the results of the semifinal and final
rounds of the first TAC SCM competition held in August 2003. Winning bids
for customer RFQs can be obtained from game logs made available immediately
after each game terminates. Several hundred thousand RFQs were issued over
the course of the games, providing ample data for training and testing.

A training instance is created for each RFQ. The 23 attributes included in
each instance reflect the details of the RFQ it represents, along with the informa-
tion available to agents at the time about the level of demand in the game and
the recent prices for which the requested type of computer has been sold. Each
instance contains the current date; the quantity, penalty, due date, and reserve
price for the RFQ; and the highest and lowest prices at which the requested
computer type was sold over the past five days. The additional attributes pro-
vided about customer demand give a picture of how the daily number of RFQs
has varied over the course of the game. All monetary values are expressed as a
fraction of the computer’s base price.

A separate predictor is trained for each price point x at which we want to
predict the probability of winning an auction, where x is expressed as a fraction
of a computer’s base price. For a given value of x, each auction is labeled with
a 1 if the winning bid was greater than x and with a 0 otherwise. Instances
representing RFQs receiving no bids are labeled with a 1 if x is less than or
equal to the reserve price.1

4.2 Algorithm Comparison

We first performed an experiment comparing the effectiveness of using several
different regression learning algorithms to train predictors: neural networks (with
a single hidden layer and using backpropagation), M5 regression trees, M5 re-
gression trees boosted with additive regression (which successively fits a new base
learner to the residuals left from the previous step), decision stumps (single-level
decision trees) boosted with additive regression, J48 decision trees, J48 decision
trees boosted with AdaBoost, and BoosTexter. BoosTexter [10] is a boosting
method that was originally designed for text classification and is the algorithm
used in [9]. It uses decision stumps as the base learner and a form of AdaBoost to
weight each training instance between rounds of training, outputting a weighted
sum of the learned decision stumps. Other algorithms we considered were sup-
port vector machines, naive Bayes, and k-nearest neighbors, but these did poorly
in initial testing. For all algorithms other than BoosTexter, we used the imple-
mentations provided in the WEKA machine learning package [11], using default
parameters. Informal attempts at tuning these parameters did not appear to
significantly affect performance.

For comparison, we also include the results obtained from using a simple
heuristic predictor that gives reasonably good results. For each of the past five
days, the predictor forms a uniform density function on the interval between the
highest and lowest prices reported for the requested computer type. A weighted
sum of these density functions, with those from more recent days receiving more
weight, is then used as a probability density function from which estimates of
bid acceptance are taken.

In our experiment we evaluated each of the learning algorithms on a data set
taken from the final round of the competition. We used cross-validation, meaning

1 Note that this formulation represents the standpoint of a seventh agent wanting to
know the probability that none of the other six agents would place a bid below x.

that training and test data came from the same games. While the true value of
a probability prediction is the utility gained from using it, determining this in
the context of a TAC SCM agent is not feasible, and so we instead use root
mean squared error between the predicted probabilities and actual outcomes as
the measure of comparison. We ran separate tests predicting the probability of
winning an auction at several different values of x. The results of three 10-fold
cross-validations with x = 0.7 are presented in Fig. 1 and are similar to results
for other values of x.

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0 100000 200000 300000

R
oo

t m
ea

n
sq

ua
re

d
er

ro
r

Number of training examples

Heuristic
Neural network

Boosted stumps
BoosTexter

M5
J48

Boosted M5
Boosted J48

Fig. 1. Results for x = 0.7

With a large number of train-
ing instances, the tree-based methods
clearly had the best performance, fol-
lowed by BoosTexter. The errors of
the non-tree-based methods level off
after a limited number of training in-
stances, while the errors of the tree-
based methods continue to decrease
until the point at which all available
training data is used. For training sets
of size 200,000 and 370,000, the dif-
ference observed between each pair of
algorithms in Fig. 1 is statistically sig-
nificant at the 95% confidence level.

4.3 Choice of Training Data

In the previous experiment, the training data and test data were taken from the
same set of games, with the same agents participating in each game. This raises
the possibility that the algorithms learned concepts that pertained to specific
games and set of agents but were not applicable in general. This is also unrealistic
in the TAC setting, as an agent could not have predictors trained on data from
the game it is currently participating in. In practice, it is important to know
whether a predictor trained for one set of agents will be reliable in games with
a different set of agents. Our next experiment addresses these issues.

We consider the case of an agent participating in the final round of the
competition. The agent would want to train predictors on the data most relevant
to the situation. At the beginning of the final round, the most relevant data would
likely come from the results of the semifinal round, which contained two brackets
of six agents each. As a result, this data would reflect on both the agents in the
final round and the agents defeated in the semifinal round. After the finals begin,
the agent would be able to analyze the results of completed games from the finals
and would have the option of retraining its predictors with this new data, either
by itself or in combination with the data from the semifinals.

We performed an experiment comparing the results of training with these
choices of training data. First, we divided the games from the final round into
two halves, labeled finals1 and finals2. We then used finals2 as the test data
for predictors trained on data from different sources: the semifinals, finals1, the

semifinals combined with finals1, and finals2 (using cross validation). The results
for M5 trees and BoosTexter, the top two performing algorithms, are shown in
Figures 2 and 3. Again, x = 0.7. The learning curves are labeled with the source
of data used for training.

When the predictors were trained on data other than finals2, the performance
gap between M5 trees and BoosTexter disappeared, and the performance of
the other tree-based methods, even boosted M5 trees, fell behind. The errors
of the tree-based methods no longer continued to decrease as more training
instances were used, and sometimes the error increased, as observed in Fig. 2
when data from the semifinals was used for training. This suggests that the strong
performance of the tree-based methods in the first experiment was largely due
to their ability to learn game-specific factors that do not generalize well. While
BoosTexter appears to achieve somewhat lower errors than M5 trees in this
experiment, further testing on different game scenarios would need to be done
to determine whether this is the case in general.

As we expected, the predictors trained on data from finals2 outperformed the
predictors trained on data from different games. Still, the performances of the
latter were better than that of the heuristic. The predictors trained on finals1
performed better than those trained on the semifinals, confirming that more
relevant training data produces better results. Somewhat surprisingly, the pre-
dictors trained on the combination of finals1 and the semifinals performed better
than the predictors trained on finals1 only. It may be that a predictor trained on
data from a variety of sources will generalize the best to a new situation, even
if some of the training data is less relevant for the new situation.

The results of these experiments suggest that with the right choice of learning
algorithm and training data, we can learn the probability of winning an auction
reasonably well. However, to measure the value of our predictions, we need to
use them as the input to a method of selecting bids in actual TAC games. We
present such a method in the next section, and then experimentally evaluate its
performance in Sect. 6.

5 Bid Selection

We now consider the problem of bid selection. Recall that each day, customers
send roughly 80-320 RFQs to all agents simultaneously, with each RFQ request-

0.1

0.11

0.12

0.13

0.14

0 50000 100000 150000

R
oo

t m
ea

n
sq

ua
re

d
er

ro
r

Number of training examples

Heuristic

Semis

Finals1

Semis + Finals1

Finals2

Fig. 2. M5 Trees

0.1

0.11

0.12

0.13

0.14

0 50000 100000 150000

R
oo

t m
ea

n
sq

ua
re

d
er

ro
r

Number of training examples

Heuristic

Semis
Finals1

Semis + Finals1

Finals2

Fig. 3. BoosTexter

ing a specific type and quantity of computer by a certain date. For each RFQ,
the agent that bids lowest wins the order. In this section, we cast the bidding
problem as an optimization problem and describe a heuristic approach to finding
the optimal set of bids to offer in response to a single day’s customer RFQs.

5.1 Problem Formulation

An agent’s goal in selecting bids should be to maximize its total expected future
profit. This value depends on the unknown strategies of competing agents, how-
ever, and the exact computation of this value would likely be intractable even if
these strategies were known. As a result, we present a somewhat myopic agent
that aims to maximize its profit only on computers due over the next 12 days
(the range of due dates for computers requested on a given day) and that makes
some simplifying assumptions. These assumptions are:

1. All computers delivered over the next 12 days will come from computers and
components that are already in inventory or expected to be delivered during
that period.

2. After the next 12 days, the average number of each computer type ordered
from the agent per day will remain the same as the average over the past
few days.

3. For the rest of the game, the agent will purchase only enough components
to meet the need from the expected production in Assumption 2. The prices
of these components will be the same as recently observed prices.

4. Computers held in inventory at the end of 12 days are of no value.
5. The agent is able to accurately predict the probability of winning an order

given the bid price.

Assumption 1 means that our agent has a fixed set of resources to work
with when selecting bids. This is a reasonable assumption due to the fact that
our agent (and many other agents from the competition) tries to carry a large
component inventory and tends to place long-term rather than short-term com-
ponent orders. Because the prices paid for components in inventory are sunk
costs, our agent will only consider replacement costs when determining the cost
of producing a computer. These costs can be determined from Assumptions 2
and 3 by projecting future component use, deciding whether the components
used over the next 12 days will need to be replaced, and determining how much
this will cost per component. If the current inventory of a component exceeds the
projected use, then that component’s replacement cost will be zero. Assumption
4 means that our agent should be willing to use all computers in inventory and
all upcoming production cycles for computers that will be delivered over the
next 12 days. Assumption 5 simply tells us that our agent has access to the bid
acceptance functions we tried to learn in the previous section.

As a result of these assumptions, our agent is essentially pretending that it
is acting in a static environment, and this could lead to suboptimal behavior
if future game circumstances change. For example, if computer prices are cur-
rently low due to low demand, but the trend of customer demand is increasing,

then it might be wise to hold on to computers in inventory for later sale, vio-
lating assumption 4. The ability to more accurately predict the future values of
components and computers would be valuable, but we leave this to future work.

The profit our agent obtains over the next 12 days depends not only on the
RFQs being bid on on the current day, but also on RFQs that will be received
on later days for computers due during the period. If we were to ignore these
future RFQs when selecting the current day’s bids, our agent might plan to use
up all available production resources on the current RFQs, leaving it unable
to bid on future RFQs. One way to address this issue would be to restrict the
resources available to the agent for production of the computers being bid on
currently. This is the method used by [6]. We instead take the approach of
predicting the RFQs that our agent will receive for computers due during the
period, and coming up with bids for these RFQs at the same time as the actual
RFQs from the current day. Future RFQs are randomly generated according
to the parameters given in the game specification and our current estimate of
the level of customer demand and its trend. This has the effect of causing our
agent to decide which resources to reserve for future RFQs, and limited testing
suggests that our agent performs better when using this method than when we
explicitly restrict the resources available.

5.2 Optimization Method

We now have an optimization problem with the following inputs:

– The agent’s current computer orders
– The resources available to the agent over the next 12 days: production cy-

cles, computers and components currently in inventory, and expected future
deliveries of components

– A cost associated with each computer representing the expected replacement
costs of its components

– A set of RFQs for computers due over the next 12 days, including both the
current day’s actual RFQs and predicted future RFQs.

Our goal is to find the set of bids that maximizes expected profit on these RFQs
and existing orders. Those bids representing actual RFQs for the current day
will then be offered to customers.

We make the assumption that we will always want our agent to fill existing
orders if possible, and so the agent begins by scheduling the production necessary
to fill these orders. This leaves our agent with a reduced set of resources and
means that it only needs to concern itself with the expected profit from RFQs.

If we were considering only a single auction and had no resource constraints,
the expected profit resulting from a particular bid price would be:

Expected profit = P (order|price) ∗ (price − cost) (1)

The optimal bid would be the value that maximized this quantity.
Computing the expected profit from a set of bids when resource constraints

are considered is much more difficult, however, because the profit from each

auction cannot be computed independently. For each possible outcome of the
auctions in which it is not possible to fill all orders, the profit obtained depends
on the agent’s production and delivery strategy. For any nontrivial production
and delivery strategy, precise calculation of the expected profit would likely
require separate consideration of a number of possible auction outcomes that is
exponential in the number of auctions. If we were guaranteed that we would be
able to fill all orders, we would not have this problem. The expected profit from
each auction could be computed independently, and we would have:

Expected profit =
∑

i ǫ all auctions

P (orderi|pricei) ∗ (pricei − costi) (2)

Our bidding heuristic is based on the assumption that the expected number
of computers ordered for each RFQ will be the actual number ordered. In other
words, we pretend that it is possible to win a part of an order, so that instead
of winning an entire order with probability p, we win a fraction p of an order
with probability 1. This assumption greatly simplifies the consideration of filling
orders, since we now have only one auction outcome to consider, while leaving
the formulation of expected profit unchanged. As long as it is possible to fill
the partial orders, (2) will hold, where the probability term now refers to the
fraction of the order won. It would appear that this approach could lead to
unfilled orders when the agent wins more orders than expected, but in practice,
this is not generally a problem. Most of the RFQs being bid on are the predicted
RFQs that will be received on future days, and so the agent can modify its future
bidding behavior to correct for an unexpectedly high number of orders resulting
from the current day’s RFQs. The agent can also set aside a small number of
completed computers in inventory to serve as a buffer to prevent penalties in
case any problems remain. When using this bidding strategy, our agent indeed
tends to have very few late or missed deliveries.

By using this notion of partial orders, we can transform the problem of bid
selection into the problem of finding the most profitable set of partial orders that
can be filled with the resources available. Although this problem lends itself to
standard optimization methods, our choice of method is constrained by the limit
of 15 seconds per simulated game day and by the size of the problem (there may
be over a thousand RFQs to consider). We use a greedy production scheduler
that tries to utilize production resources as profitably as possible. All bids are
initially set to be just above the reserve price, which means we begin with no
orders. The production scheduler then chooses an RFQ and an amount to lower
its bid by, resulting in an increased partial order for that RFQ. The scheduler
simulates filling this increase by scheduling its production as late as possible,
taking completed computers from inventory if production is not possible. This
process is repeated until no more production is possible or no bid can be reduced
without reducing the expected profit.

Because we are working with resource constraints, the goal of the greedy
production scheduler at each step is to obtain as large an increase in profit as
possible while expending as few production resources as possible. To illustrate
how this is done, consider Figures 4, 5, and 6. Fig. 4 represents the predicted

probability of winning an auction as a function of the bid price, or alternatively,
the fraction of the auction we assume we will win at each bid price. Fig. 5 shows
the expected profit at each price, found using (1). Now suppose that our current
bid is 1500, and we are considering lowering this bid. We would like to find the
bid decrease that produces the largest increase in profit per additional computer
ordered. This quantity is equal to (Profit(x)−Profit(1500))/(Probability(x)−
Probability(1500)) for x < 1500 and is graphed in Fig. 6. From the graph, we
can see that the optimal decision is to lower the bid to about 850. At each step,
the production scheduler performs this analysis to find the bid reduction that
will produce the largest increase in profit per additional computer for each RFQ,
and chooses the RFQ for which this value is the largest.

In many cases, the most limited resource is production cycles. In such cases,
the increase in profit per cycle used is a better measure of the desirability of a
partial order than the increase in profit per additional computer, so we divide the
latter quantity by the number of cycles required to produce the type of computer
requested by the RFQ and use the resulting values to choose which RFQ should
be considered next. We consider cycles to be the limiting factor whenever the
previous day’s production used more than 90% of the available cycles to produce
computers used to fill orders (as opposed to computers produced using spare
cycles in order to build up inventory).

The range of possible bid prices is discretized for the sake of efficiency. Even
with fairly fine granularity, this bidding heuristic produces a set of bids in signif-
icantly less time than the 15 seconds allowed per simulated game day. Attempts
to use local search methods to improve the bids found yielded almost no increase
in profit, suggesting at the very least that our greedy method tends to find local
minima. The complete bidding heuristic is summarized in Table 1.

6 Agent Performance

In this section, we evaluate the effectiveness of our learning approach and bidding
method when used as part of a complete agent in TAC SCM gameplay. We do
this through a series of experiments in which agents using different combinations
of bidding methods and prediction methods play against each other repeatedly.

6.1 Agent Design

For each agent, production and delivery are handled by a greedy production
scheduler that gives near-optimal performance in practice. In order to isolate

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 400 800 1200 1600 2000

P
ro

ba
bi

lit
y

of
 w

in
ni

ng

Price

Fig. 4.

0

100

200

300

400

500

600

0 400 800 1200 1600 2000

E
xp

ec
te

d
pr

of
it

Price

Fig. 5.

-400

-200

0

200

400

600

800

0 400 800 1200 1600

∆
pr

of
it

/ ∆
 p

ro
ba

bi
lit

y

Price

Fig. 6.

Table 1. The bidding heuristic

– For each RFQ, compute both the probability of winning and the expected profit as a function
of price

– Set the bid for each RFQ to be just above the reserve price
– Repeat until no RFQs are left in the list of RFQs to be considered:

• For each RFQ, find the bid lower than the current bid that produces the largest increase
in profit per additional computer ordered (or per additional cycle required during periods
of high factory utilization)

• Choose the RFQ and bid that produce the largest increase.
• Try to schedule production of the partial order resulting from lowering the bid. If it cannot

be scheduled, remove the RFQ from the list.
• If the production was scheduled, but no further decrease in the bid will lead to an increase

in profit, remove the RFQ from the list.
– Return the final bid for each RFQ.

the effects of bidding, we modified the game settings to allow each agent to re-
ceive an effectively unlimited quantity of each component on the 15th game day
at no cost, eliminating the need for a strategy for purchasing components from
suppliers. This is not entirely unrealistic, as many agents in the competition
actually ordered the majority of their components on the first game day [12].
Agents were only allowed to carry up to 200 of each type of computer in inven-
tory, to prevent them from using their limitless components to build up large
computer inventories during periods of low customer demand. The effect of this
limitation was to increase the responsiveness of computer prices to changes in
demand, creating a more dynamic and interesting game scenario.

The agents differ in the bidding methods used and the predictions of bid
acceptance probability. The bidding methods used are

– Bidder: The bidding method presented in Sect. 5.
– OldBidder: A previously developed hill climbing bidding method [2].

and the bid acceptance prediction methods are

– Learning: Learning as described in Sect. 4.
– Heuristic: The heuristic described in Sect. 4.2.
– OldHeuristic: A previously developed prediction heuristic [2]. Testing on game

data has shown this heuristic to be less accurate than Heuristic.

OldBidder and OldHeuristic are taken from TacTex, our entry in the 2003 TAC
SCM competition, and are described in detail in [2]. Each of the six combinations
of bidding methods and prediction methods is used by one agent.

6.2 Experimental Setup

Three rounds of 30 games were played between the six agents. During the first
round, the agents labeled as using Learning actually used the same heuristic
as Heuristic. The game logs from the first round were then used to train sets
of predictors to be used by the Learning agents in the second round. For both
agents, we trained a separate predictor for each of the 26 price points between
0 and 1.25 times the base price spaced at an interval of 0.05, using BoosTexter

as the learning algorithm and using 10% of the available data (about 100,000
instances). Because each learning agent is trying to outbid only the other agents
and not itself, its own bids were ignored when determining the winning bid for
each training instance. The functions mapping bids to probabilities of acceptance
are created from the 26 predictions by enforcing a monotonicity constraint as
described in [9], with the added step of setting all probabilities for bids above
the reserve price to 0. A second round of games was then played.

In the third round, the Learning agents used a set of predictors that had been
trained on the logs from the semifinal and final rounds of the 2003 TAC SCM
competition. The purpose of this was to determine how well the predictors would
generalize to a different set of agents.

6.3 Results

The results are presented in Table 2. The average relative score of each agent
is given along with the standard deviation. An agent’s relative score in a game
is its score minus the average score of all agents for that game. The average
score over all agents and games in each round was around $80 million. Because
all agents were initially given sufficient components to last the whole game, no
component costs are included in any of the scores presented.

From the results of the first round, we can see that agents using Bidder
outperform the agents using OldBidder, and that for each bidding method, agents
using Heuristic outperform agents using OldHeuristic. This is the expected result.

The results of the second round show exactly what we had hoped to see: us-
ing learning significantly improved agent performance. Bidder/Learner outscored
Bidder/Heuristic in all but one game and by an average margin of $6 million.

In the third round, the agents using Learning still showed a performance
improvement, but by a smaller margin. Considering that the predictors used by
Learning were trained on games involving a completely different set of agents,
and a somewhat different game scenario (i.e., a limited component supply), this
result is very promising. In actual competition, we might not have access to
games involving only the agents we are competing against, and this experiment
suggests that learning could still be successfully applied in such a case.

7 Future Work and Conclusion

In this paper, we considered the problem faced by an agent acting in a supply
chain that must bid in simultaneous reverse auctions to win orders from cus-
tomers. Using TAC SCM as a test domain, we presented a learning approach
to the task of predicting the probability of bid acceptance, and we presented a
heuristic bidding method that uses these predictions. A comparison of learning
algorithms showed that M5 regression trees and BoosTexter result in similar
prediction accuracy when testing and training data come from separate games.
When used as part of a complete agent, learned predictors were shown to provide
a significant improvement in performance over heuristic predictors.

One important result demonstrated was that the learned predictors gener-
alize well to new situations, both in terms of prediction accuracy and of agent

Table 2. Average relative score (in millions)
Agent Relative Score

Round 1 Round 2 Round 3

Bidder/Learning 6.10 ± .28 9.04 ± .3 6.49 ± .73
Bidder/Heuristic 6.13 ± .28 2.95 ± .42 5.20 ± .57
Bidder/OldHeuristic 2.2 ± .30 -.31 ± .42 1.37 ± .40
OldBidder/Learning -4.17 ± .22 1.60 ± .55 -1.80 ± .70
OldBidder/Heuristic -4.21 ± .24 -5.87 ± .30 -4.54 ± .53
OldBidder/OldHeuristic -6.09 ± .39 -7.41 ± .48 -6.72 ± .46

performance. This gives us
hope that our learning ap-
proach can be used success-
fully in competition when fac-
ing different sets of agents or
agents that change their be-
havior over time.

There are several possible
ways in which predictions could be improved. The results of Sect. 4.3 suggest
that acquiring data from a variety of situations might aid in training a more
robust predictor. Further experiments could determine the best combinations
of data for an agent to use. Also, additional information available to an agent
could be included as features, such as knowledge of the availability and prices of
components. Finally, an agent could make use of its knowledge of auction results
during a game to make on-line improvements to its predictors. Boosting-based
predictors would lend themselves well to this approach, since making incremental
modifications to the existing predictors would be straightforward.

The heuristic bidding method presented appears to work well, but needs to
be made less myopic. This could be done by developing better estimates of the
future values of components and computers in inventory, in order to allow more
informed decisions of whether to hold on to them for later use.

Acknowledgments

This research was supported in part by NSF CAREER award IIS-0237699.

References

1. Sadeh, N., Arunachalam, R., Eriksson, J., Finne, N., Janson, S.: TAC-03 a supply-chain trading
competition. AI Magazine (2003)

2. Pardoe, D., Stone, P.: TacTex-03: A supply chain management agent. SIGecom Exchanges 4

(2004) 19–28
3. Arunachalam, R., Eriksson, J., Finne, N., Janson, S., Sadeh, N.: The TAC supply chain man-

agement game. Technical report, Swedish Institute of Computer Science (2003) Draft version
0.62.

4. Papaioannou, V., Cassaigne, N.: A critical analysis of bid pricing models and support tool. In:
IEEE International Conference on Systems, Man and Cybernetics, Piscataway, NJ (2000)

5. Lawrence, R.D.: A machine-learning approach to optimal bid pricing. In: Proceedings of the
Eighth INFORMS Computing Society Conference on Optimization and Computation in the
Network Era, Arizona (2003)

6. Benisch, M., Greenwald, A., Grypari, I., Lederman, R., Naroditskiy, V., Tschantz, M.: Botticelli:
A supply chain management agent designed to optimize under uncertainty. SIGecom Exchanges
4 (2004) 29–37

7. Kiekintveld, C., Wellman, M., Singh, S., Estelle, J., Vorobeychik, Y., Soni, V., Rudary, M.:
Distributed feedback control for decision making on supply chains. In: International Conference
on Automated Planning and Scheduling. (2004)

8. Dahlgren, E., Wurman, P.: PackaTAC: A conservative trading agent. SIGecom Exchanges 4

(2004) 38–45
9. Schapire, R.E., Stone, P., McAllester, D., Littman, M.L., Csirik, J.A.: Modeling auction price

uncertainty using boosting-based conditional density estimation. In: Proceedings of the Nine-
teenth International Conference on Machine Learning. (2002)

10. Schapire, R.E., Singer, Y.: BoosTexter: A boosting-based system for text categorization. Ma-
chine Learning 39 (2000) 135–168

11. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with
Java Implementations. Morgan Kaufmann (1999)

12. Estelle, J., Vorobeychik, Y., Wellman, M., Singh, S., Kiekintveld, C., Soni, V.: Strategic inter-

actions in a supply chain game. Technical report, University of Michigan (2003)

