

Ship Patrol:

Multiagent Patrol under Complex Environmental Conditions

Noa Agmon, Daniel Urieli and Peter Stone Department of Computer Science The University of Texas at Austin {agmon, urieli, pstone}@cs.utexas.edu

Full paper to appear in AAAI'11

Multiagent Frequency-Based Graph Patrol Problem:

Team of k agents should repeatedly visit nodes of graph G=(V,E) while minimizing idleness at each node

Current Strategies

SingleCycle

All agents travel in coordination along one cycle

UniPartition

V(G) divided into k subgraphs, each agents patrols inside

its subgraph

Optimal strategy: Intractable

Optimal strategy: Intractable

Complex Environments

Example: Marine Environments

Time of travel does not correspond to physical distance

- Influenced by water currents, winds, waves
- No triangle inequality → Cannot use common approximation algorithms

Current strategies are not necessarily suitable

New, General Strategy

MultiPartition

V(G) divided into $m \le k$ subgraphs, with possibly more than one agent patrolling in each subgraph

Biconnected Outerplanar Graphs

A cycle with non intersecting shortcuts

MultiPartition Optimal Strategy Intractable

Finding an optimal MultiPartition strategy that minimizes worst idleness in G is NP-Hard.

Solving the problem in biconnected outerplanar graphs is also

UTSeaSim

Custom-designed naval surface navigation simulator

Realistic 2D physical models of marine environment and sea vessel

Contains three modules:

- 1. Sea Environment wind, currents, obstacles
- Ship physical properties, sensing and actuators
- 3. Decision Making autonomous agent controlling the ship

Algorithm HeuristicDivide

- Examine all divisions of the given cycle into two or three cycles
- 2. Choose division that improves and minimizes idleness
- Continue recursively with each cycle in the division

Implemented in UTSeaSim Significantly improves idleness compared to:

- SingleCycle
- 2. Trivial adjustments

(SinglePatrition cannot be computed)

