
Enforcing Liveness in Autonomous Traffic Management

Appendix: Proofs of the Theorems *

Abstract

This file contains the proofs of the theorems in a paper en-
titled “Enforcing Liveness in Autonomous Traffic Manage-
ment” that appears in the proceedings of Twenty-Fifth Con-
ference on Artificial Intelligence (AAAI-11).

Liveness of the Batch Policy with Locking
Theorem 1 When an intersection manager in AIM uses the
batch policy with locking, a vehicle will eventually get a
reservation if every vehicle resends a request message after
receiving a reject message.

Proof. The cost function we used in the batch policy is

f (wait) = a× (wait)b,

where a and b are positive constants and wait is the esti-
mated amount of time the vehicle has been waiting to enter
the intersection. This cost function is a monotonically in-
creasing function. Therefore, the cost strictly increases with
the time a vehicle spends waiting at the intersection. If a ve-
hicle ν keeps waiting to enter the intersection, the cost of ν

will eventually exceed the given threshold and get locked.
The batch policy, when the locking mechanism is acti-

vated, grants a reservation to the locked vehicle with the
highest cost first in a batch, and then grant reservations to
a few other vehicles whose trajectories do not conflict with
the trajectory of the vehicle with the highest cost as well as
each other. If (a) ν keep sending requests; (b) all vehicles in
front of ν keep sending requests; and (c) all vehicles with
higher costs on the other incoming roads also keep sending
requests. Then the batch policy grants at least one reserva-
tion to any locked vehicle in each batch processing. Since
the number of vehicles with higher costs than ν is finite, ν

will eventually get a reservation and enter the intersection
after a finite number of batch processing. Since no vehicle
can stay inside the intersection forever in AIM, ν will even-
tually leave the intersection as well. 2

* Author: Tsz-Chiu Au (chiu@cs.utexas.edu). Department of Com-
puter Science, The University of Texas at Austin. Copyright
c©2011. All rights reserved.

Nonexistence of Hard Gridlock
Theorem 2 If the body of a discretized road network G is
strongly connected (every position is reachable from every
other position), there can be no hard gridlock in G.

Proof. Let Gbody = (Pbody,Ebody) be the body of G where
Pbody = P+ \(Psrc ∪Pdst). Suppose there exists a hard grid-
lock G′ = (P′,E ′) in G. Clearly, (P′ ∩Pdst) = /0 because all
positions in P′ are occupied while all destinations in Pdst are
unoccupied, since any vehicle that entered a destination in
the last time step has been removed from the network. There-
fore, P′ ⊆ (Pbody∪Psrc). Without loss of generality, consider
a path τ from a position p1 ∈ P′ to a destination pn ∈ Pdst.
τ exists because (1) by the definition of destinations there
exists pn−1 ∈ Pbody such that pn ∈ next(pn−1), and (2) ei-
ther p1 = pn−1 or there exists a directed path from p1 to
pn−1 since either (a) if p1 ∈ Pbody, Gbody is strongly con-
nected; or (b) if p1 ∈ Psrc, there exists p2 ∈ Pbody such that
p2 ∈ next(p1) by the definition of sources, and there exists
a directed path from p2 to pn−1 since Gbody is strongly con-
nected. Let τ be 〈p1, p2, . . . , pn〉, where n≥ 2. On τ there ex-
ists at least one position not in P′ (e.g., pn). Let pk be the first
node on τ that is not in P′, where k ≥ 2 (i.e., pi ∈ P′ for all
1 ≤ i < k but pk 6∈ P′). Then we have pk ∈ next(pk−1) ⊆ P′
(by the definition of hard gridlock) but pk 6∈ P′. Therefore, a
contradiction occurred and no hard gridlock exists. 2

Liveness of Road Network without SGDC
In this section, we assume all vehicle controllers are de-
terministic: a vehicle ν at a position p will always choose
one and only one next position from (p) (i.e., |Πν(p)|= 1).
A consequence of this assumption is that when a vehicle
ν is spawned it has already chosen the path towards its
destination (we exclude the deterministic controllers that
do not lead the vehicles to the destinations). Let τchosen =
〈p1, p2, . . . , pn〉 be the chosen path, where p1 = src(ν) and
pn = dst(ν), such that the controller of ν only chooses the
positions on this path to move into (i.e., Πν(pi) = {pi+1}
for 1 ≤ i < n). We assume chosen paths are finite. Since
the choices made by deterministic controllers are time-
independent, let chosenν(t) = chosenν(pi) = pi+1 be the
next chosen position at pi, for 1≤ i < n and any time t.

Lemma 1 A vehicle ν will eventually obtain the right of
way of its chosen next position p = chosenν(pos(ν)) if

1) the traffic control mechanism Ψp for p is open; and
2) p is unoccupied repeatedly until ν gets the right of way

of p (i.e., the following statement holds until ν get the
right of way of p: at any given time t, there exists a time
t ′ ≥ t such that p is unoccupied at time t ′).

Proof. Let t0 be the initial time at which ν starts to choose
p. One of the following four cases occurs:
Case 1 p is occupied. ν cannot move into p and does not

have the right of way of p;
Case 2 p is unoccupied and p is unmanaged. ν has the right

of way to enter p;
Case 3 p is unoccupied, p is managed and Ψp gives ν the

right of way; and
Case 4 p is unoccupied, p is managed but Ψp does not give

ν the right of way.
In Case 2 and Case 3, the vehicle obtains the right of way at
t0. In Case 1 and Case 4, the vehicle does not get the right
of way at t0 and has to wait until the next time step (t0 + 1)
to check whether Case 2 and Case 3 occur. Basically, the
checking process repeats until either Case 2 or Case 3 oc-
curs, and the question is whether neither Case 2 nor Case 3
occurs in every time step. Since p is unoccupied repeatedly,
Case 1 would not occur indefinitely. Let t1, t2, . . . be the time
at which p is unoccupied (before ν get the right of way of
p). If p is unmanaged, ν gets the right of way as soon as p
is unoccupied at t1 (i.e., Case 2 occurs). If p is managed, Ψp
will check to see if it can grant the right of way to ν at t1,
t2, Since Ψp is open, there exists i ∈ N such that ν gets
the right of way at ti (i.e., Case 3 occurs and Case 4 would
not occur indefinitely). Thus there exists a time at which ν

obtains the right of way of p. 2

Lemma 2 A vehicle ν will eventually move into its chosen
next position p = chosenν(pos(ν)) if
1) the coordination mechanism Λp at p is fair; and
2) ν gets the right of way of p repeatedly until ν moves into

p (i.e., the following statement holds until ν moves into
p: at any given time t, there exists a time t ′ ≥ t such that
ν ∈ permitted(p, t ′)).

Proof. Let t0 be the initial time at which ν starts to choose p.
Let t1, t2, . . . be the time steps at which ν ∈ permitted(p, ti)
before ν moves into p, for i = 1,2, At time t1, one of the
following three cases occurs for i = 1:
Case 1 ν has no competing vehicle and ν can enter p.
Case 2 ν has competing vehicles and the coordina-

tion mechanism Λp chooses ν to move into p (i.e.,
Λp(Vp(ti)) = ν , where Vp(ti) is the set of competing vehi-
cles at p at time ti).

Case 3 ν has competing vehicles but Λp does not choose ν

to move into p.
In Case 1 and Case 2, the vehicle successfully moves into p.
In Case 3, however, the vehicle has to wait until t2 to see if
it gets an opportunity to move into p. Basically, the check-
ing process repeats until either Case 1 or Case 2 occurs, and
the question is whether neither Case 1 nor Case 2 occurs in-
definitely in every time step (that means that Case 3 occurs

indefinitely for all i∈N). Since the coordination mechanism
Λp is fair, Λp would not deny ν from moving into p indefi-
nitely, and there exists j ∈ N such that ν ∈ permitted(p, t j)
and Λp(Vp(t j)) = ν . Therefore, Case 3 would not occur in-
definitely and ν will eventually move into p. 2

Lemma 3 A vehicle ν will eventually move into its chosen
next position p = chosenν(pos(ν)) if
1) the traffic control mechanism Ψp for p is open;
2) the coordination mechanism Λp at p is fair; and
3) p is unoccupied repeatedly until ν moves into p (i.e., the

following statement holds until ν moves into p: at any
given time t, there exists a time t ′ ≥ t such that p is un-
occupied at time t ′).

Proof. ν can move into p only if ν gets the right of way of
p; thus Condition 3 implies Condition 2 in Lemma 1. There-
fore, according to Lemma 1, ν will eventually obtain the
right of way of p given Conditions 1 and 3. Suppose ν ob-
tains its first right of way of p at time t1. One of the following
cases occurs at i = 1:
Case 1 ν can move into p at ti; and
Case 2 ν cannot move into p at ti.
In Case 2, ν will eventually obtain the right of way of p at
another time t2. if Case 2 occurs again at t2, ν will eventu-
ally obtain the right of way of p at another time t3. Thus,
ν gets the right of way of p repeatedly until Case 1 occurs,
and this constitutes Condition 2 in Lemma 2. Whenever ν

gets the right of way of p, This fact, in conjunction with
Condition 2 (Λp is fair), implies that ν will eventually move
into p according to Lemma 2 (i.e., Case 2 would not occur
indefinitely for all i ∈ N). 2

If all traffic control mechanisms are open and all coordi-
nation mechanisms are fair, Lemma 3 provides us the key
condition to prove that a vehicle can make progress on its
chosen path towards its destination, namely whether the cho-
sen next position is unoccupied repeatedly until the vehicle
moves into it. It is easy to show that if SGDCs occur, ve-
hicles on the SGDCs cannot make progress because their
chosen next positions are always occupied. An important
question for us, however, is that if SGDCs do not occur at
all times (due to the topology of the road network and/or
the traffic control mechanisms), is it possible for some ve-
hicles to fail to make any progress on its chosen path? We
will show that no vehicle could fail to make any progress in
Lemma 4 and Lemma 5 below.
Definition 1 A dependency list starting from an occupied
position p1 is a non-empty, finite sequence 〈p1, p2, . . . , pn〉
of occupied positions such that chosenνi(pi) = pi+1 for 1≤
i < n and pn+1 = chosenνn(pn) is unoccupied, where n ≥ 1
and νi = veh(pi) is the vehicle occupying pi for 1≤ i≤ n.
Lemma 4 In the absence of SGDCs, all dependency lists in
a road network G = (P,E) are finite and their lengths are at
most |Pbody|+1, where Gbody = (Pbody,Ebody) is the body of
G.
Proof. Since the in-degrees of sources are zero, at most one
position in a dependency list is a source node. Also, no de-
pendency list contains any destinations since vehicles are re-
moved immediately upon arriving at destinations. Suppose

there exists a dependency list τ whose length is greater than
|Pbody|+ 1. The number of positions in τ that belong to the
body of G is greater than |Pbody|. By the pigeonhole princi-
ple, at least one position in Pbody must appear at least twice
in τ . Let p be one such position. Then the sublist between
the two occurrences of p in τ forms a SGDC. Therefore, if
no SGDC exists, there is no dependency list whose length is
greater than |Pbody|+1. 2

Lemma 5 A vehicle will eventually move into its chosen
next position if
1) the traffic control mechanism Ψp is open, for all p ∈ (P\

Psrc);
2) the coordination mechanism Λp is fair, for all p ∈ (P \

Psrc); and
3) there is no SGDC at any time.

Proof. We are going to prove that the vehicle at any occupied
position p1 can move into its chosen next position. Let τinit =
〈p1, p2, . . . , pn〉, where pk+1 = chosenveh(pk)(pk) for 1≤ k <
n and pn+1 = chosenveh(pn)(pn) is unoccupied, be the initial
dependency list starting from p1.

Let T be the set of all possible dependency lists starting
from p1. While we can define a possible dependency list in
several different ways, we focus on the set that can be con-
structed as follows. We first set T as empty. Then we find a
set of non-cyclic directed paths by an exhaustive depth-first
search starting from p1 and backtracking when the search
process reaches a node on the current path (a cycle is de-
tected) or a terminal node (the destinations). Whenever the
search process reaches a destination pn, it inserts all proper
prefixes of the current path into T (i.e., 〈p1, p2, . . . , pk〉 for
1≤ k < n, where 〈p1, p2, . . . , pn〉 is the current path). When
the research process finishes, we obtain a set T of directed
paths. Each directed path 〈p1, p2, . . . , pk〉 in T can be con-
sidered as a dependency list starting from p1, with a “hypo-
thetical” vehicle νi at each pi choosing pi+1 as its chosen
next position, for 1≤ i < k.

Notice that not every dependency list in T is realizable
due to existing vehicles on the road network and traffic con-
trol mechanisms; however T does include all possible de-
pendency lists starting from p1 that would possibly occur
under the dynamics of the road network, including the ini-
tial dependency list τinit.

Since there is no SGDC at any time, the length of the
longest dependency list in T is at most |Pbody|+ 1 accord-
ing to Lemma 4. We partition T according to the length of
the dependency list, such that T = ∪1≤i≤|Pbody|+1Ti, where
Ti is the set of all dependency lists in T those length is i.
Formally, Ti = {τ ∈T : |τ|= i}.

We are going to show by backward induction that the fol-
lowing statement on k is true for 1≤ k ≤ |Pbody|+1: for all
τ = 〈p1, p2, . . . , pk〉 ∈Tk, the vehicle νk at pk will eventually
move into its chosen next position pk+1 = chosenνk(pk).
Base case (k = |Pbody|+ 1): If T|Pbody|+1 is empty, the
statement is true when k = |Pbody| + 1. If T|Pbody|+1 is
not empty, let τ = 〈p1, p2, . . . , p|Pbody|+1〉 be a dependency
list in T|Pbody|+1. The chosen next position p′ of ν =

veh(p|Pbody|+1) must be a destination since all positions in

the body of G are occupied by the vehicles on τ . According
to Lemma 3, ν will eventually move into p′ because 1) Ψp′

is open; 2) Λp′ is fair; and 3) destinations are always unoc-
cupied.
Inductive step: Assume the statement is true for all k = j
where i≤ j ≤ (|Pbody|+1) for some 2≤ i≤ |Pbody|+1. We
are going to show that the statement is true for k= i−1. Con-
sider a dependency list τ = 〈p1, p2, . . . , pi−1〉 ∈ Ti−1. Let
ν = veh(pi−1) be the vehicle at pi−1. Let pi = chosenν(pi−1)
be the chosen next position of ν . Since pi is unoccupied, one
of the following cases would occur:

Case 1 pi is unmanaged, ν has no competing vehicle at pi,
and ν can move into pi;

Case 2 pi is unmanaged, ν has competing vehicles at pi,
and Λpi chooses ν to move into pi;

Case 3 pi is unmanaged, ν has competing vehicles at pi,
and Λpi does not choose ν to move into pi;

Case 4 pi is managed, Ψpi gives ν the right of way of pi, ν

has no competing vehicle at pi, and ν can move into pi;

Case 5 pi is managed, Ψpi gives ν the right of way of pi, ν

has competing vehicles at pi, and Λpi chooses ν to move
into pi;

Case 6 pi is managed, Ψpi gives ν the right of way of pi, ν

has competing vehicles at pi, and Λpi does not choose ν

to move into pi; and

Case 7 pi is managed, Ψpi does not give ν the right of way
of pi, and ν cannot move into pi.

Thus, there are three possible outcomes:

Outcome 1 The outcome in Case 1, 2, 4, and 5 is that ν

moves into pi;

Outcome 2 The outcome in Case 3 and 6 and one possible
outcome in Case 7 is that ν cannot move into pi but some
other vehicle moves into pi;

Outcome 3 Another possible outcome in Case 7 is that ν

cannot move into pi and pi remains unoccupied since Ψpi
does not give the right of way to any vehicle.

In Outcome 1, ν moves into pi and the inductive statement
is true for k = i−1.

In Outcome 2, ν cannot move into pi and pi becomes oc-
cupied. Since pi is occupied, τ is no longer a dependency list
because it is “extended”. The extended dependency list, de-
noted by τ ′, is a concatenation of τ and the dependency list
starting at pi. Since the length of |τ ′| is at least i and at most
|Pbody|+1, τ ′ belongs to T|τ ′|. By the inductive assumption,
the last vehicle in τ ′ will eventually move into its chosen
next position. Likewise, the second to the last vehicle will
also move into its chosen next position and so on, until pi
becomes unoccupied again.

In Outcome 3, ν cannot move into pi but pi remains un-
occupied. Thus, in both Outcome 2 and Outcome 3, pi even-
tually becomes unoccupied again, and the possible outcome
in the next time step after pi is once again one of the above
three outcomes. After that, if Outcome 1 occurs, the induc-
tive statement is true for k = i− 1. But if Outcome 2 or

Outcome 3 occur again, pi will eventually become unoccu-
pied again. Hence, the question is whether the Outcome 2
and Outcome 3 occurs indefinitely in every time step and
Outcome 1 does not occur. The answer is no according to
Lemma 4: ν will eventually move into its chosen next po-
sition pi since 1) Ψpi is open; 2) Λpi is fair; and 3) pi is
unoccupied repeatedly before Case 2 occurs. Therefore, the
inductive statement is also true for k = i− 1 in Outcome 2
and Outcome 3.
Conclusion: By strong backward induction, the statement
is true for all k = j where 1 ≤ j ≤ |P′|+ 1. When k = 1,
the vehicle at p1 will eventually move into its chosen next
position. 2

Lemma 6 If a vehicle ν can always eventually move into its
chosen next position chosenν(p) at any position p ∈ τchosen

on its chosen path, ν will eventually reach its destination
pn = dst(ν).

Proof. Let the chosen path be 〈p1, p2, . . . , pn〉. ν is spawned
at the source p1 and then moves along the chosen path since
it is always able to move into its chosen next position. Since
chosen paths are finite, ν will eventually arrive at pn. 2

Theorem 3 Every spawned vehicle will eventually reach its
destination if
1) all vehicle controllers are deterministic;
2) all traffic control mechanisms Ψp are open, for all p ∈

(P\Psrc);
3) all coordination mechanisms Λp are fair, for all p ∈ (P\

Psrc); and
4) there is no SGDC at any time.

Proof. Let us consider a vehicle ν that has just spawned at a
source p1. Condition 1 is the assumption we made through-
out this section; this implies that ν has to follow its chosen
path to reach its destination. Conditions 2–4 are the condi-
tions in Lemma 5; thus, according to Lemma 5, ν can al-
ways eventually move into its chosen next position. Then,
by Lemma 6, ν will eventually reach its destination by mov-
ing along its chosen path. Therefore, every spawned vehicle
will eventually reach its destination. 2

Liveness of Road Network without SGSC
In this section, we assume the controllers of all vehicles are
stochastic. This means that the number of relevant positions
in Πν(p) of a vehicle ν at a position p can be greater than 1.

Lemma 7 The following statement holds until a vehicle ν

moves into one of its relevant next position: ν will eventually
obtain the right of way of a relevant next position p if
1) the traffic control mechanism Ψp for p is open;
2) p is unoccupied repeatedly; and
3) the controller of ν is opportunistic.

Proof. Since ν is opportunistic, ν will eventually choose a
relevant next position p if p is unoccupied repeatedly (until
ν moves into one of its relevant position, which is not nec-
essarily p, and is no longer at its current position pos(ν)).
Suppose ν chooses p at time t1. One of the following three
cases will occur at time t1:

Case 1 p is unmanaged and ν has the right of way to move
into ν ;

Case 2 p is managed and Ψp gives ν the right of way; and
Case 3 p is managed but Ψp does not give ν the right of

way.
In Case 1 and Case 2, ν obtains the right of way of p. But
in Case 3, ν does not obtain the right of way of p, and ν

has to wait until the next time at which ν chooses p again.
Since ν is opportunistic and p will continue to be unoccu-
pied repeatedly after t1, ν will eventually choose p again.
Basically, the check process repeats until Case 2 occurs, and
the question is whether Case 2 occurs eventually. Since Ψp
is open, whenever ν repeatedly chooses to move into p when
p is unoccupied, Ψp will eventually give ν the right of way
to enter p and thus Case 2 will eventually occur. 2

Lemma 8 The following statement holds until a vehicle ν

moves into one of its relevant next positions: ν will eventu-
ally move into a relevant position p if
1) the traffic control mechanism Ψp for p is open;
2) the coordination mechanism Λp at p is fair;
3) p is unoccupied repeatedly; and
4) the controller of ν is opportunistic.

Proof. According to Lemma 7, ν will eventually obtain the
right of way of p given Condition 1, 3 and 4. Suppose ν

obtains the right of way of p at time t1. Then either (1) ν

can move into p at t1 or (2) ν cannot move into p at t1.
In the latter case, ν will eventually obtain the right of way
of p at another time t2, and the vehicle may or may not be
able to move into p at t2. Basically, the checking process
repeats until ν moves into p, and before that ν gets the right
of way of p repeatedly. Thus this constitues Condition 2 in
Lemma 2. Given that the coordination mechanism Λp at p is
fair, ν will eventually move into p according to Lemma 2. 2

Assume all traffic control mechanisms are open, all co-
ordination mechanisms are fair, and all vehicle controllers
are opportunistic. Lemma 8 provides us the key condition
to prove that a vehicle can make progress by moving into
one of its relevant next positions: there is some relevant next
position that becomes unoccupied repeatedly. We can easily
show that if SGSCs occur it is impossible for vehicles on the
SGSCs to make any progress because all of their relevant
next positions are occupied at all times. An interesting ques-
tion, however, is whether vehicles can always make progress
in the absence of SGSCs. We will show that it is indeed the
case in Lemma 12.

The proof of Lemma 12 relies on a concept called a de-
pendency tree, which is like a dependency list except that the
children of a position on a dependency tree are relevant next
positions of the position.

Definition 2 A dependency tree starting from a position p1
is a tree T = (P′,E ′) where
1) P′ ⊆ (P\Pdst) is a set of occupied positions;
2) the children of any position p ∈ P′ in T , denoted by

children(p), is the set of all occupied relevant next po-
sitions of the vehicle ν at p (i.e., children(p) ⊆ Πν(p),
p′ are occupied for all p′ ∈ children(p), and p′′ are un-
occupied for all p′′ ∈ (Πν(p)\ children(p)));

3) E ′ = {(p1, p2) ∈ E : p1, p2 ∈ P′}; and
4) p1 is the root of the tree.

If (Πν(p) \ children(p)) is a nonempty set, we say p is
open. In other words, an open position p on T is one with a
nonempty set of unoccupied, relevant next positions. Since
if a relevant next position p′ is not in P′, p′ must be unoc-
cupied according to the Condition 2 in Definition 2. We can
simplify the definition of open positions as follows:
Definition 3 A position p on a dependency tree T = (P′,E ′)
is open if there exists a relevant next position p′ of the vehicle
ν at p that is not in P′.
Lemma 9 In the absence of SGSCs, all dependency trees in
a road network G = (P,E) have an open position.
Proof. Clearly, if a dependency tree T has no open position,
T is a SGSC, since all relevant positions of every vehicle
on T are occupied. Conversely, if T is not a SGSC, there
must exist an open position in T . Therefore, in the absence
of SGSCs, all dependency trees on G are not SGSC, and all
dependency trees have at least one open position. 2

The depth of a position p in a dependency tree T is the
length of the path from the root of T to p. The root of T
has a depth of zero. We are interested in the shallowest open
positions whose depths are the smallest among all open posi-
tions in a dependency tree. Notice that a dependency tree can
have more than one shallowest open positions since several
open positions can have the same depth. The trunk height of
a dependency tree T , denoted by H(T), is the depth of the
shallowest open positions in T . If T has no open position,
we define H(T) = ∞.
Lemma 10 In the absence of SGSCs, the path τ =
〈p1, p2, . . . , pk〉 from the root p1 of a dependency tree T to a
shallowest open position pk in T must contain no cycle (i.e.,
pi 6= p j for all 1≤ i < j ≤ k).
Proof. By Lemma 9, T must have an open position, thus pk,
one of the shallowest open positions in T , exists. Suppose
there exists one node p′ that occurs at least twice in τ . Let
pi and p j be the two occurrences of p′ on τ , where 1 ≤ i <
j ≤ k. Note that pi = p j = p′. Let T ′ be the dependency
trees starting from p′. Clearly T ′ is a subtree of T ; in fact,
T ′ is also a proper subtree of itself, because p j is a non-root
position in the subtree T ′ starting at pi. We denote the copy
of T ′ starting at pi by T ′i and the copy of T ′ starting at p j
by T ′j . Then we look at the depth of pk in T ′i and T ′j . The
depth of pk in T ′i is H(T)− (i− 1), and the depth of pk in
T ′j is H(T)− (j−1). Thus, the depth of pk in T ′i is different
from the depth of pk in T ′j since i 6= j. An important fact is
that T ′i and T ′j are the same subtree, which implies that 1)
pk occurs again at the depth of H(T)− (j−1) in T ′i , and 2)
pk occurs again at the depth of H(T)− (i− 1) in T ′j . In the
former case, the newly found instance of pk is at the depth
of H(T)− (j− i) in T , thus it is shallower than the original
pk since H(T)−(j− i)< H(T). But this contradicts the fact
that pk is one of the shallowest open positions. Therefore, no
position can occur twice in τ . 2

Lemma 11 In the absence of SGSCs, H(T) ≤ |Pbody| for
every dependency tree T in G.

Proof. By Lemma 9, an open position must exist in a de-
pendency tree T in G, thus H(T) is a finite number. Sup-
pose H(T) > |Pbody|. Let pk be one of the shallowest open
positions in T , where k = H(T) + 1. Consider path τ =
〈p1, p2, . . . , pk〉 from the root p1 to pk, where pi ∈ (Psrc ∪
Pbody) for 1≤ i≤ k. Since |τ|=H(T)+1> |Pbody|+1, there
exists a position pi ∈ τ that occurs at least twice in τ by the
pigeonhole principle. The path between the two occurrences
of pi on τ forms a cycle. However, by Lemma 10, the path
from the root of a dependency tree to a shallowest open po-
sition cannot contain any cycle. Therefore, H(T) ≤ |Pbody|.

2

Lemma 12 A vehicle ν at p will eventually move into one
of its relevant next positions in Πν(p) if
1) the traffic control mechanism Ψp′ is open, for all p′ ∈

(P\Psrc);
2) the coordination mechanism Λp′ is fair, for all p′ ∈ (P \

Psrc);
3) there is no SGSC at any time; and
4) all vehicle controllers are opportunistic.
Proof. We are going to prove that the vehicle ν1 at any oc-
cupied position p1 can move into one of its relevant next
positions. Let T be the set of all possible dependency trees
in G starting from p1. While we can define a possible depen-
dency tree in many different ways, we focus on the set that
can be constructed as follows.

From now on, we will draw a distinction between the ve-
hicle ν and the vehicle controller µ , such that two different
vehicles can have the same vehicle controller, causing both
vehicles to behave in the same manner. We define a behav-
ioral model of a vehicle controller as a tuple (Psrc,Pdst,Π),
where Psrc is the source at which the vehicle is spawned,
Pdst is the destination of the vehicle, and Π is a mapping
from (Psrc∪Pbody) to 2(Pbody∪Pdst) which defines the set Π(p)
of relevant next positions of the vehicle at each position
p. Let U be the set of all possible vehicle controllers in a
discretized road network G. A configuration of G is a pair
(P′,U) where P′ ⊆ (Psrc ∪Pbody) is the set of all occupied
positions in G and U is a mapping from P′ to U such that
U(p) is the vehicle controller of the vehicle at p. 1

The dynamics of the road network can be captured by
the set of next possible configurations of each configuration.
Each configuration C has a set of next possible configura-
tions next(C), which is defined by 1) all possible ways ve-
hicles move into their relevant next positions according to
their vehicle controllers (including the cases in which ve-
hicles do not move due to traffic controls or competitions
among vehicles), and 2) the vehicle controllers spawned at
the unoccupied sources (including the cases in which no ve-
hicle controller is spawned at an unoccupied source). Let
C1 be the current configuration. Notice that the controller
µ1 of ν1 is at p1 in C1. Let C be the set of all possible
future configurations starting from C1. More precisely, C
is a closure of a set {C1} in an operation next on C . Let
C ′ = {C ∈ C : ν1 is at p1}.

1Our definition of configurations does not include the states of
traffic control mechanisms and coordination mechanisms. But this
definition is sufficient for our proof.

Each configuration C in C ′ has a dependency tree TC start-
ing from p1 (since p1 is occupied by ν1 in all configurations
in C ′). Let T = {TC : C ∈ C ′} be the set of all dependency
trees of all configurations in C ′. Given a dependency tree
T ∈ T , let next(T) be the set of all possible next depen-
dency trees of T , where next(T) = {TC′ : ∀C ∈ C ′ s.t. TC =
T and ∀C′ ∈ next(C)}.

Since there is no SGSC at any time, every dependency tree
in T must contain an open position according to Lemma 9.
Furthermore, the trunk heights of all dependency trees in
T are at most |Pbody| according to Lemma 11. Therefore,
we can partition T into a finite number of subsets accord-
ing to the depth of the shallowest open positions: T =
∪0≤i≤|Pbody|Ti, where Ti is the set of all dependency trees
in T whose shallowest open positions has a depth of i. For-
mally, Ti = {T ∈T : H(T) = i}.

We are going to show by backward induction that the fol-
lowing statement on k is true for 0 ≤ k ≤ |Pbody|: for all
T ∈ Tk, at least one of the vehicles at the shallowest open
positions will eventually move into one of its relevant next
positions.
Base case (k = |Pbody|): If T|Pbody| is empty, the statement
is true when k = |Pbody|. If T|Pbody| is not empty, let T be a
dependency tree in T|Pbody|. Let pk be one of the shallowest
open positions in T . By Lemma 10, the path τ from the root
of T to pk must contains no cycle. Since |τ| = H(T)+ 1 =
|Pbody|+1, τ contains every position in the body of G as well
as one source. Hence, all unoccupied relevant next positions
of pk must be destinations. Since destinations are always un-
occupied, the vehicle at pk will eventually move into one of
the unoccupied relevant next positions of pk according to
Lemma 8. Therefore, at least one of the vehicles at the shal-
lowest open positions will eventually move into one of its
relevant next positions.
Inductive step: Assume the statement is true for all k = j
where i ≤ j ≤ (|Pbody|) for some 1 ≤ i ≤ |Pbody|. We are
going to show that the statement is also true for k = i−1.

Consider a dependency tree T ∈ Ti−1. Let Pshallow be the
set of all positions at depths i−1 in T (including both open
and non-open positions). Notice that 1) all open positions in
Pshallow are the shallowest open positions; 2) there exists at
least one (shallowest) open position in Pshallow; and 3) Pshallow
is a finite set. Let Prel = ∪p∈PshallowΠveh(p)(p) be the union of
the sets of all relevant next positions of the vehicles at all
positions in Pshallow. Notice that Prel is also finite and at least
one position in Prel is unoccupied. We are going to prove that
the vehicle at one of the positions in Pshallow will eventually
move into one of its relevant next positions in Prel.

According to Lemma 8, if there exists a position p ∈
Pshallow such that one of its next relevant position p′ ∈
Πν(p) ⊆ Prel is unoccupied repeatedly, then the vehicle ν

at p will eventually move into p′. One way to interpret this
statement is to assume there exists an integer n such that ν

will be able to move into p′ on or before the number of times
p′ becomes unoccupied is n. Based on this interpretation, for
every p j ∈ Prel, let n j be the maximum number of times that
p j needs to be unoccupied in order for the vehicle at its par-
ent position in Pshallow to move into p j.

By a generalization of the pigeonhole principle, if the
total number of unoccupied positions in Prel exceeds K =
∑p j∈Prel{n j− 1}, there exists a position p j∗ ∈ Prel such that
the number of times p j∗ is unoccupied must be at least n j∗ ,
and the vehicle at the parent of p j∗ can move into p j∗ . There-
fore, all we need to prove is that the total number of occu-
pancies of the positions in Prel will eventually exceed K.

Let t0 be the initial time. Let N(t) be the total number
of unoccupied positions in Prel at or before time t since t0.
Notice that N(t0)≥ 1 since at least one position in Prel is un-
occupied at the initial time. We are going to show that N(t)
is an increasing function (but not necessarily a strictly in-
creasing function), and there exists a time t∗ such that either
(a) N(t∗)> K, or (b) a vehicle at a position in Pshallow moves
into one of its relevant next positions before time t∗.

At time t0 +1, there are three possible outcomes:

Outcome 1 a vehicle at a position in Pshallow moves into one
of its relevant next positions in Prel;

Outcome 2 no vehicle in any position in Pshallow moves into
one of its relevant next positions, and some position in Prel
is unoccupied (either some unoccupied position remains
unoccupied, or some occupied position become unoccu-
pied); and

Outcome 3 no vehicle in any position in Pshallow moves into
one of its relevant next positions, and all positions in Prel
becomes occupied (all unoccupied positions Prel are oc-
cupied by some vehicles that are not on the dependency
tree).

In Outcome 1, one of the vehicle at the shallowest open po-
sitions in Pshallow moves into one of its relevant next posi-
tions in Prel. Therefore, our inductive statement is true for
k = i−1.

In Outcome 2, we have N(t0 +1)> N(t0) since the num-
ber of unoccupied positions in Prel at time t0 + 1 is greater
than zero. In Outcome 3, we have N(t0+1) = N(t0) because
there is no unoccupied position in Prel at time t0 +1.

In both Outcome 2 and Outcome 3, the system has to
check to see what the outcome is at time t0 + 2. The ques-
tion is whether the checking process keeps going forever and
Outcome 1 will not occur at any time. The answer is no be-
cause

Case 1 whenever Outcome 2 occurs, N(t) increases; and

Case 2 whenever Outcome 3 occurs, some of the positions
in Prel will eventually become unoccupied again according
to the inductive assumption, and Outcome 2 will eventu-
ally occur, causing N(t) to increase.

To see why Case 2 is true, let’s consider the trunk height of
the new dependency tree when Outcome 3 occurs. The trunk
height (i.e., the depth of the shallowest open positions) of the
new dependency tree T ′ starting from p1 will be larger than
i−1, and thus T ′ ∈T ′

i for some i′ > i−1. By our inductive
assumption, at least one of the shallowest open positions in
T ′ will eventually move into one of its relevant next posi-
tions. If the new trunk height after the movement remains
larger than i− 1, one shallowest open positions will move
again. Thus, eventually the trunk height will become i− 1,

and one of the positions in Prel will eventually become unoc-
cupied again.

Thus in both Case 1 and Case 2, Outcome 2 occurs again
and N(t) increases. Unless Outcome 1 occurs, Outcome 2
will occur repeatedly and N(t) will eventually exceed K at
some time t∗. Then at time t∗+1 Outcome 1 must occur ac-
cording to Lemma 8, and one of the vehicle at the shallow-
est open positions in Pshallow moves into one of its relevant
next positions in Prel. Thus our inductive statement is true
for k = i−1.
Conclusion: By strong backward induction, the statement
is true for all k = j where 0 ≤ j ≤ |Pbody|. Therefore, when
k = 0, the vehicle ν1 at p1 will eventually move into one of
its relevant next positions. 2

Lemma 13 If a vehicle ν with a progressive controller can
always eventually move into one of its relevant next positions
in Πν(p) for any position p ∈ P, ν will eventually reach its
destination pn = dst(ν).

Proof. Since ν is progressive, at any time t the positions
visited by ν constitute a prefix 〈p1, p2, . . . , pi〉 of at least
one noncyclic path from the source to the destination, where
i ≥ 1 and p1 = src(ν), and pi = pos(ν) is the position of
ν at time t. In fact, 〈p1, p2, . . . , pi, pi+1〉 is also a prefix of
at least one noncyclic path from the source to the desti-
nation, for any next relevant next position pi+1 ∈ Πν(p);
otherwise, pi+1 is not a relevant next position at pi since
〈p1, p2, . . . , pi, pi+1〉 is not a prefix of a noncyclic path from
the source to the destination and ν is not progressive.

Hence, if ν can always eventually move into one of its
relevant next positions, ν is always moving on at least one
noncyclic path from the source to the destination. Since the
road network is finite, all noncyclic paths in G are finite, and
therefore ν will eventually arrive at dst(ν). 2

Theorem 4 Every spawned vehicle will eventually reach its
destination if
1) all traffic control mechanisms are open;
2) all coordination mechanisms are fair;
3) there is no SGSC at any time;
4) all vehicle controllers are opportunistic; and
5) all vehicle controllers are progressive.

Proof. By Conditions 1–4, all vehicles will eventually move
into one of their relevant next positions at any reachable po-
sition, as discussed in Lemma 12. Therefore, all vehicles,
equipped with progressive controllers, will eventually reach
their destinations according to Lemma 13. 2

