
Setpoint Scheduling for Autonomous Vehicle Controllers

Tsz-Chiu Au, Michael Quinlan, and Peter Stone

Abstract— This paper considers the problem of controlling
an autonomous vehicle to arrive at a specific position on a
road at a given time and velocity. This ability is particularly
useful for a recently introduced autonomous intersection man-
agement protocol, called AIM, which has been shown to lead
to lower delays than traffic signals and stop signs. Specifically,
we introduce a setpoint scheduling algorithm for generating
setpoints for the PID controllers for the brake and throttle
actuators of an autonomous vehicle. The algorithm constructs
a feasible setpoint schedule such that the vehicle arrives at
the position at the correct time and velocity. Our experimental
results show that the algorithm outperforms a heuristic-based
setpoint scheduler that does not provide any guarantee about
the arrival time and velocity.

I. INTRODUCTION

Recent developments in robotic vehicles lead us to believe
that fully autonomous vehicles will be widely adopted in the
future. Looking ahead to the time when such autonomous
cars will be common, Dresner and Stone proposed a new
intersection control protocol called Autonomous Intersection
Management (AIM) and showed that by leveraging the
capacities of such autonomous vehicles we can devise a
reservation-based intersection control protocol that is much
more efficient than traffic signals and stop signs [1]. The
protocol, however, relies on the assumption that autonomous
vehicles can always arrive at the intersection at a specific
time and a specific velocity—if a vehicle enters the intersec-
tion at a different time and velocity, collisions may occur.

To compensate for the sensing and control errors that
could cause a vehicle to fail to meet that requirement, the
intersection manager allows each vehicle to have a buffer—
an area around the vehicle that no other vehicle can enter at
any time in the intersection, such that even if the vehicles
deviate from their given arrival times and arrival velocities,
there is enough room to avoid collisions. The problem is that
the buffer cannot be too large; if it is, the vehicle will need a
lot of space in the intersection and will prevent other vehicles
from using the space, causing a tremendous decrease in the
efficiency of the protocol, as demonstrated by the mixed
reality simulation conducted by Quinlan, et al. [2].

Au et al. developed a motion planning algorithm for
autonomous vehicles to arrive at the intersection at a specific
time and velocity [3], thus allowing a much smaller buffer
size. The motion planning algorithm, however, is based on a
mathematical model of vehicle control that is too simplistic
when compared with the control of a real vehicle. For
example, the algorithm assumes vehicles can maintain a
linear acceleration until arriving at a given velocity, but

Department of Computer Science, The University of Texas at Austin.
{chiu,mquinlan,pstone}@cs.utexas.edu

Fig. 1. The architecture of the controller for the brake and throttle actuators.

the acceleration can be far from linear if the vehicles are
controlled by PID controllers, especially when starting from
a stationary position or decelerating after a sharp brake.
Therefore, the algorithm does not achieve its intended effects
on a real autonomous vehicle.

In this paper, we present a new motion planning algorithm
called a setpoint scheduler that is based on a more realistic
model of vehicle control. The model is built via empirical
performance profiling of the PID controllers for the brake
and throttle actuators of a vehicle. In addition, we develop a
smoothing technique for computing a sequence of setpoints
that allows the vehicle to slow down gracefully without
hitting the brake too hard. The setpoint scheduler searches
for a feasible trajectory for the vehicle based on a descriptive
model of the PID controllers’ performance. We implemented
the setpoint scheduler on an autonomous vehicle, and exper-
imentally compare it with the vehicle’s default PID-based
reactive controller that heuristically computes the setpoints
based on the given arrival time and velocity.

II. MODELING VEHICLE PERFORMANCE

Our setpoint scheduler is designed for controlling the
Austin Robot Technology vehicle, an Isuzu VehiCross that
has been upgraded to run autonomously [4]. Fig. 1 shows
the architecture of the controller of the brake and throttle
actuators. The setpoint scheduler takes the measures from
the odometer and the speedometer and computes the target
velocity as the setpoint for the PID controllers which control
the positions of the brake and throttle.

Our setpoint scheduler needs to know the effect of setting
a setpoint in order to predict the movement of the vehicle.
Given the current velocity v and a target velocity v̂, the
scheduler needs to know how long the PID controllers will
take to stabilize the velocity of the vehicle at v̂ after setting
the setpoint to v̂, and how much the vehicle will move
before its velocity is stabilized. Thus our approach relies
on the estimation of two functions Tstable and Dstable, where
Tstable(v, v̂) is the longest time the vehicle takes to stabilize at
v̂ and Dstable(v, v̂) is the average distance the vehicle travels
after setting the setpoint to v̂ for a period of Tstable(v, v̂). We

chiu
Typewritten Text
Accepted for publication in the 2012 IEEE International Conference on Robotics and Automation (ICRA 2012)



call Tstable(v, v̂) and Dstable(v, v̂) the stable time and the stable
distance, respectively. The performance model of the vehicle
is the pair (Tstable,Dstable).

We construct the performance model as follows. First, the
values of the initial velocity v and the target velocity v̂ are
tested between 0 m/s and 10 m/s, at increments of 0.5 m/s.
For each pair of v and v̂, we accelerate the vehicle to v and
then set the setpoint to v̂ at time t. Then we measure the time
the vehicle takes to get to v̂ and stabilize at v̂. The criteria for
stabilization is as follows: we record the time t ′ at which the
error in velocity is less than 0.2 m/s (i.e., |v′− v̂|< 0.2 where
v′ is the current velocity). Then we check to see whether the
velocity error still continues to be less than 0.2 m/s in the
next 4 seconds. If it is the case, the stable time is t ′− t;
otherwise, we wait until the velocity error is less than 0.2
m/s again and stabilizes for 4 seconds.

For each pair of v and v̂, we repeat the measurement five
times, and choose the maximum value to be the stable time
(denoted by Tstable(v, v̂)) of the vehicle when changing the
velocity from v to v̂. Then we use Tstable(v, v̂) to measure
the stable distance as follows. Once again, we control the
vehicle to make it run at velocity v, and then set the setpoint
to v̂ at time t. Then we measured the distance the vehicle
travels between t and t +Tstable(v, v̂). The measurement was
repeated five times, and we call the average of the measured
distances the stable distance Dstable(v, v̂).

Since we measured the stable time and distance at certain
velocity points only, we use bilinear interpolation to estimate
the values between the measured values. The results are
shown in Fig. 3(a) and Fig. 3(b). Note that this particular
model is specific to our vehicle, but the method of generating
it is fully general.

III. SMOOTHING

Fig. 3(a) shows that the vehicle takes a long time to
stabilize when the vehicle decelerates from a high speed. For
example, if the vehicle decelerates from 9 m/s to 2 m/s, it will
take 4.7 s to stabilize and the stable distance is 19.3 m. This
problem is due to overshoot and characteristics of vehicle
dynamics, as shown in the dashed line in Fig. 2. While the
stable time depends on the tuning of the brake PID controller
and the physical properties of the actuators, there is a way to
optimize the stable time without retuning the PID controller.

The basic idea is to generate a sequence of intermediate
setpoints to avoid making abrupt decreases of velocities.
First, use Tstable to create a graph (N,E) in which the
set of nodes N are the set of velocities (we choose the
velocity between 0 m/s and 10 m/s at an increment of
0.1 m/s) and the edge (v1,v2) ∈ E represents the stable
time Tstable(v1,v2). Second, the nodes on the shortest path
between two velocities on the graph is exactly the sequence
of setpoints that would minimize the stable time and provide
a smooth transition of the velocities. Thus we used the
Floyd-Warshall algorithm to compute the all pairs shortest
path and store the shortest path structure in the vehicle’s
memory for repeated use. We denote the new stable time
after smoothing by T̄stable(v1,v2) and the new stable distance

Fig. 2. Reduce the magnitude of overshoot by a sequence of intermediate
setpoints generated by our smoothing procedure.

by D̄stable(v1,v2). Instead of setting the setpoint to v2 directly,
the vehicle should use a setpoint schedule Π(t1,v1,v2) =
〈(t1,v′1),(t2,v′2), . . . ,(tn,v′n)〉, where t1 is the current time,
ti = ti−1 +Tstable(v′i−2,v

′
i−1) for 1 < i≤ n, and 〈v′0,v′1, . . . ,v′n〉

is the nodes of the shortest path, where v′0 = v1 and v′n = v2.
The results of the smoothing are shown in Fig. 3(c) and

Fig. 3(d). After smoothing, the stable times become smaller
in most cases, but the stable distances remain nearly the
same. When a vehicle decelerates from 9 m/s to 2 m/s with
smoothing, the smoothing procedure generates a sequence of
setpoints: 〈8.3,8.0,2.0〉. If the vehicle follows this setpoint
sequence, the stable time is 3.2 s (a 32% decrease) and the
stable distance is 19.0 m. As can be seen in Fig. 2, gradual
decrease of the setpoints can reduce the duration of errors
and help stabilize the vehicle at the target velocity earlier.

IV. SETPOINT SCHEDULING PROBLEMS
The goal of modeling vehicle performance is to enable

long-term planning of vehicle’s movement without knowing
the details of vehicle dynamics and controls. This separation
of high-level planning issues from the concerns of lower-
level vehicle controls enables our planning procedures, called
setpoint schedulers, to work with a wide variety of vehicle
hardwares with different underlying control mechanisms.

Here we define the setpoint scheduling problems for AIM.
We consider the case in which a vehicle is on a straight
road and is moving towards an intersection that is D meters
away from the position of the vehicle. We say the position
of the vehicle is the initial position and the entrance of the
intersection from the road is the target position. Let t0 and v0
be the initial time and the initial velocity of the vehicle at the
initial position, respectively. At the initial position, according
to the AIM protocol, the vehicle proposes an arrival time
tend and an arrival velocity vend in the reservation request
sent to the intersection manager (IM), the server located at
the intersection which handles the reservation requests. The
IM will then check whether the trajectory of the vehicle in
the intersection will collide with other vehicles’ trajectories.
The IM can either reject the request if collisions may occur,
or grant the reservation with which the vehicle is permitted
to enter the intersection at the proposed arrival time and
velocity. See [1] for more details about AIM.

Upon receiving a successful reservation, the vehicle must
arrive at the intersection at time in [tend − tbu f , tend + tbu f ]
and at velocity in [vend− vbu f ,vend + vbu f ], where tbu f is the
time buffer and vbu f is the velocity buffer, that are used to
account for control and sensing errors of the vehicle. During
the traversal towards the intersection, the vehicle constantly



(a) Stable Time(no smoothing) (b) Stable Distance (no smoothing) (c) Stable Time (with smoothing) (d) Stable Distance (with smoothing)

Fig. 3. Stable time and stable distance. The light color means longer time and distance, as indicated in the bars beside the graphs.

checks to see whether it can still arrive at the intersection
at tend and vend , because the vehicle may deviate from the
expected trajectory due to the imperfect road surface and
accumulated sensing and control errors. If the vehicle finds
that it can no longer arrive at tend and vend , it cancels the
reservation and resends another reservation request, ensuring
that it has time to stop before the intersection in the event
that it cannot get a new reservation.

From a high level perspective, the vehicle deals with two
problems: 1) proposing an arrival time and an arrival velocity
such that the vehicle’s arrival time is the soonest while the
arrival velocity is the highest; and 2) deciding whether the
arrival time and velocity remains feasible during traversal—
whether the vehicle can still arrive at the given arrival time
and velocity. We call the former problem the optimization
problem while the latter the validation problem. The solu-
tions to these problems subject to the speed limit vmax of the
road and the speed limit vmax

end of the trajectory for the vehicle
to safely traverse the intersection. Note that vmax

end depends on
the turn direction of the vehicle at the intersection; if the
vehicle makes a right turn at the intersection, vmax

end has to be
very small in order to avoid strong centrifugal forces acting
on the passengers inside the vehicle. If the vehicle makes a
left turn, vmax

end can be larger since the turn is not as sharp
as the right turn. If the vehicle goes straight through the
intersection (no turn), vmax

end can be as high as vmax.
The solutions to both problems depend on the notion of

control signals—the signals that the controller generates to
control the vehicle. In our blackbox approach, the control
signals are the setpoints (target velocity in our autonomous
vehicle) that the PID controllers of the brake and throttle
actuators need. We denote a setpoint schedule by τ . If τ

is a step function, τ can be represented by a list of pairs
〈(t0, v̂0),(t1, v̂1), . . .(tn, v̂n)〉. where v̂(t) = v̂i for (1) ti ≤ t <
ti+1 for 0 ≤ i < n and (2) ti ≤ t for i = n. In this paper, all
setpoint schedules are step functions.

We formulate this optimization problem as a multiobjec-
tive optimization problem: among all possible setpoint sched-
ules that control the vehicle to enter an intersection, find
one such that the arrival time is the smallest and the arrival
velocity is the highest, subject to the speed limit constraints.
We choose arrival velocity as the primary objective, because
traveling at high velocity through the intersection consumes
less of the space-time resource of the intersection [2], [3].
Thus, our optimization procedure involves two steps: first,

Fig. 4. The time-velocity diagram.

determine the highest possible arrival velocity the vehicle can
achieve, and second, among all the acceleration schedules
that yield the highest possible arrival velocity, find the one
whose arrival time is the soonest.

To visualize what we are trying to achieve for the opti-
mization problem, see the time-velocity diagram in Figure 4.
In this diagram, a function denotes the velocity of the vehicle
over time, and is called a velocity function. A velocity func-
tion v(·) is constructible if there exists a setpoint schedule
τ(·) such that if the vehicle follows τ(·), the velocity of
the vehicle is v(·). A velocity function v(·) is feasible if it
satisfies the following constraints:

1) v(t0) = v0;
2) v(tend) ≤ vmax

end (i.e., the arrival velocity cannot exceed
the speed limit of the trajectory);

3) 0≤ v(t)≤ vmax for t0 ≤ t ≤ tend (i.e., the velocity cannot
exceed the speed limit of the road or be negative at any
point in time);

4)
∫ tend

t0 v(t)dt = D, where tend is the arrival time (i.e., the
distance traveled must be D); and

5) v(·) is constructible.
A setpoint schedule τ(·) is feasible if the velocity function
constructed by v̂(·) is feasible.

The objective of the optimization problem is to find a
feasible setpoint schedule τ(·) such that v(tend) is as high
as possible while tend is as small as possible. The validation
problem, however, does not need to estimate the arrival time
and velocity, as they are given. The objective of the validation
problem is to decide whether a feasible setpoint schedule τ(·)
exists such that v(tend) = vend .

V. PLAN-BASED SETPOINT SCHEDULER
Our setpoint scheduler works as follows. At the initial po-

sition, the setpoint scheduler calls the optimization procedure
to generate a setpoint schedule for the vehicle to arrive at
the intersection at the highest possible velocity (usually vmax

end )



while the arrival time is as small as possible. The setpoint
schedule is stored in memory and is used whenever it is time
to set the setpoint to a new target velocity. The scheduler
revises the setpoint schedule from time to time by using the
validation procedure, which checks to see whether a setpoint
schedule still exists to allow the vehicle to arrive at the target
position at tend and vend . If the validation procedure finds a
new setpoint schedule, it replaces the old one in memory
with the new one; otherwise, the driving agent cancels the
reservation and send a new reservation request.

A. The Optimization Procedure

The optimization procedure takes t0, v0, vmax, vmax
end and

D as inputs, and generates an optimal setpoint schedule in
terms of arrival time and velocity. There are two different
cases to consider. In Case 1, the vehicle can accelerate
to vmax and then decelerate to vmax

end right before the target
positon. The condition for Case 1 is D̄stable(v0,vmax) +
D̄stable(vmax,vmax

end ) ≤ D, where D̄stable is the stable distance
after smoothing, meaning that the vehicle is far enough from
the target position to accelerate to vmax and then decelerate
to vmax

end . If this condition holds, the driver agent requests
a reservation with arrival time tend and arrival velocity
vend = vmax

end , and puts the following setpoint schedule in the
memory: τopt = Π(t0,v0,vmax)⊕Π(t1,vmax,vmax

end ), where Π is
the setpoint schedule after smoothing, ⊕ is the concatenation
operator of setpoint schedules, t1 = t0 + T̄stable(v0,vmax) +
D′/vmax, D′ = D− D̄stable(v0,vmax)− D̄stable(vmax,vmax

end ), and
tend = t1 + T̄stable(vmax,vmax

end ).
Obviously the arrival velocity is optimal. But it is not

clear whether the arrival time is the smallest, because there
may exist t ′end < tend such that the validation procedure can
generate a setpoint schedule. In general, it is hard to check
whether such t ′end exists since D̄stable can be any function.
But if the following equation is a strictly increasing function
for any given tend and vend , we can show that tend is optimal:

D(v̂) = D̄stable(v0, v̂)+D0 + D̄stable(v̂,vend), (1)

where D0 = v̂× ((tend − t0)− T̄stable(v0, v̂)− T̄stable(v̂,vend)).
Due to space limitations we omit the proof of the optimality
under this condition. But the idea of the proof is that D(v̂m)
is the distance covered by the vehicle if it accelerates to
the traversal velocity v̂, maintains the velocity for a while,
and then decelerate to vend right before reaching the target
position. If D(·) is strictly increasing, the only way to arrive
at the target position at vend sooner is to increase the traversal
velocity. But in our case, the traversal velocity is vmax, and
the vehicle cannot go above the speed limit of the road. In
practice, even if D̄stable does not satisfy this condition, tend
is often very close to optimal.

In Case 2, the condition D̄stable(v0,vmax) +
D̄stable(vmax,vmax

end ) ≤ D fails because the vehicle is too
close the intersection. In this case, the vehicle cannot
accelerate to vmax, but must either (1) accelerate to certain
traversal velocity less than vmax and then decelerate
immediately to vmax

end , or (2) reach the target position at a
velocity below vmax

end . Currently, our scheduler handles these

cases in an ad-hoc way: consider each velocity v̂ in the
range [0,vmax] at an increment of 0.5 m/s in decreasing
order, test to see if the vehicle can accelerate to v̂, and then
decelerate vmax

end . If no schedule is found, call the optimization
procedure repeatedly with a smaller and smaller vmax

end , until
it returns a schedule. If no schedule can be found, the driver
agent declares no reservation can be made.

B. The Validation Procedure

Apart from t0, v0, vmax, vmax
end , the validation procedure is

also given tend , vend , and the current distance d (0 ≤ d ≤
D) from the target position as inputs. Like the optimization
procedure, the validation procedure searches for a setpoint
schedule to reach the target position. But the difference is
that there is no optimization since tend and vend are given;
all it does is to show that a feasible setpoint schedule exists.

Unfortunately, it is hard to search for a feasible setpoint
schedule in the space of all possible setpoint schedules, since
setpoints are real numbers and the structure of D̄stable can
be quite complicated. Thus, our validation procedure only
considers a class of simple setpoint schedules, each of which
has the form τsimple(v̂) = Π(t0,v0, v̂)⊕Π(t1, v̂,vend), where
t1 = tend− T̄stable(v̂,vend) and v̂ is the traversal velocity. Given
a simple setpoint schedule, a vehicle will first accelerate
to v̂, maintain its speed at v̂, and then decelerate at t1 to
reach the target position at tend and vend . We claim that
it is often sufficient to consider simple setpoint schedules,
because according to a simplified vehicle model in [3], if
a feasible velocity function exists for a given tend and vend ,
there also exists a trapezoidal velocity function with which
the vehicle can arrive at tend and vend . Even though the
velocity function constructed by a simple setpoint schedule
is not exactly a trapezoidal function (since vehicles do not
accelerate linearly with PID controllers), the shape is often
a close approximation of a trapezoidal velocity function.

A simple setpoint schedule τsimple satisfies all constraints
except the distance constraint: the traversal distance is ex-
actly d. Therefore, the validation procedure uses the bisection
method to search for a feasible traversal velocity v̂∗ such that
D(v̂∗) = d, where D(v̂), defined in Eq. 1, is the distance
covered by the vehicle if the traversal velocity is v̂. Suppose
v̂a = 0 and v̂b = vmax such that D(v̂a) ≤ d and D(v̂b) ≥ d.
The procedure computes v̂c =(v̂a+ v̂b)/2 and checks whether
D(v̂c) is greater than or equal to d. If it is true, set v̂b to v̂c;
otherwise, set v̂a to v̂c. Then repeat these steps until the width
of the interval [v̂a, v̂b] is smaller than a small threshold, such
that v̂a ≈ v̂b. Then choose v̂a as v̂∗ and return τsimple(v̂∗).

The bisection method converges to a solution if (1) D(0)≤
d, (2) d ≤ D(vmax), and (3) D(·) is a continuous function.
If D(0) > d, the vehicle is too close to the target position.
If D(vmax) < d, the vehicle is too far away from the target
position. D(·) is often a continuous function because a small
increase of the traversal velocity usually does not lead to a
dramatic change of the traversal distance. Even if D(·) is not
a continuous function, the bisection method often operates in
the domain of D(·) in which D(·) is continuous. In practice,
the procedure returns a solution with no perceptible delay.



VI. EMPIRICAL EVALUATION

The experiments are designed to compare the plan-based
setpoint scheduler to the naı̈ve PID-based setpoint controller
implemented on our autonomous vehicle.

A. Naı̈ve Setpoint Controller

The naı̈ve setpoint controller is a PID-based reactive
controller for controlling the setpoint of the underlying PID
controllers of the brake and throttle. This controller offers no
guarantee that the car will arrive at either the correct time
or correct velocity. However, in practice the naı̈ve setpoint
controller offers good performance when supplied with a
feasible arrival time, in particular when seeded with the
output of our optimization procedure.

The naı̈ve setpoint controller is given an arrival velocity
(vend) and an arrival time (tend), and at each time step it
receives both the current distance to the intersection (d) and
the current time (t). The controller continually outputs a
velocity (vout ), which is used as the setpoint by the PID
controllers of the brake and throttle. The objective of the
controller is to minimize the difference between vout and
vend such that when the vehicle arrives at the intersection at
time tend , the velocity is exactly vend . At each time step, the
controller calculates the velocity vtime = d/(tend − t) which
will result in the car exactly matching the arrival time.
Then the term e = vend − vtime is used as the error signal
of the difference between vout and vend . Then the controller
computes u(e) = PD(e), where PD is a PD controller with
parameters kp = 1.8 and kd = 0.05. The setpoint for the PID
controllers of the brake and throttle is vout = vend +u(e).

B. Experimental Setup

Our experiments were conducted in Stage using ROS [5]
packages developed for our autonomous vehicle. Stage was
modified to more accurately model the dynamics of the
robot. We added calculations that approximate the drag and
rolling resistance of the vehicle and also model the brake and
throttle actuator lag. In our experiments the road has a speed
limit of 10 m/s (vmax), which matches the speed limit of the
test campus used for our autonomous vehicle. The vehicle
requests a reservation at 100 m (D) from the intersection.

We ran the experiments at three different starting velocities
(v0) and at three different intersection arrival velocities
(vmax

end ). The velocities correspond to the three possibilities of
the car traversing an intersection, straight ahead at 9.0 m/s,
turning left at 6.0 m/s and turning right at 3.0 m/s. Each
combination is run 30 times, with the error in arrival velocity
and arrival time being measured. A negative velocity error
indicates that the vehicle was going too slowly when entering
the intersection. A negative time error indicates that the
vehicle entered the intersection too early.

C. Experimental Results

Both the plan-based setpoint scheduler and the naı̈ve
setpoint controller use the optimization procedure presented
in Section V-A to calculate an optimal arrival time (tend).
When the optimization procedure is called we supply a

TABLE I
PERFORMANCE OF THE NAÏVE SETPOINT CONTROLLER (VELOCITY).

OVERALL ERROR MAGNITUDE 0.182±0.013 (M/S)
PPPPPPv0

vend 3 6 9

3 0.367±0.059 −0.097±0.034 −0.139±0.005
6 0.300±0.055 −0.108±0.032 −0.142±0.004
9 0.325±0.049 −0.095±0.035 −0.140±0.006

TABLE II
PERFORMANCE OF THE NAÏVE SETPOINT CONTROLLER (TIME).

OVERALL ERROR MAGNITUDE 0.172±0.015 SECONDS
PPPPPPv0

vend 3 6 9

3 −0.386±0.020 0.040±0.034 0.098±0.017
6 −0.359±0.023 0.020±0.019 0.113±0.019
9 −0.378±0.020 0.044±0.021 0.080±0.013

TABLE III
PERFORMANCE OF THE PLAN-BASED SETPOINT SCHEDULER

(VELOCITY). OVERALL ERROR MAGNITUDE 0.078±0.008 (M/S)
PPPPPPv0

vend 3 6 9

3 −0.003±0.043 −0.058±0.006 −0.139±0.005
6 −0.051±0.050 −0.058±0.003 −0.140±0.004
9 −0.019±0.008 −0.059±0.003 −0.080±0.003

TABLE IV
PERFORMANCE OF THE PLAN-BASED SETPOINT SCHEDULER (TIME).

OVERALL ERROR MAGNITUDE 0.181±0.015 SECONDS
PPPPPPv0

vend 3 6 9

3 −0.005±0.093 0.130±0.033 0.072±0.022
6 0.039±0.093 0.131±0.033 0.066±0.022
9 0.439±0.060 0.306±0.032 0.157±0.016

slightly lower speed limit of the road: vmax−C. This buffer
C gives an opportunity for the vehicle to react to noise and
control errors. Without the buffer, if the vehicle got even a
millisecond behind the schedule it would not be able to catch
up, as that would require the vehicle to go faster then vmax.
This arrival time produced by the optimization procedure
is guaranteed to be reachable so both controllers should be
capable of arriving within some error range.

Tables I and II present the results for the naı̈ve setpoint
controller. It can be seen that on average the vehicle arrived
at the intersection within 0.182±0.013 m/s (95% confidence
interval) of the intended velocity and within 0.172± 0.015
seconds of the estimated arrival time. The results for the
plan-based setpoint controller are shown in Tables III and
IV. The vehicle arrived at the intersection with a mean
velocity error of 0.078±0.008 m/s (95% confidence interval)
and a mean arrival time error of 0.181± 0.015 seconds.
Both approaches arrive with sufficiently small errors in time
and velocity. Although the differences in the arrival time
errors are insignificant, the plan-based setpoint scheduler
performs significantly better in matching the arrival velocity,
and reduces the velocity error by approximately 50%.

Further analysis of the results indicates that the noise
present in the robot and the environment impact each ap-
proach differently. The plan-based setpoint scheduler relies
on accurate T̄stable and D̄stable tables and on accurate velocity
measurement. In theory the tables for T̄stable and D̄stable were



calculated to include standard errors, however there exist
some hidden sources of error. For example, the setpoint
schedule may request a change in velocity at 0.332 seconds,
but the actuator runs at 10 Hz and therefore the effects may
not take place until 0.4 seconds have passed. At 10 m/s that
represents an error of 0.68 m. In addition the plan-based
setpoint scheduler assumes that in between setpoints the
vehicle is driving at exactly the correct velocity, but in reality
the velocity is slightly different. But most of these errors can
be fixed by the validation procedure. The errors indicated
in Tables I–IV are mainly caused by the vehicle reaching
a point sufficiently close to the intersection in which the
validation procedure can no longer adapt to the errors. These
errors are most likely to occur during plans that require large
accelerations or decelerations, such as the drop from 9 m/s
to 3 m/s (as can be seen in Table IV).

VII. RELATED WORK

Our controllers can be considered as a type of longitudinal
control of autonomous/semi-autonomous vehicles, which has
been widely studied since the 1960’s, in particular in pla-
tooning in automated highway systems [8], [9], [10]. Studies
in the 80s and 90s mainly focus on car following in a
platoon [11], but our approach is more suitable for point
following [12]. Finding optimal arrival times and velocities
is an important issue in AIM but not in platooning.

There has been work on motion planning for autonomous
vehicle (e.g., [6]), but most of it has treated the arrival time
and velocity requirements as secondary. While sampling-
based motion planning algorithms such as RRT [13] and its
variants [14] can deal with both arrival time and velocity,
they cannot determine the infeasibility of a given arrival time
and velocity before the vehicle actually arrives at the target
position. The detection of such infeasibility, however, can be
exploited to enhance intersection efficiency under AIM [3].
Our original validation procedure can prove non-existence
of motion plans under a simplified model of motions [3].
The validation procedure presented here cannot guarantee
the non-existence of solutions but is good enough for AIM.

Our approach treats the low-level controls as a blackbox
and focusses on the planning issues such as how to meet
the arrival requirements and optimize arrival time/velocity.
This allows our approach to work with a wide variety of
vehicle hardware and underlying low-level controller, e.g.,
a nonlinear H∞ controller [15] or the adaptive algorithms
for slip control were introduced to deal with unknown
interactions between tires and the road surface [16]. The use
of descriptive performance models can also circumvent the
difficulty of modeling vehicle dynamics and powertrains.

Our work is similar to multivariable PID controllers
(e.g., [7]) but PID controllers generally do not provide any
optimality and arrival guarantees. The robustness of our
approach relies on 1) rescheduling initiated by the validation
procedure, 2) conservative estimation of the performance
model which takes the sensing and control errors into ac-
count, and 3) the time and velocity buffer provided by the
intersection manager.

VIII. CONCLUSIONS AND FUTURE WORK
The plan-based setpoint scheduler introduced in this paper

can control an autonomous vehicle to optimally and accu-
rately arrive at a specific point on the road in terms of
both arrival time and arrival velocity. We also introduced
a smoothing technique to reduce the time a vehicle takes
to stabilize at certain velocity. The ability for vehicles to
meet tight time and velocity requirements can be exploited
to greatly enhance the throughput of intersections [2], [3]. We
have shown that a reactive setpoint controller, for example
our naı̈ve setpoint controller, can provide comparable results.
However such controller does not come with any guarantees,
and therefore is not ideal for systems where an unexpected
error in arrival time or arrival velocity may result in a
collision. In the future, we intend to deal with the variance in
typical driving performance due to different road conditions.

Acknowledgments. This work has taken place in the Learning
Agents Research Group (LARG) at UT Austin. LARG research
is supported in part by NSF (IIS-0917122), ONR (N00014-09-1-
0658), and the FHWA (DTFH61-07-H-00030).

REFERENCES

[1] K. Dresner and P. Stone, “A multiagent approach to autonomous
intersection management,” Journal of Artificial Intelligence Research
(JAIR), March 2008.

[2] M. Quinlan, T.-C. Au, J. Zhu, N. Stiurca, and P. Stone, “Bringing
simulation to life: A mixed reality autonomous intersection,” in
IEEE/RSJ International Conf. on Intelligent Robots and Systems, 2010.

[3] T.-C. Au and P. Stone, “Motion planning algorithms for autonomous
intersection management,” in AAAI 2010 Workshop on Bridging The
Gap Between Task And Motion Planning (BTAMP), 2010.

[4] P. Beeson, J. O’Quin, B. Gillan, T. Nimmagadda, M. Ristroph, D. Li,
and P. Stone, “Multiagent interactions in urban driving,” Journal of
Physical Agents, vol. 2, no. 1, pp. 15–30, 2008.

[5] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage
project: Tools for multi-robot and distributed sensor systems,” in Proc.
of the International Conference onf Advanced Robotics (ICAR), 2003.

[6] E. Frazzoli, “Robust hybrid control for autonomous vehicle motion
planning,” Ph.D. dissertation, Massachusetts Institute of Tech., 2001.

[7] J. Bao, J. F. Forbes, and P. J. McLellan, “Robust multiloop pid
controller design: a successive semidefinite programming approach,”
Industrial & Engineering Chemistry Research, vol. 9, no. 38, 1999.

[8] P. Varaiya, “Smart cars on smart roads: Problems of control,” IEEE
Transactions on Automatic Control, vol. 38, no. 2, 1993.

[9] D. Godbole and J. Lygeros, “Longitudinal control of the lead car of a
platoon,” IEEE Tran. on Vehicular Technology, vol. 43, no. 4, 1994.

[10] S. Shladover, C. Desoer, J. Hedrick, M. Tomizuka, J. Walrand, W.-B.
Zhang, D. McMahon, H. Peng, S. Sheikholeslam, and N. McKeown,
“Automated vehicle control developments in the path program,” IEEE
Tran. on Vehicular Technology, vol. 40, no. 1, pp. 114–130, 1991.

[11] S. Sheikholeslam and C. A. Desoer, “Longitudinal control of a platoon
of vehicles,” in American Control Conference, 1990, pp. 291–296.

[12] F. Broqua, “Impact of automatic and semi-automatic vehicle longitu-
dinal control on motorway traffic,” in Proceedings of the Intelligent
Vehicles ’92 Symposium, 1992, pp. 144–147.

[13] S. M. LaValle and J. James J. Kuffner, “Rapidly-exploring random
trees: progress and prospects,” in Algorithmic and Computational
Robotics: New Directions, 2000, pp. 293–308.

[14] J. hwan Jeon, S. Karaman, and E. Frazzoli, “Anytime computation
of time-optimal off-road vehicle maneuvers using the RRT*,” in
Proceedings of IEEE Conference on Decision and Control, 2011.

[15] L. Ganzelmeier and E. Schnieder, “Engineering aspects of nonlinear
H∞ control for longitudinal vehicle dynamics,” in 10th IFAC Sympo-
sium on Control in Transportation Systems, 2003.

[16] H. Lee and M. Tomizuka, “Adaptive vehicle traction force control for
intelligent vehicle highway systems (IVHSs),” IEEE Transactions on
Industrial Electronics, vol. 50, no. 1, pp. 37–47, 2003.




