

SDS 321

Lecture 5

Statistical Independence

Statistical Independence

- Let's look at the experiment where two fair coins are tossed together.
- Suppose

$$\begin{array}{ll} H_1: \text{event that the dime lands a Head} & P(H_1) = \frac{1}{2} \\ H_2: \text{event that nickel lands a Head} & P(H_2) = \frac{1}{2} \end{array}$$

- What is $P(H_1|H_2)$? Read as probability of H_1 “given” H_2
- $P(H_1|H_2) = \frac{P(H_1 \cap H_2)}{P(H_2)} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2} = P(H_1)$
- Knowing outcome of H_2 doesn't give me additional info on H_1
- So $P(H_1|H_2) = P(H_1)$, and this means H_1 and H_2 are independent.
- In general,

If $P(A|B) = P(A)$, we say the events A and B are independent.

Statistical Independence

- The general multiplication rule gives us:
- $P(A \cap B) = P(A|B) \times P(B)$
- If A and B are independent, $P(A \cap B) = P(A) \times P(B)$
- This definition is preferred because it is still defined when $P(B) = 0$
- Independence is a symmetric property, so that if A is independent of B, then B is independent of A.

Therefore:

If two events A and B are independent,

$$P(A \cap B) = P(A)P(B)$$

Also, $P(A|B) = P(A)$ and $P(B|A) = P(B)$

Statistical Independence

Example:

A gambler is rolls four fair dice. What is the probability that there is at least one 6 in the four rolls?

- Each roll is independent. Let X_i denote the event that there is no six in the i^{th} roll.
- $P(\text{at least 1 six in 4 rolls}) = 1 - P(\text{no sixes in 4 rolls})$
$$= 1 - P(X_1 \cap X_2 \cap X_3 \cap X_4)$$
$$= 1 - P(X_1)P(X_2)P(X_3)P(X_4)$$
$$= 1 - \left(\frac{5}{6}\right)^4 = 0.518$$

Statistical Independence

Theorem. If A and B are independent ($A \perp B$), then so are

- ▶ A and B^c
- ▶ A^c and B
- ▶ A^c and B^c

Statistical Independence

Theorem. If A and B are independent ($A \perp B$), then so are

► A and B^c

$$\begin{aligned} \blacktriangleright P(A \cap B^c) &= P(A) - P(A \cap B) \\ &= P(A) - P(A)P(B) \\ &= P(A)(1 - P(B)) = P(A)P(B^c) \end{aligned}$$

► A^c and B

► A^c and B^c

Mutual Independence

Three events A_1 , A_2 , and A_3 are said to be **Mutually Independent** if :

A_1 , A_2 , and A_3 are Pairwise Independent:

1. $P(A_1 \cap A_2) = P(A_1)P(A_2)$
2. $P(A_1 \cap A_3) = P(A_1)P(A_3)$
3. $P(A_2 \cap A_3) = P(A_2)P(A_3)$

And

4. $P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$

Note:

- The fourth condition does not imply the first three, and the first three do not imply the fourth.
- Mutual Independence implies Pairwise Independence.
- Pairwise Independence does not imply Mutual Independence.

Mutual Independence

$P(A \cap B \cap C) = P(A)P(B)P(C)$ does not imply Pairwise Independence

Example:

Toss two fair dice (red and white).

Event A: Red die outcome is odd:

Event B: Red die outcome is ≤ 3

Event C: Sum of the faces is 9

$$P(A) = \frac{1}{2}$$

$$P(B) = \frac{1}{2}$$

$$P(C) = 4/36 = 1/9$$

$$P(A \cap B \cap C) = 1/36 = P(A)P(B)P(C) = (1/2)(1/2)(1/9) = 1/36$$

So the 4th condition is true.

Mutual Independence

$P(A \cap B \cap C) = P(A)P(B)P(C)$ does not imply Pairwise Independence

Let's check if these events are pairwise independent:

Event A: Red die outcome is odd:

Event B: Red die outcome is ≤ 3

Event C: Sum of the faces is 9

$$P(A \cap B) = 12/36 = 1/3$$

$$P(A) \times P(B) = 1/2 \times 1/4 = 1/8. \text{ So } P(A \cap B) \neq P(A)P(B)$$

$$P(A \cap C) = 2/36 = 1/18$$

$$P(A) \times P(C) = 1/2 \times 1/9 = 1/18. \text{ So } P(A \cap C) = P(A)P(C)$$

$$P(B \cap C) = 1/36$$

$$P(B) \times P(C) = 1/2 \times 1/9 = 1/18. \text{ So } P(B \cap C) \neq P(B)P(C)$$

So A, B, and C are not pairwise independent.

Mutual Independence

Pairwise Independence does not imply $P(A \cap B \cap C) = P(A)P(B)P(C)$

Example:

Toss two fair dice (red and white).

Event A: Sum of the faces is 7

Event B: Red die outcome is 3

Event C: White die outcome is 4

$$P(A) = 6/36 = 1/6$$

$$P(B) = 6/36 = 1/6$$

$$P(C) = 6/36 = 1/6$$

$$P(A \cap B) = 1/36 = P(A)P(B)$$

$$P(A \cap C) = 1/36 = P(A)P(C)$$

$$P(B \cap C) = 1/36 = P(B)P(C)$$

$$P(A \cap B \cap C) = 1/36$$

$$P(A)P(B)P(C) = 1/216$$

Not equal!

So the 4th condition is not met.

So A, B, and C are pairwise independent.

Mutual Independence

- ▶ **Definition.** Events A_1, \dots, A_n are mutually independent if for any subset S of $\{1, \dots, n\}$ we have $P(\cap_{i \in S} A_i) = \prod_{i \in S} P(A_i)$.
- ▶ Also, any combination of a set of events and the complements of each the remaining events are mutually independent too. i.e. if A, B, C are mutually independent, then so are A^c, B^c, C and A, B^c, C or A^c, B, C^c etc.

- Mutual Independence implies Pairwise Independence.
- Pairwise Independence does not imply Mutual Independence.

Conditional Independence

Definition : Two events A and B are conditionally independent given another event C if $P(A \cap B|C) = P(A|C)P(B|C)$ \rightarrow equation (1)

An alternative way to state conditional independence is:
 $P(A | B \cap C) = P(A|C)$

We can derive this second equation from the first one:

$$\begin{aligned} P(A \cap B|C) &= P(A \cap B \cap C) / P(C) \\ &= P(A|B \cap C) P(B \cap C) / P(C) \\ &= P(A|B \cap C) P(B|C) P(C) / P(C) \end{aligned}$$

So $P(A \cap B|C) = P(A|B \cap C) P(B|C)$ \rightarrow equation (2)

From equations (1) and (2), $P(A|B \cap C) = P(A|C)$, assuming $P(B|C) \neq 0$

Conditional Independence

The meaning of conditional independence is basically, that if A and B are conditionally independent given C,

If we know that C occurred, then additionally knowing the outcome of B doesn't alter the probability of A.

Toothache example:

A patient goes to the dentist with a toothache. There could be a cavity. The dentist checks the tooth with a probe, and the probe will catch if there is a cavity. Let the events be:

Catch: Probe catches, Cavity: Cavity present, Toothache: Patient has toothache

Catch is conditionally independent of toothache, given cavity.

$$P(\text{catch} \mid \text{toothache and cavity}) = P(\text{catch} \mid \text{cavity})$$

$$P(\text{catch} \mid \text{toothache and no cavity}) = P(\text{catch} \mid \text{no cavity})$$

Each of toothache and catch are caused by cavity, but they don't have an effect on each other.

Conditional Independence

Example 1: Experiment involves two independent tosses of a fair coin.

Let H1: 1st toss is a head
 H2: second toss is a head
 D: the two tosses have different results

Are H1 and H2 independent?

Are H1 and H2 conditionally independent given D?

Conditional Independence

Example 2:

- Consider two urns, each containing 100 balls. The first urn contains all red balls. The second urn contains all blue balls.
- We select an urn at random.
- We select a ball from the urn, note it's color, and put it back. We then select another ball from the urn, note it's color, and put it back.
- Define events:
 - A : event that the first urn was chosen
 - R_1 : event that the first ball was red
 - R_2 : event that the second ball was red
- Are R_1 and R_2 independent?
- What if we condition on the chosen urn?

Mutual vs. Conditional Independence

In summary, from the previous two examples:

- If A and B are independent, it does not imply that A and B are conditionally independent given C.
- If A and B are conditionally independent given C, then A and B don't need to be independent themselves.