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Abstract. In agent-based markets, adapting to the behavior of other
agents is often necessary for success. When it is not possible to directly
model individual competitors, an agent may instead model and adapt to
the market conditions that result from competitor behavior. Such an agent
could still benefit from reasoning about specific competitor strategies by
considering how various combinations of these strategies would impact the
conditions being modeled. We present an application of such an approach
to a specific prediction problem faced by the agent TacTex-06 in the Trad-
ing Agent Competition’s Supply Chain Management scenario (TAC SCM).

1 Introduction

In this paper, we present an adaptive approach used in the TAC SCM competition
that is based on learning from simulations of various agent combinations. We
describe a specific prediction problem faced by TacTex-06 (winner of the 2006
competition), present the learning approach taken, and evaluate the effectiveness
of this approach through analysis of the competition results. We then explore
methods of improving predictions through combining multiple sources of data
reflecting various competitor behaviors. Although this paper only describes the
application of these methods to the TAC SCM domain, the methods depend only
on a need for some form of prediction and the ability to simulate a variety of
potential opponent strategies, neither of which is uncommon in the real world.
The work described here represents the main improvements over our 2005 agent,
described fully in [6].

2 Learning and Adaptation in Agent-Based Markets

In competitive multiagent systems, the ability to adapt to the behavior of other
agents can be the difference between success and failure. Often, this adaptation
takes the form of opponent modeling [1] [2], in which a model is learned for each
competing agent that can be used to predict the action the agent will take in
any situation. In some systems, however, modeling agents directly may not be
appropriate, or even possible. Market scenarios often fit this description for a
number of reasons. For instance, an online seller might not interact with the same
customer repeatedly, removing the incentive to model the individual customer’s
behavior. In large systems such as stock markets, the actions of a single agent may
not be significant enough to have a noticeable effect on the system. Finally, in a
market with limited transparency, such as one in which transactions are conducted
through sealed-bid auctions, it may be impossible to directly observe the actions
of other agents. In these situations, it may be necessary for an agent to observe



and learn about the aggregate effect of all agents on the economy, rather than
the behavior of specific agents. Learning is reduced to making predictions about
properties of the economy, such as what a particular price will be. In effect, the
competing agents become part of the agent’s environment.

An agent using such an approach may still be able to benefit from reason-
ing about the types of behavior that might be exhibited by competing agents.
In choosing an approach to adapting in the marketplace, an agent should take
into consideration the range of strategies that other agents might use and how
these strategies might affect the properties of interest. In general, an agent should
consider the following questions:

— For which properties of the economy do predictions need to be made?

— Which of these properties are dependent on competitor strategies, and which
tend to remain the same regardless of competitors?

— What predictive models should be used when starting out in a new market
about which little information is available (i.e., what predictive models give
the best expected performance across a variety of competitor behaviors)?

— As more information becomes available, what form of adaptation should be
used to improve predictions?

One method of answering these questions, and the method that will be em-
ployed in this paper, is to implement a number of potential competitor strategies
and run simulated markets using various combinations of these strategies. Using
the results, it is possible to observe how market conditions vary based on the mix
of competitors and to identify adaptive strategies that are effective across a range
of possible scenarios. In the next two sections, we introduce the specific prediction
problem to which we will apply this method.

3 The TAC Supply Chain Management Scenario

Supply chains have traditionally been created through the interactions of human
representatives of the various companies involved. However, recent advances in
autonomous agent technologies have sparked an interest in automating the process
through the use of agents [3] [4]. The Trading Agent Competition Supply Chain
Management (TAC SCM) scenario provides a unique testbed for studying and
prototyping such agents. Though purely a simulated environment, TAC SCM is
designed to capture a broad range of issues that come up in real-world supply
chains, including limited supplies and manufacturing resources, competition for
procurement leading to complicated price structures, competition for customer
orders, storage costs, etc. A particularly appealing feature of TAC is that, unlike
in real supply chains, strategies can be tested without risking large amounts of
money, yet unlike in many simulation environments, the other bidders are real
profit-maximizing agents with incentive to perform well, rather than strawman
benchmarks.

In a TAC SCM game, six agents act as computer manufacturers in a simulated
economy managed by a game server. The length of a game is 220 simulated days,
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Customers wishing to buy computers send the agents requests for quotes
(RFQs) consisting of the type and quantity of computer desired, the due date,
a reserve price indicating the maximum amount the customer is willing to pay
per computer, and a penalty that must be paid for each day the delivery is late.
Agents respond to the RFQs by bidding in a first-price procurement auction: the
agent offering the lowest price on each RFQ wins the order. Agents are unable
to see the prices offered by other agents or even the winning prices, but they do
receive a report each day indicating the highest and lowest price at which each
type of computer sold on the previous day.

The number of RFQs sent by customers each day depends on the level of
customer demand, which fluctuates throughout the game. Demand is broken into
three segments, each containing about one third of the 16 computer types: high,
mid, and low range. Each range has its own level of demand. The total number of
RFQs per day ranges between roughly 80 and 320, all of which can be bid upon
by all six agents. It is possible for demand levels to change rapidly, limiting the
ability of agents to plan for the future with confidence.

4 TacTex-06 and the Computer Price Prediction Problem

We now give a brief overview of TacTex-06, and then introduce the problem
addressed in this paper: predicting the price at which each type of computer will
sell in the future. More information on the design of the agent is available in [6].

4.1 Agent Overview

In TacTex-06, tasks are divided between a Supply Manager module and a Demand
Manager module. The Supply Manager handles all planning related to component
inventories and purchases, and requires no information about computer produc-
tion except for a projection of future component use, which is provided by the
Demand Manager. The Demand Manager, in turn, handles all planning related to
computer sales and production. The only information about components required



by the Demand Manager is a projection of the current inventory and future com-
ponent deliveries, along with an estimated replacement cost for each component
used. This information is provided by the Supply Manager.

The goal of the Demand Manager is to maximize the profits from computer
sales subject to the information provided by the Supply Manager. To accomplish
this, the Demand Manager needs to be able to make predictions about the re-
sults of its actions and the future of the economy. Two predictive models are
used to make these predictions: a Demand Model that predicts future customer
demand levels, and an Offer Acceptance Predictor that predicts the probability
of a particular offer winning an order from a customer, as described below.

4.2 Offer Acceptance Predictor

In order to bid on customer RFQs, the Demand Manager needs to be able to
predict the orders that will result from the offers it makes. A simple method of
prediction would be to estimate the winning price for each RFQ, and assume that
any bid below this price would result in an order. Alternatively, for each RFQ the
probability of winning the order could be estimated as a function of the current
bid. This latter approach is the one implemented by the Offer Acceptance Predic-
tor. For each customer RFQ received, the Offer Acceptance Predictor generates
a function mapping the possible bid prices to the probability of acceptance. (The
function can thus be viewed as a cumulative distribution function.) This approach
involves two main components: a particle filter used to generate initial predictions,
and a learned predictor that predicts how the prices of computers will change in
the future.

A visual inspection of each day’s winning prices for each type of computer
in a typical completed game suggests that these prices tend to follow a normal
distribution. To estimate these distributions during a game, the Offer Acceptance
Predictor makes use of a separate particle filter for each computer type. Each of
the 100 particles used per filter represents a normal distribution (indicating the
probability that a given price will be the winning price on the computer) with a
particular mean and variance. The distribution of winning prices predicted by the
particle filter is simply the weighted sum of the individual particles’ distributions,
and from this distribution the function mapping each possible bid price to a
probability of acceptance can be determined. Each filter is updated daily based
on the information made available about computer prices: the high and low prices
reported for the previous day and the offers received from customers.

In order to maximize revenue from the computers sold, the Demand Manager
needs to consider not only the prices it will offer in response to the current day’s
RFQs, but also what computers it will wish to sell on future days. In fact, the
Demand Manager plans ahead for several days and considers future RFQs (pre-
dicted by the Demand Model) as well as current RFQs when making offers. It is
therefore important for the Offer Acceptance Predictor to be able to predict future
changes in computer prices. To illustrate why this is important, Figure 2 shows
the prices at which one type of computer sold during a single game of the 2006
competition. For each day, points representing one standard deviation above and
below the average price are plotted. On most days, there is clearly little variance



between the winning prices, but prices often change drastically over the course of
a few days. This fact suggests that it may be even more valuable to be able to
predict future changes in price than to predict the distribution of winning prices
on a single day. By simply selling a computer a few days earlier or later, it might
be possible for the Demand Manager to significantly increase the price it obtains.

In the remainder of this paper, we describe the use of machine learning meth-
ods to predict the amount by which the average sales price of each type of com-
puter will change in ten days. Once the Offer Acceptance Predictor has learned to
predict this quantity, it can predict the change in average price for any day between
zero and ten days in the future through linear interpolation. No effort is made
to predict changes in the
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4.3 Learning Price Change Predictions

The problem explored in this paper is thus that of learning to predict changes
in sales prices of computers. As discussed in Section 2, making an accurate pre-
diction might depend on adapting to the behavior of the five competing agents.
The structure of the TAC SCM competition encourages such adaptation: after
a seeding round in which agents play games against random opponents, agents
are divided into brackets of six and play a number of games against the same set
of opponents, with the top three agents moving on to the next round. In addi-
tion, after each game a log is provided that details the complete events of the
game, providing much information that was not available to the agent during the
game. No human-made changes are allowed during a round, but agents are free
to automatically adapt based on previous games during a round.

Although it is possible in principle to directly model the bidding behavior of
specific opponents using data from games in the current round or previous rounds,
we use the alternative approach mentioned in Section 2 of modeling the economy
itself, treating opponents as part of the environment. We do so for two reasons.
First, the information available during a game about opponents is extremely lim-
ited. An opponent’s behavior is likely to be heavily dependent on information that
cannot be observed, such as the opponent’s inventory. Second, the behavior of an



agent may be dependent on the mix of

N [Rank[Agent [Average Profit]

opponents in a game and the market T TacTor 08 STA 500
conditions resulting from this mix. We 2_|GoBlueOval $12.60M
. 3 |FreeAgent $12.06 M

were able to observe this fact clearly T OMione $10.35M
from the results of the 2005 competi- 5 |Deep Maize $10.23M
ion. Table 1 sh h r f th 6 [Botticelli $10.11M
tio able shows the S(}O es of the 7 [SouthamptonSCM $10.056M
top 12 (out of 25) agents in the seed- 8 [PhantAgent $9.87M
ing round. Those agents in bold even- 9 MinneTAC 29-863

10 ertacor 9.30

tually advanced to the final round, the 11 Maxon $3.76M
results of which are shown in Table 2. 12 |CrocodileAgent $8.48M

From these tables we can observe that
scores decreased significantly from the
seeding round to the final round as
the competition increased, and in fact,

Table 1. Top 12 agents in the 2005 seed-
ing round. Agents in bold advanced to
the final round.

some agents that were profitable in the [Rank]Agent [Average Profif]
seeding round lost money in the final T [TacTex-05 $4.71M

2 [SouthamptonSCM $1.60M
Tound. AlS(?, several of .the top agents L $0.55M
in the seeding round failed to advance 4 |Deep Maize -$0.22M
to the final round. These observations 5 |[MinneTAC -$0.31M

6 [Maxon -$1.99M]

confirm that, as is common in many
market scenarios, TAC agents can be-  Taple 2. Results of the 2005 final round
have and perform differently depend-

ing on market conditions, and that di-

rectly predicting an opponent’s behavior may be difficult when the opponent is
faced with unfamiliar market conditions. In fact, it might be better to base pre-
dictions on games with similar conditions but different agents than games with
the same agents but different conditions.

The Offer Acceptance Predictor therefore attempts to predict changes in com-
puter prices as a function of observable market conditions. As described in Sec-
tion 4.2, the specific prediction made is the amount by which the average sales
price of each type of computer will change in ten days. To make these predic-
tions, the Offer Acceptance Predictor performs machine learning on data from
past games. Each training instance consists of 31 features representing data avail-
able to the agent during the game, such as the date, estimated levels of customer
demand, and current and recent prices of a given type of computer. The label for
each instance is the amount by which the average price of that computer changes
in ten days. The question addressed in the rest of the paper is how to best make
use of all available data when generating predictors. In the next section, we explain
how this question was answered for the 2006 competition.

5 The 2006 TAC SCM Competition

We now address how TacTex-06 performed prediction in the 2006 competition.
First we describe the choice of opposing agents used in simulations and of a learn-
ing approach, and then we present the results of the final round of competition
and additional experiments.



5.1 Agent Implementations

In order to develop a strategy for learning to make predictions, we ran a number of
games using a variety of competing agents taken from the TAC Agent Repository,’
a collection of agent binaries provided by the teams involved in the competition.?
At the time we designed our agent, only agents from the 2005 competition were
available; however, in the experiments of this section, we make use of additional
agents that have become available since then, including some of the agents that
participated in the 2006 competition, as this allows us to present experiments
involving a wider variety of agents.

We chose four different agent groupings, and ran 50 games with each group.
The groups are shown in Table 3. The first three groups contain TacTex-06 and fif-
teen additional agents. The fourth group includes what appear to be the strongest
agents from the first three groups: TacTex-06, the 2005 version of TacTex, and
the four other agents from the 2006 final round for which binaries are available.

We included TacTex-06 in each group because we are only interested in making
predictions for games in which our agent plays, and we therefore would like to
capture the effect of TacTex-06 on the economy in the predictive models learned.
It is important to note that the choice of predictors can impact the behavior
of TacTex-06 and thus the property of the economy (computer prices) we are
trying to model. For the games played in this section, TacTex-06 used the same
predictors that it used in the 2006 competition, so that the behavior of the agent
is the same for all games (in or out of competition) discussed in this paper. We
ultimately view consideration of this issue to be the responsibility of the agent,
and not the learning process — an agent should be able to account for the fact that
by behaving as its predictor suggests it should, it may be affecting the economy
in a way that makes its predictions incorrect. As the focus of this paper is the
learning process, we omit further discussion of this issue.

[Group[[Agents |

1 TacTex-06, GeminiJK-05, Mertacor-05, MinneTAC-06, PhantAgent-06, RationalAgent-05
2 TacTex-06, TacTex-05, Botticelli-05, CrocodileAgent-05, DeepMaize-05, GoBlueOval-05
3 TacTex-06, DeepMaize-06, Foreseer-05, Maxon-06, MinneTAC-05, PhantAgent-05,

4 TacTex-06, TacTex-05, DeepMaize-06, Maxon-06, MinneTAC-06, PhantAgent-06

Table 3. The agent groups used in the experiments

5.2 Learning Algorithms

When determining the learning approach to be used by TacTex-06, the first task
was to identify a suitable machine learning algorithm. After limited experimenta-
tion (using default parameters and a limited amount of data) with the available
regression algorithms from the WEKA machine learning package [7], we deter-
mined that the most promising candidates were M5 regression trees and additive
regression with decision stumps (an iterative method in which a decision stump

! http://www.sics.se/tac/showagents.php

? The binaries of competing agents would admittedly not be available in a real scenario,
but the approach described here could still be implemented by replacing these binaries
with our own agents designed to exhibit a variety of behaviors.



is repeatedly fit to the residual from the previous step).® The results for Group 2
are shown in Figure 3, and are representative of the results for the other groups
and in our experiments prior to the 2006 competition. For this and all other ex-
periments in this paper except those involving data from the actual competition
(for which a limited number of games are available), results are presented for four
runs of five-fold cross validation (thus for each fold, 10 games are held out as the
test set while a certain sized subset of the remainder is used for training). Root
mean squared error is used as the measure of accuracy, and the values reported
are fractions of the base price (a reference price based on maximum component
costs) for each computer. For reference, we also determined the results of using
a heuristic that performs linear regression on what TacTex-06 believes to be the
average price of each computer over the past 10 days and predicts that the ob-
served trend will continue: an average error of 0.1220 on Group 2, and similarly
high error on other groups.

From these results, we can see that both learning algorithms greatly outper-
formed the heuristic, illustrating the difficulty of the prediction task. Additive re-
gression outperformed M5 trees when sufficiently many games were available (and
this result was statistically significant with at least 95% confidence according to
paired t-tests when eight or more games were used). When only one or two games
were available, M5 trees produced lower errors, but this result was not statistically
significant, suggesting that the op-

timal choice of learning algorithm 01 B -

is unclear in this case and that 0.095 - [T ——
further exploration of the issue £ °%

may be needed. Nevertheless, ad- 2 szz

ditive regression was the only ma- 0.075

chine learning algorithm used by 00 0 15 20 25 s 3
TacTex-06 in the 2006 competi- Number of Games

tion, and it is the algorithm that
will be used for the remainder of
the paper.

Fig. 3. Results of the two learning algo-
rithms using games from Group 2

5.3 Comparing Results for Different Groups of Agents

From Figure 3, it appears that about 30 games are needed for training before
prediction error reaches its minimum level, and about eight games before the
error comes somewhat close to this level. Since a typical round of the TAC SCM
competition involves 16 games, these results are somewhat concerning, as it might
not be possible to learn sufficiently accurate predictors in time for them to be
useful if only data from the current round is used.

We now consider the possibility of training predictors on games involving a
different group (or groups) of agents. For each of the four groups of agents, we
generated predictors by training on 40 games from that group and using four runs

3 For the parameters of these two algorithms, we determined a minimum leaf size of 10
and the choice of a regression tree (not model tree) to be best for M5 trees, and a
shrinkage rate of 0.7 and 200 iterations to best for additive regression.



of five-fold cross-validation as before, but each predictor generated was also evalu-
ated on one fold of each other group, allowing the results to be directly compared
for each fold as part of a paired t-test. In addition, for each group a predictor was
trained on all games from the other three groups combined and evaluated for each
fold of that group. Figure 4 shows the average results of evaluating each model
on each group.

The most important observation from these results is that while the predictive
models that give the best results for each group are those trained on that group
(and this is statistically significant in each case with 99% confidence according to
paired t-tests), the difference is fairly small. It appears that the differences between
the agents in each group do not have a large impact on the nature of computer
price trajectories. While prediction appears to be more difficult for Group 2, this
difficulty seems to affect all models to a similar degree. Also, generalization from
other groups to Group 4 does not appear to suffer from the fact that this group
represents the most competitive economy. Finally, for each group the predictor
trained on all games from the other three groups does about as well as the best
of the three predictors trained on only one of these groups, if not better, suggest-
ing that training a predictor on games from all available groups is an effective
strategy when it is not known which group will give the best results. In fact,
after making this observation during

our gxperimentation prior to t'he com- Test Data

petltloln, wethchosedi.;ot usshtiu; stTrat— Model 7 | 2 | 2 | 7
géyu;’e;irﬁlrouegﬁgitwﬂfg Coilp;?tif;' heuristic]| 0.1173] 0.1220] 0.1074] 0.1107
Because there appeared to be little 1 0.0606] 0.0740] 0.0657] 0.0647
variation between the results for dif- 2 0.0636/0.0711| 0.0676] 0.0656
ferent agents, we learned a single pre- 3 0.0641) 0.0763)0.0615] 0.0634
dictor before the start of the competi- 4 0.0640| 0.0766| 0.0637|0.0597
tion and did not adapt this predictor other 8 || 0.0620|0.0743|0.0641|0.0632

during the competition. The predictor
was trained on all games that we ran
between different groups of agent bina-
ries available at the start of the 2006
competition.

Table 4. RMS error when predictive
models are learned using games from one
group and tested on games from another

group

5.4 Results of the 2006 Final Round

The results of the 2006 final round (consisting of 16 games) are shown in Table 5.
Although it is difficult to assign credit for an agent’s performance to particular
components, an analysis of the game logs shows that TacTex-06 generally sold
computers at higher prices than other agents, which would suggest that the at-
tempt to predict changes in computer prices paid off. In fact, during the first third
of each game, TacTex-06 had a higher average sales price than any opponent for
every type of computer.

Figure 4 shows a comparison between the results of using a fixed predictive
model (here we used the model from Section 5.3 that was trained on all games
from Groups 1, 2, and 3, as Group 4 is very similar to the actual agents competing



in the finals) and the results that would have [Rank[Agent [Average Profit]

been obtained by learning only from completed T [TacTex-06 $5.85M
games. To determine the latter for N com- 2 [PhantAgent $4.15M
3 [Deep Maize $3.58M
pleted games, we averaged the results of 20 4 |Maxon $1.75M
runs in which we randomly chose N games for 5_|Botticelli $0.48M
6 |MinneTAC -$2.70M

training and used the remaining 16 — N games
as the test set, except in the casesof N = 1and maple 5. Results of the 2006 fi-
N = 15, for which we performed 15 runs by us- 1,31 round

ing each game once as the training (N = 1) or

testing (N = 15) set. Although we could have simply trained on the first N games
to give the actual results that would have been obtained during the competition,
we felt that this would give results that were too noisy. Generating the results as
we did also requires the assumption that game order is insignificant (i.e., no trend
of changes as agents adapt over time), which appeared to be the case. The results
show that the fixed predictor performed as well as or better than the alternative
for at least the first 8 games, and somewhat worse afterwards.

5.5 Additional Experiments

In order to better measure the ef- 0.105 —

. . 01 * fixed model -
fect of learning to predict changes _ oo learned model -~
. . o 0.09 N\ 9
in computer prices on the perfor- & oossf *. g

[} 0.08 N 1

mance of TacTex-06, we performed 2z oo7s | e, .

oy . . o7 ¢ T - 1

two additional experiments using 0.065 |- S
o g . . 0.06 L L L L L L .

variations of TacTex-06 in which 0 2 4 6 8 10 12 14 16

this ability was weakened or re- Number of Games

moved. In each experiment, 30 Fig.4. Comparison between the fixed pre-

games were run using the agents gictor and learning from games
of Group 4 (as this group contains

the four opponents from the 2006 finals for which binaries are available), except
that TacTex-05 was replaced with an altered version of TacTex-06. In Experiment
1, the altered version predicted no changes in computer prices, and in Experiment
2, the altered version used the heuristic from Section 5.2 in place of the learned
predictor. Table 6 shows the differences between the scores and revenues of the
normal and altered versions. Differences are statistically significant with 99% con-
fidence according to paired t-tests. The difference between scores in each case is
larger than TacTex-06’s margin of victory, and the difference is largely accounted
for by the loss in revenue. From these results we conclude that learning to predict
the changes in computer prices had a significant impact on the performance of
TacTex-06 in the 2006 competition.

6 Additional Learning Approaches

In the previous section, we chose between using a fixed predictor trained on a vari-
ety of games from our own simulations and the alternative of learning a predictor
using only the games from the current round of competition. In this section, we
explore the use of more sophisticated learning approaches that make use of both
sources of data.



|Ezp. #| Description || Score |Revenue|

[ 1 ] no price change prediction[[-4.27M[ -3.05M]|
| 2 [heuristic price change prediction[[-1.79M| -1.21M]|

Table 6. Experiments comparing the performance of one altered version of TacTex-
06 and one unaltered version. Numbers represent the difference between the two.

One way to make use of all available game data is to train on some combination
of data from the current round (which we will call “new data”) and other sources
(which we will call “old data” and could include games from past rounds or
the simulated competition of the previous section). This type of approach has
previously been applied to the TAC Travel scenario (a separate competition) [8].
The primary difficulty with this approach is deciding what the ratio of new data
to old data should be. When only a few games have been played, it may be better
to place more weight on old data, but as more games are played, it likely makes
sense to decrease the weight of the old data until at some point only new data is
used. This hypothesis is supported by Figure 4.

We address this issue by using leave-one-out cross validation to choose the
fraction of old data to be added to the complete set of new data. To test a par-
ticular choice of fraction when N games are available from the current round, we
use each game once as the testing set while training a predictor on the combina-
tion of that fraction of old data and the remaining N — 1 games. The fraction
that produces the highest average accuracy over all N trials is then chosen, and
the predictor to be used is trained on all N games plus that fraction of the old
data. When only one game is available, we simply set the fraction to 1 and use
all available old data. It is important to note that when taking a fraction of the
old data, we are taking that fraction from all games, and not all data from that
fraction of the games. We note that this approach may cause a larger fraction of
old data to be used than is optimal because evaluations are made using predictors
trained on N — 1 games instead of the full N games.

In the experiments of this section, we apply this approach of mixing data to
the 2006 final round using all games from Groups 1, 2, and 3 of the previous
section as the old data. To choose the fraction of old data to use at each step, we
test each of 0, 1, 2, 3, 4, and 5 percent as described and choose the best. Fractions
over five percent do not appear to be needed. As the old data consists of 150
games, each percent is 1.5 games worth of data. (The use of a more advanced
approach to searching for the best fraction might improve accuracy somewhat at
the cost of more time spent training predictors.) Results are shown in Figure 5.
The fraction of old data determined to be best decreased from 5% when two games
were available to 1% when 15 games were available.

Instead of combining the old and new data, another possible approach is to
combine the predictors themselves into an ensemble. We present here a method
that is somewhat analogous to the data combination approach — instead of finding
weights for the old and new data, we find weights to be used in combining an “old
predictor” and a “new predictor” through weighted averaging of their predictions.
Given two predictors and a set of training data, we determine the weights of each
predictor by evaluating both predictors on each training instance and performing
linear regression to find the weights that best combine these outputs to match



the correct labels. It is interesting to note that the weights may not sum to 1 —a
sum below 1 might indicate that the changes in computer prices for a particular
group of agents are less pronounced than for the groups on which the predictors
were trained. Negative weights are also possible.

As with the experiments on combining training data, we apply this approach
to the 2006 final round using predictors trained on games from Groups 1, 2, and 3
of the previous section as the old predictors. To determine the correct weights, we
again use a form of leave-one-out cross validation. As described above, we perform
linear regression on the outputs of both the old and new predictors on data from
all available games; however, to determine the outputs of the new predictor for a
specific game, we use a predictor trained on all games but that one. This use of
cross-validation is needed to prevent overfitting: if the weight of the new predictor
is determined by performing the regression step on the full new predictor itself,
the new predictor will likely receive nearly all of the weight because it was trained
specifically on the same data being used to learn the weights. Once the weights
are determined, the full new predictor is trained on all available games and used
along with the old predictor in the ensemble. When only one game is available,
the old predictor is used by itself.

We are now left with the question of which predictor to use as the old predictor.
Rather than using a single predictor, we will in fact use all of them: the predictors
trained on each of the three groups alone along with the predictor trained on all
three. The regression step described above can be performed using any number
of predictors, and so we choose to perform linear regression on five variables: a
weight for each of the four old predictors and a weight for the new predictor.
For comparison, we also present the results of performing regression using only
the four old predictors without learning a new predictor. The results of both
approaches are shown in Figure 5.

We can see from the results that none of the approaches described in this
section significantly outperform the fixed model for the first four games, but that
both the method of combining data and the method of combining new and old
predictors outperform the fixed and learned predictors when six or more games are
available for training. The method of combining new and old predictors results
in the lowest error, and this result is statistically significant with at least 95%
confidence after at least six games have been played.

It should be noted that in the actual TAC SCM competition, the long training
times of the learning approaches described in this section would be an issue, as
there is only limited time between games in which to perform learning. Still, the
results of this section suggest that significant improvement over the methods of
the previous section should be possible.

7 Related Work

A number of agent descriptions for TAC SCM have been published presenting a
wide variety of approaches to the tasks faced by an agent.* For instance, agents

* See http://tac.eecs.umich.edu/researchreport.html for a complete collection of
papers on TAC agents.
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have addressed the problem of bidding on customer RFQs that is described in this
paper by using solutions ranging from game-theoretic analysis of the economy [9]
to fuzzy reasoning [10].

The learning approach in which we combine previously trained predictors is an
example of an online learning method designed to make use of a number of experts,
a class of methods that has received much attention and includes the weighted
majority algorithm for binary classification problems [11]. Rettinger et al. [12]
take a somewhat similar approach to modeling opponents in a robotic soccer
task. Given a number of existing opponent models, they quickly learn a model for
a new opponent by using an extension of AdaBoost in which the existing models
are included among the weak learners used in the boosting process. In general, the
methods described in Section 6 can be considered instances of inductive transfer
or transfer learning, in which experience with one task or set of tasks is used to
improve learning on another task [13].

8 Conclusions and Future Work

In this paper we described a number of approaches to learning to predict computer
sales prices in the TAC SCM domain. The use of this prediction was shown to
be an important part of the winning performance of TacTex-06 in the 2006 com-
petition. One reason this prediction problem is difficult is that while trends in
computer prices depend on opponent behavior, this behavior is difficult to model
directly because little information is provided about the actions of opponents. We
presented methods that addressed this difficulty by modeling the economy itself
and by making use of game simulations involving a variety of opponent strategies
to determine how patterns in computer prices vary for different groups of agents.

There are many ways in which this work could be extended. The effects of
a wider variety of opponent behavior could be explored by designing our own
agents to behave in particular ways. Many ensemble methods other than weighted
averaging of predictors could be tried. It is not clear how adaptation would be
affected if other agents are themselves adapting in ways that impact the economic
properties being modeled.
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