SDS 321

Lecture 4

Bayes Rule



Bayes Rule

Figure: Thomas Bayes, 1701-1761. English statistician, philosopher and
Presbyterian minister

Bayes' unpublished manuscript was significantly edited by Richard
Price, before it was posthumously read at the Royal Society.



Revisiting the Anita/Run Example

Recall the probability tree for the example with Anita going for a run.
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P(RSNW) = 0.9 x 0.25

RNW) =0.1x 0.8

RNWe) = 0.1 x 0.2

We  P(ReNWe) = 0.9 x 0.75
Question:

Suppose you're Anita’s friend and you live in a different city. If you know
that Anita went for a run, then what is the probability that it rained there? 3



Revisiting the Anita/Run Example

Question: If you know that Anita went for a run, then what is the probability
that it rained? i.e. P(Rain|Run) = P(R|W)
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P(ROW) = 0.1 x 0.8

P(RNW®) = 0.1 x 0.2

P(R°NW) = 0.9 x 0.25

What do we know? ‘We  p(ReNWe) = 0.9 x 0.75

P(Run|Rain) = P(W|R) = 0.8
P(Run and Rain) = P(RNW) =0.1 x 0.8



Revisiting the Anita/Run Example

Question:

If you know that Anita went for a run, then what is the probability that it
rained?

Recall events: R: Rain, W: Went for a run
We want to know P(R|W)
« The multiplication rule for two events: P(RNW) = P(R|W)P(W)

. SoP(R|W) = P(RNW)
—PoA)—

 Numerator: From the tree, and the multiplication rule:
P(RNW) =P(W|R)P(R)=0.8 x 0.1 =0.08

« Denominator: How do we find P(W) ? Use Total Probability Theorem °



Total Probability Theorem

LetA,,..., A, be a partition of Q, such that P(A,) > O for all A,

A3




Total Probability Theorem

 LetA,,..., A, be a partition of Q, such that P(A;) > O for all A,
* Let B be an event.




Total Probability Theorem

Note that B=U,(A,NB).
Therefore, P(B) = P(A,NB) + P(A,NB) + P(A;1B) + P(A,NB).
By the multiplication rule, P(A; N B) = P(A, )P(BJA ).

S0, P(B) = P(A)P(B|A) + - - - + P(A,)P(BIA,).

This is known as the
Total Probability Theorem




Back to the Anita/Run Example

* Finding P(W):

* First write Q as an union of two disjoint events (R and R°®).
« W=WNQ=WNRUR°) =(WNR) U (WNR®)
 Now additivity gives
P(W) =P(WNR)+P(W NRe°)
= P(W|R)P(R) + P(W|R¢)P(R¢)

=0.08+0.25x0.9=0.3



Revisiting the Anita/Run Example

P(RN W)

P(le): P(W)

_ P(WIR)P(R)
~ P(W|R)P(R) + P(W|R)P(R¢)

= 0.08/0.3 ~ 0.27

This last step is known as Bayes Rule.
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Bayes Rule

« Simple rule to get conditional probability of A given B, from

the conditional formula of B given A.

P(B|A)P(A)
P(B)
_ P(B|A)P(A)
~ P(B|A)P(A) + P(B|AS)P(Ac)

P(A|B) =

11



ldentifying when to use Bayes Rule

You have a question asking for P(A|B)

First check what information is given. Read each sentence and write
down the probabilities that you have: Are they conditional? If so,
what is the “given” part?

If you have P(A|B) or P(A°|B) then you are all set.

If not, then you have to use Bayes rule.

To use Bayes Rule, you will need to know P(B|A), P(B|A°) and P(A)

|ldentify and insert these probabilities into the equation for Bayes
Rule, and calculate P(A|B)
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Bayes Rule: Typical Scenario

Consider a test for some disease.
We can directly observe the outcome of the test.

If the test isn't 100% accurate, we can'’t directly infer whether we
have the disease using the test resuilt.

We have two possible causes for a positive test result:

« We have the disease, and the test is correct.
 We don’t have the disease, and the test is a false positive.

We want to infer which hidden cause underlies our observation.
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Bayes Rule: Example 1

Let's add some numbers to the disease testing example:
 The disease affects 2% of the population.
» The false positive rate is 1%.
« The false negative rate is 5%.

If you take the test and the result is positive, we want to know:

Given that you tested positive, what is the chance you have the
disease?

Let’s define events, and write what we know.
T: Test Positive D: Have disease
P(D) =0.02 P(T¢|D) = 0.05 P(T|D¢) = 0.01

We want P(D|T)
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Bayes Rule: Example 1

Given that you tested positive, what is the chance you have the disease?

Bayes Rule gives us:

_ P(T|D)P(D)
PIDIT) = P(T|D)P(D) + P(T|D€)P(D€)

Bayes Rule helps us go from the conditional probability of an
observation given a hidden cause (which we usually know), to the
conditional probability of a hidden cause given an observation (which

we usually care about!)
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Bayes Rule: Example 1

So, let's plug in the numbers. Recall

P(D) = 0.02 P(T¢|D) = 0.05 P(T|D) =0.01
So, P(T|D) =1 —0.05 = 0.95.

P(T|D)P(D)
(TID)P(D) + P(T|D<)P(DC)
0.95 x 0.02

~0.95 x 0.02 + 0.01 x 0.98
01
_0019 _

~0.0288

P(DIT) =75
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Bayes Rule: Example 2

Alice is sending a coded message to Bob using “dots” and “dashes,”
which are known to occur in the proportion of 3:4 for Morse code.

Because of interference on the transmission line, a dot can be
mistakenly received as a dash with probability 1/8 and vice-versa.

If Bob receives a “dot”, what is the probability that Alice sent a “dot”?
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Bayes Rule: Example 2

Alice is sending a coded message to Bob using “dots” and “dashes,”
which are known to occur in the proportion of 3:4 for Morse code.

Because of interference on the transmission line, a dot can be
mistakenly received as a dash with probability 1/8 and vice-versa.

If Bob receives a “dot”, what is the probability that Alice sent a “dot”?

Define Events:

dotS: dot sent dotR: dot received
dashS: dash sent dashR: dash received
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The Monty Hall Problem
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A game show has three doors. There is a car behind one door and a
goat behind each of the other two doors. The host knows behind which
door the car is.

You are a contestant on this game show. You pick a door, say A.

To build suspense, the host opens one of the other two doors (say B)
revealing a goat. He asks, do you want to stick with your initial choice
of door or switch?

What do you do? Does it make a difference? 19



