

SDS 321

Lecture 9

Functions of Random Variables
and
Cumulative Distribution Functions (CDF)

Functions of Random Variables

- ▶ A function of a random variable is also a random variable.
if $Y = g(X)$ then we have:

$$p_Y(y) = \sum_{\{x|g(x)=y\}} p_X(x).$$

Example

Let X be a discrete random variable with PMF given by the table below:

<u>x</u>	1	2	3	4
<u>$p_X(x)$</u>	1/6	1/6	1/6	1/2

Let $Y = X - 1$. What is the PMF of Y ?

Let $Z = 2X - 1$. What is the PMF of Z ?

Functions of Random Variables

Example answer

Let X be a discrete random variable with PMF given by the table below:

<u>x</u>	1	2	3	4
<u>$p_X(x)$</u>	1/6	1/6	1/6	1/2

Let $Y = X - 1$. What is the PMF of Y ?

<u>x</u>	1	2	3	4
Y	0	1	2	3
$P_Y(y)$	1/6	1/6	1/6	1/2

Let $Z = 2X - 1$. What is the PMF of Z ?

<u>x</u>	1	2	3	4
Z	1	3	5	7
$P_Z(z)$	1/6	1/6	1/6	1/2

Cumulative Distribution Function

The Cumulative Distribution Function (CDF) of a random variable is the function

$$F(x) = P(X \leq x)$$

The CDF gives us the probability that the variable takes a value less than or equal to x .

Property of a valid CDF: $0 \leq F(x) \leq 1$ for all x .

- (1) $F(x) = P(X \leq x)$
- (2) $0 \leq F(x) \leq 1$ for all x .
- (3) If $x \leq y$ then $F(x) \leq F(y)$.

Cumulative Distribution Function

Example: Obtaining the CDF from the PMF

Suppose the range of a discrete random variable is $\{0, 1, 2, 3, 4\}$ and its probability mass function is $P(X = x) = x/10$.

What is its cumulative distribution function?

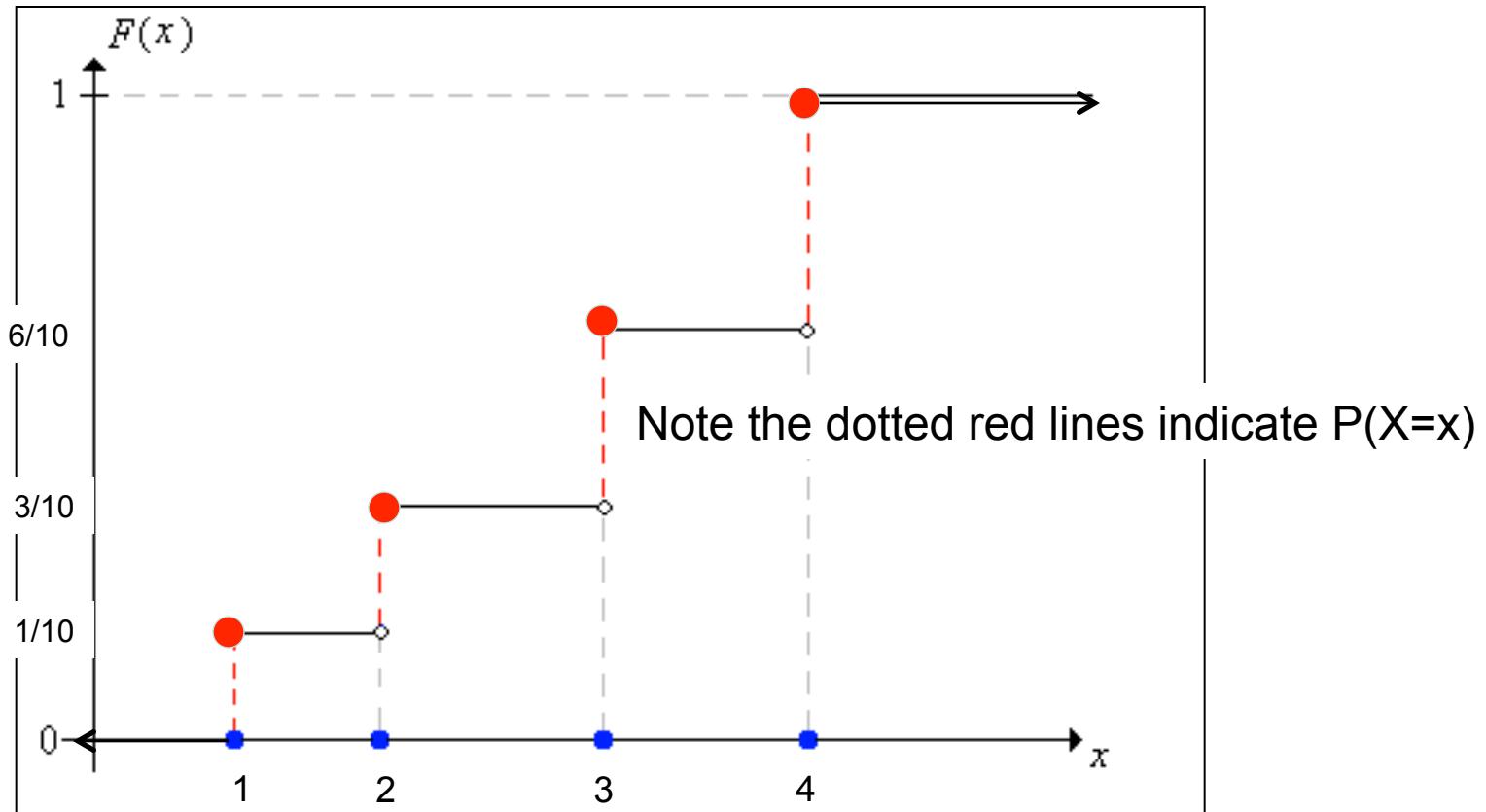
$$\text{For } x < 1, F(x) = \sum_{x_i \leq 0} P(X = x_i) = P(X = 0) = 0$$

$$\text{For } (1 \leq x < 2), F(x) = \sum_{x_i \leq 1} P(X = x_i) = P(X=0) + P(X=1) = 1/10$$

For $(2 \leq x < 3)$, $F(x) = P(X=0) + P(X=1) + P(X=2) = 3/10$, and so on, to get:

$$F(x) = \begin{cases} 0 & x < 1 \\ \frac{1}{10} & 1 \leq x < 2 \\ \frac{3}{10} & 2 \leq x < 3 \\ \frac{6}{10} & 3 \leq x < 4 \\ 1 & 4 \leq x. \end{cases}$$

Cumulative Distribution Function



Cumulative Distribution Function

Example: Obtaining the CDF from the PMF

Let X be a discrete random variable with the following PMF

$$P_X(x) = \begin{cases} 0.3 & \text{for } x = 3 \\ 0.2 & \text{for } x = 5 \\ 0.3 & \text{for } x = 8 \\ 0.2 & \text{for } x = 10 \\ 0 & \text{otherwise} \end{cases}$$

Find and plot the CDF of X .

Cumulative Distribution Function

Example: Obtaining PMF from CDF

A discrete random variable X has the cumulative distribution function

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{10} & 0 \leq x < 1 \\ \frac{3}{10} & 1 \leq x < 2 \\ \frac{5}{10} & 2 \leq x < 4 \\ \frac{8}{10} & 4 \leq x < 5 \\ 1 & 5 \leq x. \end{cases}$$

Determine the probability mass function of X

Cumulative Distribution Function

The cumulative distribution function only changes value at 0,1,2,4,5. So the range of X is $\{0,1,2,4,5\}$.

$$F(X=0) = 1/10, \text{ so } P(X=0) = 1/10$$

$$F(X=1) = P(X=0) + P(X=1) = 3/10, \text{ so } P(X=1) = 2/10$$

and so on, to get:

x	0	1	2	4	5
$P(X=x)$	$1/10$	$2/10$	$2/10$	$3/10$	$2/10$

Cumulative Distribution Function

Example: Obtaining PMF from CDF

Discrete random variable Y has the CDF $F_Y(y)$ as shown:

Find:

(a) $P[Y < 1]$

(b) $P[Y \leq 1]$

(c) $P[Y > 2]$

(d) $P[Y \geq 2]$

(e) $P[Y = 1]$

(f) $P[Y = 3]$

(g) $P_Y(y)$

